Team DI
Project Sharpcam

Nathan Koch, Rebecca-Jean-Louis, Sean Pogorelc

What is Project Sharpcam?

e Mobile video camera that can record multiple videos and deblur them in real time,
specifically spatially invariant blur from camera shake

e Spatially invariant blur because it simplifies the solution space and still offers meaningful
results.

e Offers asoftware solution to a problem typically solved with physical equipment

spatially variant blur spatially invariant blur

Application Area and Use Case

e Sharpcam can be used in any situation where it may be difficult to capture a video while

maintaining a steady hand.
o Some examples are: high action events such as sporting events, capturing suspicious activities and
trying to track a specific object while moving
e Sharpcam can be used as a software approach for stabilizing video capture, eliminating

the need for physical devices such as a gimbal

v
Red LED

Green LED

Hardware Components

2igioncey Record Button

Battery Pack

[
If pressed ON

J25 DC Power Jack

RPi Camera
V2

Video Stream

Jetson Nano
GPIO Pins

A
Processing On/Off Pin

Recording On/Off Pin

——Power On/Off Pin

Once all
images are
read in, save

as .avi file

Jetson Nano (software)
Recording/Frame Collection

Save images
to non-offset
€ OpenCV

pre-process
folder

Wait for Record

Button to be pressed

Once

recording
is
finished Lua Model prep

Organize

Zip pre_img/
folder

images in
offset folder
(for alignment)

Restitch

[C] newly created

borrowed material

purchased

EC2 Instance/Lua Model

Unzip file and

SCP zip
organize files
to correct

file to
—— AWS ——>
locations

EC2

Video

Unzip results and feed them
sequentially into OpenCV

VideoWriter object

Zip results
and SCP

—_ 5
them back to
Nano

Run Lua Model

Wait until zip file

Instance

received

Software Components (non-CNN

PD Pioneer
Battery Pack

J25 DC Power Jack

[
If pressed ON

v

RPi Camera
V2

Record Button

Jetson Nano
GPIO Pins

T

Red LED
8D card

A

e/ OFf Pin-

Recording On/Off Pin—

Power On/Off Pin

Jetson Nano (se#®are)

Recording/Frame Collection

Save images

to non-offset

pre-process
folder

Once

recording

finished

is
Lua Model prep

(for alignment)

Organize
images in Zip pre_img/
i folder

offset folder

Once all
images are
read in, save

as .avi file

Wait for Record
Button to be pressed

Restitch Video

Unzip results and feed them
sequentially into OpenCV

VideoWriter object

Zip results
and SCP

—_ 5
them back to
Nano

Run Lua Model

Unzip file and

SCP zip

organize files

[C] newly created

borrowed material

purchased

EC2
Instance

file to
—— AWS ——>
locations

to correct

Wait until zip file
received

v
Red LED

Software Components (CNN

RPi Camera Jetson Nano
GPIO Pins

Record Button v2
| T L
Processing On/Off Pin
Recording On/Off Pin

PD Pioneer
Battery Pack
——Power On/Off Pin

Video Stream

[
If pressed ON
J25 DC Power Jack
Once all
images are
read in, save
as .avi file

Wait for Record

Jetson Nano (software)
Recording/Frame Collection
Button to be pressed

Save images
to non-offset
€ OpenCV
Restitch Video

pre-process
folder

Unzip results and feed them
sequentially into OpenCV

VideoWriter object

Once
recording
is
finished Lua Model prep

Organize

images in Zip pre_img/
offset folder i folder
(for alignment)

Zip results
and SCP

—_ 5
them back to
Nano

EC2 Instance/Lua Model

Run Lua Model

Unzip file and

SCP zip
organize files
to correct

[C] newly created
file to
—— AWS ——>
EC2
locations
Instance
Wait until zip file
received

borrowed material

purchased

Loss value vs. iteration number

Challenges Overcome (CNN)

o
=
[&]

MSE Loss

o
=
o

e Original CNN model architecture (DeblurNet) did not
learn from original training data, so a switch to the
provided model was needed

40
iteration #

e DeblurNet architecture has 22 layers, which
overloaded the Nano CPU, so processing was
offloaded to aws ec2

Loss value(every 100 iterations)

(%]
[
o
|
w
0
=

0 100 200 300 400 500 600 700 800
iteration # (100's)

Challenges Overcome (Nano System Memory)

e Oiriginal design required use of shared memory
o Veryslow when trying to read/write to it
o Made attaining 30fps impossible
o Caused Nano to become unresponsive after short periods of recording
e Nextiteration used a serial approach to the processing and stored frames in data
o Would get process ‘killed’ after storing ~700 frames this way
m Result of triggering the kernel’s “OOM” (out of memory) killer
e Kept the serial approach but now used write calls to store frames initially and os.system
calls to move frames around
o Threaded initial writes around fps regulating wait call in main process
m Allowed for writes to not noticeably affect process runtime or fps

o Used os.system to run “cp ...” commands to limit number of read/write calls made elsewhere

Challenges Overcome (Physical Hardware)

e JetsonNano
o There was aninitial issue with our first Jetson Nano, where it wouldn't display nor turn back on

o Our solution was to use our budget and order another one
e Battery

o When the Nano is connected to the battery it will turn off after 35 seconds
o Our solution was to remake the model stationary without the need of the power supply attached
e 3D Printed Case
o Itwasn't exactly what we envisioned especially because the length of the case was cut off too
short, therefore not allowing us to have both the Nano and Battery pack held within
The LEDs and Camera cut out holes were pretty difficult to place the parts
Our solution was to just enclose the Jetson Nano, Camera, breadboard, LED’s, and buttons into the

case

\ Fully Integrated Run Through

. -
-
L ———— P —— =
£ .
- o~

e ———— ——
— - — e

https://docs.google.com/file/d/14GVnV650yBPyYAnFno_nPhlVPdmX8yZ_/preview

\ Side by Side Comparison

Pre Deblurring Post Deblurring

https://docs.google.com/file/d/1aW7NgqVz6Q9nyBXFAXecB-l0sA5IGZuF/preview
https://docs.google.com/file/d/1qVcZwiwr7CwTnIMqzD1JOEvHkrBOGFHG/preview

What We Achieved

e Tactile buttons were able to control when to record and the system power, while LEDs
were able to signal the power, recording, and processing stages of the script

e System capable of recording/storing multiple videos without needing to restart

e System capable of exchanging files with AWS EC2 instance

e System capable of recording at a consistent 30fps for a reasonable (>15 minutes) amount
of time

e System capable of storing as many videos as SD card memory will allow (each with unique
auto generated identifier)

e Overall, created an all in one solution to recording a video and deblurringitina

reasonable amount of time (<2 seconds per frame)

Lessons Learned/Takeaways

Rebecca

Any created enclosing definitely needs precise measurements and physical mock confirmation
before being made, otherwise the product will look wrong
Sometimes functionality takes precedence over aesthetics

Just because a solution seems elegant doesn’t mean it’s also computationally efficient
Careful organization early on makes later additions faster and easier to implement/integrate

Although it may be long and monotonous a deep dive into component specs can make a massive
difference in the long run.

Sometimes the best way to learnis to fail, and in our case it would have been to fail faster and to
fail a little harder, this way we could hash out some of our problems before it was too late.

\ Thank You CMU ECE Faculty!

