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Abstract—To increase accessibility to the visually impaired,
many intersections have certain features to assist these
individuals in knowing when to cross. These features include
auditory cues with crossing signals and high traffic noise to detect
the flow of traffic. However, in many intersections that do not
have this external assistance, it can be challenging for a visually
impaired individual who is training to navigate these
intersections through the use of hearing and a cane. To remedy
this problem, xWALK, a wearable device, notifies the user when
it is safe to cross an intersection. The targeted intersections lack
crossing signals and have low traffic flow. The product is a belt
with a camera, raspberry pi, battery pack, and speaker attached.

Index Terms—Visually impaired, navigation, pedestrian, traffic
intersections, assistive device

I. INTRODUCTION

MANY intersections lack the necessary features to facilitate
crossing for the visually impaired. For example, many
intersections in Pittsburgh only provide the traffic signal as an
indication to cross. Therefore, in these intersections, without
crossing signals with auditory cues or with low traffic noise, it
may be difficult for an visually impaired person, who is
training to recognize traffic flow and crossing cues, to feel
secure to cross. Therefore, xWALK is a wearable device that
uses OpenCV and TensorFlow to guide users to cross an
intersection. The device is a nylon belt connected to a
raspberry pi, camera, speaker, and portable battery charger.
The user should already be standing at an intersection in the
direction of crossing. Once the user is ready, they will click a
button to allow the device to take a picture of the intersection.
In .5 seconds, the device will detect and crop the correct
stoplight and describe the state of the stoplight. Given the
state, it will decide whether the user should cross or wait. The
device will be used for around 2 hours per day with a battery
life of around 6 hours. In order to make sure the device would
be usable and relevant, a visually impaired person was
interviewed to take into account her concerns with the device.
Therefore, the device is for training use only in order to assure
a user’s decision to cross. There has currently been research in
crosswalk detection, but there is no wearable device for a
visually impaired person to use specifically for training.

II. DESIGN REQUIREMENTS

The product has a hardware component for the physical
device to take a picture of the surroundings and a software
component that contains the training model and image
processing. The physical device needs to be wearable and not

distracting so the user is comfortable using it in public.
Therefore, the device will be a belt with 812.8mm to 863.6mm
in circumference. At the front of the belt, we will be using a
Raspberry Pi Camera V2 due to its affordability and sufficient
quality. Connected on the side will be the Raspberry Pi Model
B 4 which will have a wireless speaker connected to the
headphone jack and will also be connected to a Raspberry Pi
Portable Battery. The speaker will be rechargeable with a
battery that lasts 8 hours. On the Raspberry Pi, there will be an
enable button for the user to press when they are ready to hear
the command. This is the complete hardware that the user will
be wearing at the crosswalk. In addition, the device is
expected to have a battery life of more than 9 hours given the
specification of the Raspberry Pi Portable Battery component.
In order to measure this, the equation will be used:

[1]
𝐿𝑖𝑓𝑒 (ℎ𝑟) =  𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑝𝑎𝑐𝑘 𝑙𝑖𝑓𝑒 (𝑚𝐴ℎ) / 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝑚𝐴)

As for the software requirements for the device, the device
needs to ensure the user has enough time to cross the
crosswalk and does not delay the user to cross. Therefore, we
require the device to have a latency of less than 0.5 seconds.
In addition, the device should take into account the yellow
light status in order the users have a consistent starting point
and do not cross towards the end of a green light. So, the user
should only cross once they have seen a red light and then a
green light. Another risk is the impeding objects or no traffic
light in view. Detecting impeding objects is out of the scope
for the project, so the device will only notify the user if it is
unable to see the traffic light in the frame.

Safety is an important requirement in the system. False
positives are one of the biggest risk factors which assumes the
user crosses the street when the light is red. To calculate the
FPRs, the equation below calculates the number of injuries
which include deaths that the device has caused:

[2] 𝑖𝑛𝑗𝑢𝑟𝑖𝑒𝑠/𝑦𝑒𝑎𝑟 = # 𝑡𝑖𝑚𝑒𝑠 𝑢𝑠𝑒𝑑/𝑦𝑒𝑎𝑟 * 𝐹𝑃𝑅

The risk uses the expected number of times the device will be
used per year and outputs the expected deaths per year given
our FPR. For the expectations given the scope of the project, 2
deaths per year is achievable. Given an expectation that the
device will be used 2600 times per year, or 50 times per
month, the FPR is .0769%.

In addition, the device must ensure it is looking at the
correct traffic light. The intersections that the device will
expect contain only traffic signals and perhaps a stop light for
pedestrians to use. The training model must detect the traffic
light facing the pedestrian. The device is expected to have
more than 90% accuracy. The accuracy is a percentage of the
mislabelled pictures/total picturess in a given testing session.
Due to the scope of the project, the device will not orient the
user. The device expects the user to at least be facing the
correct crossing direction.
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

As described in the introduction, our device is an adjustive
assistive tool to help visually impaired individuals navigate
traffic intersections. Typically, visually impaired individuals
rely on their sense of hearing to navigate intersections - by
listening to and focusing on the directionality of car engines as
they move spatially. With this perception, visually impaired
persons determine when to cross by listening to when vehicles
that are parallel to their crossing direction start moving (i.e.
the sound of engines accelerating those vehicles) as well as the
sounds of cross-traffic that is perpendicular to the user’s
intended crossing direction. The perception of sound is used in
combination with the perception of touch, through the use of a
cane, which is used to orient the user to where the crosswalk
starts, allow the user to feel where the crosswalk continues as
he/she crosses the street, and to serve as a visual cue to drivers
that someone who is visually impaired is crossing the street.

With these techniques, there are still challenges that remain
when crossing these intersections. First, as described earlier,
many intersections lack any auditory cues that can help
indicate when to cross. Furthermore, one cannot use his/her
sense of hearing if there is no nearby traffic - therefore no cars
to hear. Also, there is a couple week to month long training
period in which a visually impaired person learns to navigate
using a cane and hearing, where external assistance (usually
another person) is required to prevent training accidents from
becoming fatal. Therefore, in the cases of training and/or the
lack of traffic, our device will be a useful adjunctive assistant
to help the user determine when to cross an intersection.

Our expected device is therefore meant to be a portable,

adjunctive navigation assistant for a visually impaired

individual. To further portability, the device is designed to be
worn by said individual as a belt around the head, hips, or
torso. Figure 1 shows the final product - a wearable device
that is housed on an adjustable belt strap while Figure 2
depicts all of the hardware components that will be assembled
into said final product. All the components will be placed on
the outside of the belt. This placement by the buckle allows
the user to align the camera to face the same direction as the
user’s body is facing by feeling and rotating the buckle so that
it faces

Fig. 1. The envisioned final product - outside (top) and inside (bottom)

forward.  In order to turn on the device, the user must turn

Fig. 2. Diagram of all the components comprising the final system
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on the battery pack, speaker, and wire button. Therefore, it
is advised for the user to turn on the device before
approaching a stoplight. The user will hear a beep when the
device is turned on. To use the device, the user first navigates
to an intersection that they desire to cross. When the user
desires to cross, they press a button on the device, which is
housed next to the camera on a breadboard. The user will hear
another beep when the button is pressed. When the button is
pressed, the camera takes an image of the intersection directly
in front of it. The device takes this image and determines,
based on the state of the relevant traffic light in the
intersection, when to alert the user to cross. While the button
is pressed, the system, through an attached mini speaker, emits
a voiceover of “green”, “yellow”, or “red” that indicates the
state of the light or a beep if the device cannot locate a
stoplight.. This process is depicted in Figure 3 below.

Fig. 3. Functional diagram of system (boxes) and user interaction

IV. DESIGN TRADE STUDIES

To test the given system, the algorithm is to be run on both a
validation data set and a test data set of unseen photos. This
testing will be done using OpenCV, which is different from the
library TensorFlow which was used to build the training mode.
There are a number of factors that need to be considered in
measuring whether this system holds up to its expectations.
These include identifying the targeted traffic light, assessing
the state of the traffic light, and measuring the time between
the change in traffic lights. For the method that was decided
upon, there were numerous other options, but each with their
own tradeoffs, which will be discussed further below in detail.

A. Identification of the Correct Traffic Signal
As shown in Fig. 4, that specific picture frame is an instance

of when there are multiple traffic signals in the view of an
individual. In order for the algorithm to work properly in this
case, the pictures that are being tagged in training need to tag
all of the stop lights seen, as it is done in Fig. 4. This allows
for the algorithm to recognize that there are multiple stop
lights in the frame and choose which one to focus on for the
individual. The algorithm needs to be able to only recognize
the traffic light facing the individual (the one tagged in green)
over the ones tagged in pink and yellow. By feeding the
algorithm fully tagged images like this, it allows it to discredit
the traffic lights that are not in the same look direction desired.
This accounts for the most accurate real time situation and
allows the system to work and function even when given

conflicting information such as in the Fig. 4, which is very
likely to happen. The way the algorithm would recognize
which traffic light is facing the correct direction is by having
the algorithm attempt to identify the light with three visible
circles. Usually the other traffic lights will not be facing the
correct angle in order for this to occur, as it can also be seen in
Fig. 4. Also the distance to the traffic light can be calculated
by using the number of pixels between the centers of the green
and red circles of the traffic light. This method was preferred
to simply trying to identify the color of all the traffic lights in
the image, which some other models implemented. Those
simply processed all the visible traffic lights in the frame,
which is more costly in terms of time and efficiency. The
accuracy aimed for is shown in Table 1, as greater than 90%
would be considered close enough.

B. Traffic Light State
Identifying the correct state of the traffic light relies on

separating and analyzing the colors present. The method used
by xWalk includes first extracting the green, yellow, and red
parts of the image through RGB filters. Then, the image is
searched for a combination of three circles in a row in the
correct colors. The FPR is the main concern since that is the
only situation in which the pedestrian’s safety is threatened.
The FPR is calculated through the number of deaths projected
per year based on the number of times the device is used.
Based on those calculations, as it can be referred to in
previous sections as well, the FPR comes out to about .0769%,
which can be seen in Table 1. Other methods include
converting the entire image to grayscale, applying top hat
morphology, applying a watershed algorithm and selecting the
bright spots. This type of method is a bit more intensive and is
less efficient. It also involves more rigorous testing because
there are more steps which could easily not output the correct
results along the way.

C. Changing Traffic Light State
The one other factor to be taken into account is the situation

in which the traffic light is changing colors. The pedestrian
needs to be informed to cross when the light turns yellow to
red, not when the light is turning from red to green. In both
these situations, there is the chance of this traffic light being
identified as red. Thus, the proposed system needs to identify
multiple frames when the light is changing so the system can
detect the change. This involves taking a video, which is a
composition of multiple images, documenting the number of
frames it takes for the light to change. This is also the same
method in which the latency for this system is to be measured.
However, in the case of measuring the latency, the time it
takes for the system to respond after the change after a light
change is tracked, which is targeted for less than 0.5 seconds
as seen in Table 1. Instead of simply telling the pedestrian to
cross when there is a red traffic light detected in sight, xWalk’s
solution is to only inform the pedestrian when the light has
been detected to change from yellow to red. While this may
take longer for the individual to cross the intersection, the
accuracy of the system is improved through this method. The
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safety and thus the accuracy of the system is being prioritized
while compromising on speed.

TABLE 1. MEASUREMENTS FOR SYSTEM ACCURACY

Metrics
Correct
Detection Light State Time for Change

Accuracy >90% ~0.0769% (false
positive rate) <0.5 sec

Fig. 1. Training Image (Intersection with tagged traffic lights)

Fig. 2. High-level full system diagram

V. SYSTEM DESCRIPTION

As described in Section III, the overall system, from the
user’s perspective, consists of a camera and push button for
input and a mini speaker for auditory cue output. In this

section, more detail will be provided with regards to how the
inputs are processed to obtain this auditory output. Figure 5,
below, depicts a high level of the entire system’s processing.

The system diagram shows how the push button input from
the user, when indicating that it has been pushed, allows for
the image captured by the Raspberry Pi camera to be passed
into the software algorithms (white boxes) to determine (1)
detect traffic lights in the scene, (2) determine which of the
traffic lights, if any, are the lights the user is facing, and (3) the
state of said traffic light which the user is facing. The output
of this second software subsystem is the overall system output
of {“red”, “yellow”, “green”} sound signals that are converted
into auditory tones driven from the mini speaker. The
following subsections describe the software algorithms in
more detail.

A. Traffic Light Detection
As described in Section IV.A., the objective of this

algorithm is to detect all the traffic lights in a scene, regardless
of orientation. This algorithm therefore takes an image, passed
in from the Raspberry Pi camera and enabled by the push
button, as input and outputs the locations of detected traffic
lights, as depicted with the green, hot pink, and yellow
boundary shapes in Figure 4. This algorithm includes a trained
deep neural network (DNN) model into which the pixels of the

input image are passed in and from which the locations of
detected traffic lights are outputted. The training procedure,
described in the following section, is represented in Figure 5
with the training dataset (blue box) used to train the DNN
(white box) within an AWS environment (orange box). The
validation procedure is further depicted with the validation
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dataset (purple box).
1. Training the DNN

For the model, we are using the TensorFlow library, which
includes a DNN, whose specific architecture is optimized
specifically for computer vision (CV) applications. To train
the model, we need images with tagged traffic lights. The
COCO dataset has a couple hundred such images, in which
traffic lights, among other classes of objects are tagged just as
shown in Figure 4. It is worth noting that COCO has
standardized their boundaries to be more specific polygons as
opposed to a rectangle, as shown by the hot pink boundary
box in Figure 4. At training time, the model takes in the
vectorized pixel values of the image, runs a series of
calculations as these values are passed through the DNN, and
estimates pixel locations for each polygon boundary box for
each traffic light in the scene. These estimates are compared
with tagged boxes from the COCO dataset by computing an
error metric through backpropagation and iterating through the
hundreds of tagged images until this error converges.
The computational complexity of training the DNN model
over hundreds of images is too large for an individual
machine. Therefore, the training is exported to an Amazon
Web Services (AWS) graphic processing unit (GPU), which
performs these calculations faster. Validation, as described in
the next subsection, is also performed in AWS.

2. Validating the DNN and Validation Data Collection
To ensure that our trained model has the highest possible
accuracy with relevant data, we validate our model with
pictures gathered at various intersections in Pittsburgh with
traffic lights then tagged by hand. These images were gathered
at different types of intersections (just traffic lights versus
traffic lights with crossing signals), varying amounts of cars
and pedestrians, varying weather conditions (sunny, cloudy,
overcast, rain), varying light conditions (day, dusk, night),
varying angles, and varying traffic light colors. These images
will be input and their resulting classification error will be
calculated as described in the previous section. The objective
of this validation procedure is to reduce the classification error
in this validation set. This validation error metric will be used
to reparameterize and rerun the DNN training to reduce the
error as much as possible, making sure to not include the
validation photos at training time as to not overtrain the DNN
model.

3. Running the DNN
A new image, one that is neither part of the COCO dataset /
training set nor part of the validation set, will be input into the
trained and validated DNN. The DNN outputs boundaries of
all detected traffic lights from the new image. In Figure 5, this
process is represented within the gray box labeled “Raspberry
Pi”, with the arrow labelled “image” going into the white box
depicting the traffic light detection algorithm and the arrow
labeled “image of traffic light” (i.e. the traffic light
boundaries) leading out of the detection algorithm. The
boundaries are used as input to the “look direction” detection
algorithm, as discussed in the next section.

B. Look Direction Light (“Look Light”) Detection
As shown in Figure 5, the traffic light detection algorithm

passes on the boundaries of the traffic lights, if any, in a photo
to the Look Light algorithm. These boundary boxes are then
used to “snip” the images of just these detected traffic lights
from the overall image. The objective of the look direction
light detection algorithm is to identify which of the detected
lights from the previous algorithm is the light for the user’s
desired crossing direction.
Assuming that the user is directly facing the crosswalk he/she
wishes to cross (let’s call this a look angle of 0°), the traffic
lights in the user’s crossing direction will be facing the user,
albeit likely not necessarily directly in front of the user. From
the user’s perspective, the traffic light in his/her crossing
direction will appear to be more of a circle than lights facing
other directions. Figure 6, below, shows a pair of such lights
from a photo in our validation set.

Fig. 1. Look (green) v. non-look (red) lights

As shown in Figure 6, the green light appears to be a circular
shape unlike the red light (even if it’s not a perfect circle).
This intuition of the look light being more circular than a
non-look like is the basis of the image processing behind the
Look Light Algorithm.

1. The Circle Hough Transform (CHT)
CHT is a standard feature extraction algorithm used in
Computer Vision applications. Its objective is to highlight
circles present in an image. CHT is based on the cartesian
equation for a circle, reproduced below, where (a,b) is the x,y
center of the circle and r is the radius.

[3] (𝑥 − 𝑎) 2 + (𝑦 − 𝑏) 2 =  𝑟 2 
The CHT algorithm, in two stages, searches an image for all
possible circles with centers (a,b) (Stage 1) and with radii r
(Stage 2). The OpenCV HoughCircles() function efficiently
implements this using gradient descent to speed up the search
process.

2. Using the Circle Hough Transform (CHT) to pick the
Look Light

A convenient feature of HoughCircles() is that it will return a
probability that a detected circular object in an image is a
circle. In other words, if the algorithm detects any closed
shape with curved edges, it will return the coordinates along
with the probability that said shape is a circle. This feature
allows the Look Light algorithm to assess how close to circles
the lights in each traffic light is. That way, the traffic light with
lights that most closely resemble a circle, as outputted from
the CHT algorithm, based on our intuition described above,
must be the look like. This algorithm then passes along the
boundary box / snipped image of the predicted look light onto
the next algorithm as shown in Figure 5.

C. Light State Detection and Crossing State Decision
As described in the section before and depicted in Figure 5,
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the look like boundary box is passed into this algorithm. The
objective of the Light State detection algorithm, as the name
suggests, is to detect the state of the look light from {“red”,
“yellow”, “green”}. This algorithm exploits the fact that the
traffic light outputs a colored light. Therefore, the pixels in the
red light in an RGB format will have a high value for the R
content. Similarly, a green light has a high G content and a
yellow light has high R and G content (as yellow light is the
sum of red and green light.
The OpenCV library has functions to (1) apply a specific RGB
filter to an image and (2) assess the saturation/intensity of an
image. Our algorithm applies RGB filters and saturation
assessment in that order. Therefore, for a red look light, for
example, the red filtered image of the red light will have a
circle of high intensity where the light is and relatively low
intensity elsewhere in the snipped picture of the look light.
This intensity will then be assessed (by comparing to an
empirically-derived threshold) to derive the conclusion that
the look light is red. A red light, through a green filter, will not
have such intensity in the light and therefore will not be
classified as green. Table 2, below, shows the combination of
red-filtered and green-filtered intensities (middle, right
columns) and their respective state outputs (left column).

TABLE 2. LIGHT STATE DETECTION CLASSIFICATION

State Red Filter Green Filter

Red Light Y N

Green Light N Y

Yellow Light Y Y

The classification output from {“red”, “yellow”, “green”} is
stored and updated in memory. We reciprocate the status to the
user with a voiceover.

VI. TEST AND VALIDATION

To assess how closely our device delivers on the metrics
described, various subsystems as well as the overall system
were tested and results compared to the desired metrics. The
respective tests that were performed are reported in the table
below.

TABLE 3. VALIDATION TESTING

Metrics Testing

System Latency Use RPi time functions to report
time from image capture to
overall system output.

Traffic Light and
State Detection

Accuracy

Count how many images in
which traffic lights are
mislabelled.
Accuracy (%) = mislabelled

frames / total frames

Light State Detection
Accuracy and False
Positive Rate (FPR)

For each image, calculate
proportion of light states labelled
correctly (Accuracy) and
proportion of red lights label;ed
as green lights (False Positive)

Battery Life Running the device and time the
duration until it powers down.

The following subsections report the findings from said
testing, as well as how many times the tests were performed
and any constraints during said testing.

A. Results for Traffic Light Detection
Our entire device was tested through both systems tests and

real time tests. The system tests were conducted using the
validation data set of 50 images on our desktop environment
instead of on the RPI. By running those through the model, we
gained an 89.7% accuracy rate as it can be seen in Table 7.
This rate refers to the images in which there was a traffic light
and the algorithm outputted the correct color of the traffic
light.. During our real time testing, we picked two traffic lights
to use our device at, which were both smaller intersections
without a pedestrian crossing light. A total of 20 tests were
conducted, 10 of which were done on a rainy day, and 10 of
which were done on a sunny day. The accuracy of these real
time tests turned out to be 80%, as it can be seen in Table 7.
The validation tests simply required for the software to run, as
the files were after integration. However, for real time tests,
the user needed to start up the battery pack and the speaker.
Then the user would press the button for the camera to take a
picture of the traffic light they were facing. The latency for the
speaker to output the result took about 26 seconds, which was
significantly longer than the system tests. Both of these times
were longer than what was aimed for, which was supposed to
be less than 0.5 second, as it can be seen in Table 4.

The battery life was tested in real time by wearing the
device throughout the day and occasionally using it. With this,
it lasted about six hours, when it was aimed to be about nine
hours, as seen in Table 4. However, 6 hours still provided a
large enough lifetime for the user to use throughout the day, as
the pack could be turned off as well. The battery pack was
able to be charged overnight, which also matched the
specifications that were set forth in the design.

Another metric that was measured was the false positive
rate. This metric was around 3.4% when originally specified to
reach less than 1%. It was measured through the number of
images in our validation data set that were labeled as red when
the light was actually green. The FPR is concerning, as it
brings the danger of using this device up incredibly. Telling
the user to cross during a green light actually puts the user’s
life at risk, and might increase the risk calculations that were
done previously.
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B. Results for Traffic Light State Detection (“Look
Light” Algorithm”)

This subsystem was routinely tested using the following
tests: Traffic Light State Detection Accuracy, Traffic Light
False Positive Rate, and Subsystem Latency. These tests were
carried out on the system processing all 43 validation images.
The results of each of the tests, described in the following
paragraph, are reported in the Tables 4 through 6, below.

Output from Subsystem latency, as with the overall system
latency, was calculated using the processor’s clock via the
python call of time.time(). The average latency of this
subsystem across all photos, when run on a desktop, was
0.0623 seconds. When run on a Raspberry Pi, this latency was
prolonged to 0.1253 seconds due to slower processing speeds.
State accuracy and false positive rates were calculated as
described in Table 3, above, across all of the validation set
photos. While the overall state accuracy of 89.7% was near
our desired accuracy of 90%, the false positive rate of 3.4%
was much higher than desired as such a false positive rate
could lead to a high incidence of collisions when the device is
used. It is also worth noting that the system was able to return
None when a non-Look Light was presented 100% of the time,
or all 14 of them in the data set, so any error was entirely from
any misclassification of the remaining 29 Look Lights.

C. Results for Overall System
Following integration, further testing was conducted to test

battery life and overall system latency and accuracy. Battery
life was first estimated on the bench by measuring the current
(in mA) and dividing from the battery manufacturer’s reported
capacity (in mAh).  This estimate deduced a battery life of
4000 mAh/ 600 mA = 6 hours 40 minutes. We then tested this
battery life in real time by running the system from full charge
to automatic shut down, which lasted closer to 6 hours.
Overall system accuracy in traffic light and state detection as
well as full latency was obtained using the same methods
mentioned for other subsystems above. The results are
reported in Table 4 below.

TABLE 4. OVERALL RESULTS

Metric Requirement Result

System Latency < 0.5 sec 26 seconds

Traffic Light and
State Detection

Accuracy

> 90 % 89.7%

Light State False
Positive Rate

< 1 % 3.4%

Battery Life 9 hours 6 hours

TABLE 5. LIGHT STATE DETECTION: LOOK VS. NON-LOOK

Amount Accuracy

Total Lights 50 N/A

Look Lights 29 100 %

Non-Look Lights 21 100 %

TABLE 6. LIGHT STATE DETECTION: COLOR DETECTION RATES

Rate Value

Correctly Detected 0.8966

False Positive 0.0345

False Negative 0.0690

TABLE 7. OVERALL TESTING RESULTS OVER N TRIALS

Type of Testing Number (N) Accuracy

System 50 89.7%

Real Time 20 80%

VII. PROJECT MANAGEMENT

VIII. Schedule
Our schedule is divided into five different sections which

illustrate the core tasks of the project which are further divided
into subtasks. These main sections, which can also be seen in
Fig. 8, include Project Proposal and Planning, Design and
Implementation, Basic Integration, Full Implementation, and
Performance Testing and Integration. The first phase involves
gathering the data and setting up the environments primarily
for both the training and hardware aspects. The Basic
Integration Stage involves having the image classifying
algorithm functioning and connecting all the external parts to
the Raspberry Pi. The Full Integration stage is when the
auditory feedback is to be implemented and the detection
algorithm’s accuracy rate needs to match up with the design
requirements. The Performance Testing and Integration Stage
primarily focuses on having the hardware components work in
all sorts of conditions. Phases 3 and 4 involve a lot more tasks
being done by everyone together, as these are heavily focused
on integration between the individual platforms. The Final
Report Phase is simply putting the project together and by
then it requires a fully functional device.

IX. Team Member Responsibilities
We split up our responsibilities between the hardware and
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software components. Jeanette’s main responsibility will be
the hardware components with the raspberry pi, speaker,
camera, and so on. She will be assembling the device and
assisting and setting up real time usage. Yasaswini and Shayan
will be in charge of the software. Yasaswini’s main
responsibility will be finding, annotating it, and training the
data set. Jeanette will help assist her with any difficulties.
Shayan’s responsibility is to create the image processing
algorithms and test those. All bench testing and integration
testing will be done as a group.

X. Budget
The budget is located on page 8 in figure 7.

XI. Risk Management
Throughout the semester so far, we took into account the

feedback and suggestions given by peers and professors for
the project proposal, design presentations and weekly
meetings. At first, we were unsure of the design, a week in our
schedule was given to design exactly how our product would
be. From this, we ended up changing our design completely
into a belt which changed some of the hardware components
and design that we originally planned. We created an extensive
design drawing to ensure that the components are the correct
size and weight to meet our requirements. This will ensure that
the necessary components are ordered ahead of time. In
addition, we made sure to investigate our software programs
during the design week to ensure we are familiar with the
technologies that we are using.

An important aspect of the schedule that we added is slack
time. We added a week of slack time in case we get behind
schedule or end up with some difficulties throughout the
semester. In addition, most of our schedules are free towards
the end of the week, so we created working sessions every
Thursday to ensure that everyone has time to work on their
part. Our schedule uses week long tasks to ensure that we are
able to complete our tasks by the status report deadline. We
ended up using the slack time when the image processing and
the training model took more time than expected.

Early planning allowed us time to acquire any components
or software that we did not account for. For example, Jeanette
was in charge of ordering the components for the hardware.
The components were ordered during design week so that after
our design presentation, we are able to start on the hardware.
Unfortunately, we were missing small cables that were
necessary to set up the raspberry pi, so luckily, it was still
early in the semester to acquire these components and
continue working on schedule. In addition, we added a last
minute addition of AWS in order to train on tensor flow.
Immediately after the presentations, we acquired and
downloaded any extra software that we did not take into
account in our early planning.

XII. ETHICAL ISSUES

For a device that is used by vulnerable populations, it is
important to think about ethical issues in our project planning.
Visually impaired individuals are the most affected by the

product. The greatest risk of our device for our users is injury
or death from error in our calculation. Therefore, if this device
were to be produced in the real world, we would need to make
sure that the false positive rate is extremely low (to almost
perfect) and the accuracy is extremely high. Testing and
validations must be very detailed. Our device needs testing at
every different type of stoplight in the United States. As of
now, we created a training model that prioritized simple
stoplights but a larger dataset will help mitigate this risk.

Another population affected could be pedestrians and
background objects in our images. Since our device includes a
camera, privacy issues can be an edge case for users to alter.
Users might purposely use our product to record and take
pictures of pedestrians and impeding objects. To help mitigate
this, we may involve security measures so the user is unable to
access the images and videos. In addition, something we
included in our project is erasing all pictures and videos once
the RPi resets. Therefore, when the RPi reboots, there will be
no history of images and videos taken beforehand. We
changed the program to take a picture in order to mitigate the
risk of surveillance of pedestrians. A picture is less invasive
than a video.

Another safety risk could be the weather wearability of our
product. Since many cities in the United States face many
different weather conditions, our device should withstand any
event that it would come in contact with. This is very
important for snow and rain if water were to come in contact
with our board. A mitigation to this risk would be a
waterproof camera and covering over the board to protect any
vulnerable parts. The accuracy in any weather condition
should be very high since we expect our users to be able to use
the device at any time during the year. If it is raining or
snowing heavily the camera may not be able to recognize
stoplights.

Comfort in wearability of our product is very important.
Our device should be inclusive to every different body type.
As of now, we have one size that fits 32-34 in of the waist. If
our product were to be expanded to the real world population,
many sizes must be included such as plus size and petite. As
of now, our product is very bulky and uncomfortable to wear
for a visually impaired individual. Batteries and the speaker
will only notify the users that it has been turned on with a
light. This could be difficult for visually impaired users to
recognize. Perhaps, exchanging the components for noise
instead of visual cues when the battery and speaker turn on
would be very helpful.

Our test group should be actually visually impaired
individuals. Our group actually spoke with a visually impaired
individual when designing our product. In the beginning, we
changed our initial use case because we were not aware of
how a visually impaired user would actually work with our
device. We learned that visually impaired individuals would
use this device to help assist them in training to cross streets
and is not a permanent product in their routines. Therefore, an
accurate representation of the users can help mitigate any
issues that may arise.
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XIII. RELATED WORK

Traffic light detection and state recognition is a common
problem for autonomous vehicles. Therefore, there is a robust
body of prior work to develop such algorithms for the specific
use case and resources at the disposal of autonomous vehicles.
Such algorithms include convolutional neural network (CNN)
based state recognition [1] and support vector machine (SVM)
approach based on converting the traffic image from RGB to
hue-saturation-value (HSV) space [2]. These algorithms are
built upon editing robust frameworks for recognizing a traffic
light, typically using deep neural networks (DNN) with the
image input, trained with thousands of tagged traffic lights in
photo databases. The scope of these software developments
are biased in the advanced processing capabilities as well as
stricter requirements of autonomous vehicles. Therefore, they
are optimized for the lowest latency possible without much
priority to processing power used.

In addition, there are many products that are similar in
detecting traffic lights either for people or cars. For example, a
traffic light detection system uses a camera attached to the
head to videotape the user’s view at a crosswalk. Using
OpenCV for image processing, the device was able to detect
the shape and color of traffic lights [3]. A traffic light pilot app
for visually impaired people was developed by a working
group at the Research Institute for Ophthalmology in Tubinge
in 2017. They collected and classified about 3000 images
from which about 1000 were selected to train using machine
learning. The final “LightsCatcher” app allowed for the user to
take a picture on their phone of their surroundings and have
the app detect the red and green phases of a pedestrian light by
translating them to acoustic or tactile signals [4]. The project
ended up being able to detect a large part of the pedestrian
traffic lights. They expected that the detection rate could
improve even further with more images. However, the
applicability of this project is limited currently by the distance
to the traffic light and the light conditions.

XIV. SUMMARY

Our system did not meet all the specifications but did
achieve some measure. We were able to create a MVP of our
device with a 90% accuracy in detecting the traffic light and
its correct state. However, the FPR is 3% which is high for the
requirement of our system. The latency is 26 seconds instead
of <3 seconds.

A. Future work
I believe more experimentation with the processor might

help improve the latency. RPi 4 Model B does not work well
with Tensorflow and should not expect robustness when
working with large training models. Next time, I would
compare the Jetson Nano or an earlier version of RPi to see if
the latency would improve with these processors. In addition,
fine tuning parameters of the Look Light algorithm would
decrease our FPR. Another attribute that would have been
achievable with our device given more time is parallel
processing. It would be very helpful to have the user press the

button multiple times in order to detect a transitioning state at
the crosswalk.

B. Lessons Learned
We should have done more research in the processor that we

needed. By the time we set up the program and integrated our
code, the latency was impacted by our design plan and should
have been further research before we started the project. We,
also, spent most of the time setting up the model on the AWS
while in the end we did not use it. In addition, we spent most
of our time integrating all our parts together. Perhaps,
communicating what we need between each part would have
made the process faster than before.

GLOSSARY OF ACRONYMS

CNN - Convolutional Neural Network
CV - Computer Vision
DNN - Deep Neural Network
FPR - False Positive Rate
HSV - Hue-Saturation-Value
RGB - Red-Green-Blue
RPi - Raspberry Pi
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