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What is Project Sharpcam?

e Mobile video camera that can record multiple videos and deblur them in real time,
specifically spatially invariant blur from camera shake

e Spatially invariant blur because it simplifies the solution space and still offers meaningful
results.

e Offers asoftware solution to a problem typically solved with physical equipment

spatially variant blur spatially invariant blur



Application Area and Use Case

e Sharpcam can be used in any situation where it may be difficult to capture a video while

maintaining a steady hand.
o  Some examples are: high action events such as sporting events, capturing suspicious activities and
trying to track a specific object while moving
e Sharpcam can be used as a software approach for stabilizing video capture, eliminating

the need for physical devices such as a gimbal
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Loss value vs. iteration number

Challenges Overcome (CNN)
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Challenges Overcome (Nano System Memory)

e Oiriginal design required use of shared memory
o  Veryslow when trying to read/write to it
o  Made attaining 30fps impossible
o  Caused Nano to become unresponsive after short periods of recording
e Nextiteration used a serial approach to the processing and stored frames in data
o  Would get process ‘killed’ after storing ~700 frames this way
m  Result of triggering the kernel’s “OOM” (out of memory) killer
e Kept the serial approach but now used write calls to store frames initially and os.system
calls to move frames around
o  Threaded initial writes around fps regulating wait call in main process
m  Allowed for writes to not noticeably affect process runtime or fps

o  Used os.system to run “cp ...” commands to limit number of read/write calls made elsewhere



Challenges Overcome (Physical Hardware)

e JetsonNano
o  There was aninitial issue with our first Jetson Nano, where it wouldn't display nor turn back on

o  Our solution was to use our budget and order another one
e Battery

o  When the Nano is connected to the battery it will turn off after 35 seconds
o  Our solution was to remake the model stationary without the need of the power supply attached
e 3D Printed Case
o Itwasn't exactly what we envisioned especially because the length of the case was cut off too
short, therefore not allowing us to have both the Nano and Battery pack held within
The LEDs and Camera cut out holes were pretty difficult to place the parts
Our solution was to just enclose the Jetson Nano, Camera, breadboard, LED’s, and buttons into the

case



\ Fully Integrated Run Through

. -
-
L ———— P —— =
£ .
- o~

e ———— ——
— - — e



https://docs.google.com/file/d/14GVnV650yBPyYAnFno_nPhlVPdmX8yZ_/preview

\ Side by Side Comparison

Pre Deblurring Post Deblurring


https://docs.google.com/file/d/1aW7NgqVz6Q9nyBXFAXecB-l0sA5IGZuF/preview
https://docs.google.com/file/d/1qVcZwiwr7CwTnIMqzD1JOEvHkrBOGFHG/preview

What We Achieved

e Tactile buttons were able to control when to record and the system power, while LEDs
were able to signal the power, recording, and processing stages of the script

e System capable of recording/storing multiple videos without needing to restart

e System capable of exchanging files with AWS EC2 instance

e System capable of recording at a consistent 30fps for a reasonable (>15 minutes) amount
of time

e System capable of storing as many videos as SD card memory will allow (each with unique
auto generated identifier)

e Overall, created an all in one solution to recording a video and deblurringitina

reasonable amount of time (<2 seconds per frame)



Lessons Learned/Takeaways

Rebecca

Any created enclosing definitely needs precise measurements and physical mock confirmation
before being made, otherwise the product will look wrong
Sometimes functionality takes precedence over aesthetics

Just because a solution seems elegant doesn’t mean it’s also computationally efficient
Careful organization early on makes later additions faster and easier to implement/integrate

Although it may be long and monotonous a deep dive into component specs can make a massive
difference in the long run.

Sometimes the best way to learnis to fail, and in our case it would have been to fail faster and to
fail a little harder, this way we could hash out some of our problems before it was too late.



\ Thank You CMU ECE Faculty!



