
SharpCam
Group D1: Nathan Koch, Sean Pogorelc, and
Rebecca Jean-Louis

Introduction

● Application Areas: Signals and Software

● Goal
○ SharpCam allows a user to record a video and then have it post-processed on the

fly to remove spatially invariant blur, caused by something like a shaking hand , so

that the cameraman can have a clean video even under non-ideal conditions.

Implementation Approach (Hardware)

● Jetson Nano
○ Affordable
○ Capable of running multiple NN in parallel so

should more than suffice in terms of processing
power

● Raspberry Pi Module V2 Camera
○ Recording @ 1920x1080, 30fps

● Breadboard and LEDs
○ Used for UI, indicate state of camera and its

functions
● PD Pioneer 20000mAh

○ Power supply is 5V/3A, within the Nano

Specification for its DC Power Jack

● Custom CNC’d encasement to contain all parts of the

camera

Implementation Approach (Software)

● Matlab

○ Used to help align images before and after they have gone through

the DeblurNet

● Python (OpenCV and NumPy modules)

○ Video capture and backend

● BASH shell scripting

○ To start our processes on Jetson Nano boot and create

environment variables for clean file management

● Torch Lua

Implementation Approach (ML)

● CNN
○ Using DeblurNet architecture which takes in a set of frames and deblurs them

● Deblurring Metric (Removed)
○ This was removed to try and enhance performance, this way our model can take

in all forms of frames.

Pytorch Model Training loss after 80k iterations Pytorch Model Validation loss every 2k iterations

System Diagram

Complete Solution

● The camera system will be contained inside the CNC’d case, powered

externally through a wall outlet to ensure power stability

● At least 1 video will be taken, prepared, and processed by the CNN

● We will then playback the footage of the unprocessed video alongside the

processed footage to compare and check results

Metrics and Validation
Metric Validation Process Performance Pass?

Video Storage Capacity (
0-10 minutes)

Recording video and separately
timing length of recording, when
complete uploading video from SD
card to check length of video

When recording off of the Nano it
can store any recording from 0 - 10
minutes easily, when on and
connected to a power supply.

Y

Multiple Video Storage (min 5
unique videos)

Recording 5 short videos, when
complete uploading videos from SD
card to check that we have 5
different videos present

The videos can be saved on the
Nano itself, they now need to be
saved explicitly on the SD for
customer use afterwards.

Y

Battery Life of System (> 15
minutes)

We will turn on system and record
and process data for 2 sprints of ~5
minutes each with a 5 minute
interval between them. Any time the
system is not processing in the
interval will result in the system
idling until the next recording

When the Nano is connected to a
socket, the Nano will stay on for >
15 minutes. The power supply itself,
shuts off after 30 seconds, which is
an issue. We need to adjust the
power supply.

In process

Time for System to run to
completion (without counting
CNN processing time)
(~ 5 frames per 1 sec)

Keep track of number of frames
recorded, comment out code
interfacing with Lua model, and
determine time for rest of code to
run to completion

Using print outs we were able to get
the amount of time it took (in
seconds) and number of frames in
the video, on average we had a
ratio of ~ 5.75 frames per 1 second

Y

Metrics and Validation

Metric Validation Process Performance

Total video processing time (< 3 sec per
frame)

Measuring the time for the video to be
processed by the Lua model given a known
number of frames

Still being tested

Deblur frames successfully 70% of the time
(30% validation error)

Use the prior blur classification process to
attempt to classify the image after going
through the model.

Still being tested

Design Trade Offs

● Camera
○ We needed to switch the camera to save on time (reading through poor NVIDIA documentation)

○ The Raspberry PI camera integration was much smoother and quicker

● CNN
○ Using an older version of pyTorch on Lua

○ Hopeful improvement on model training

● Camera case
○ 3-D printed open case, with a removable top, for easy access to components

Project Management
Tasks Sean Nathan Rebecca

Training Data Acquisition (created and downloaded) ✓

Equipment, component, part Acquisition ✓

CNN: development and training ✓ ✓

OpenCV/Shell Scripting/Backend development ✓

Deploying Software to Jetson Nano ✓ ✓

Create a 3D model to act as camera’s frame ✓

System Integration ✓ ✓ ✓

Developing deblurring metric and quantifying it ✓ ✓

Updated Schedule

