
SharpCam
Group D1: Nathan Koch, Sean Pogorelc and
Rebecca Jean-Louis

Introduction

● Application Areas: Signals and Software

● Goal
○ SharpCam allows a user to record a video and then have it post-processed on the

fly to remove spatially invariant blur, caused by something like a shaking hand , so

that the cameraman can have a clean video even under non-ideal conditions.

Implementation Approach (Hardware)

● Jetson Nano
○ Affordable
○ Capable of running multiple NN in parallel so should

more than suffice in terms of processing power
● e-CAM50_CUNX camera

○ Has option to film @ 720p
● Breadboard and LEDs

○ Used for UI, indicate state of camera and its functions
● PD Pioneer 20000mAh

○ Power supply is 5V/3A, within the Nano Specification

for its DC Power Jack

Handheld System Design

Image
not to
scale

Implementation Approach (Software)

● Matlab

○ Used to create additional spatially invariant blurred images for our

dataset

● Python (OpenCV and NumPy modules)

○ Video capture and backend

● BASH shell scripting

○ To start our processes on Jetson Nano boot

Implementation Approach (ML)

● CNN

○ Using tensorflow to create an encoder/decoder model

○ Trained using combination of prebuilt and newly fabricated images

● Deblurring Metric

○ Quickly classify whether the image is blurred via gradient

magnitudes

System Diagram

Metrics and Validation

Metric Validation Process

Video Storage Capacity (> 10 minutes) Recording video and separately timing length of recording, when complete
uploading video from SD card to check length of video

Multiple Video Storage (min 5 unique videos) Recording 5 short videos, when complete uploading videos from SD card to
check that we have 5 different videos present

Battery Life of System (> 15 minutes) We will turn on system and record and process data for 2 sprints of ~5 minutes
each with a 5 minute interval between them. Any time the system is not
processing in the interval will result in the system idling until the next recording

Total frame processing time (< 3s) Measuring the time from a single frame packet input to frame output with
multiple different image scene

Metrics and Validation

Metric Validation Process

Correctly classify type of blur given random image (90% accuracy) Randomly select images from different scenes, then apply the
corresponding blur kernel (motion, gaussian, haze, defocus, no
blur) to use as our validation set

Deblur frames successfully 70% of the time (30% validation error) Use the prior blur classification process to attempt to classify the
image after going through the model.

Risk and Mitigation

Risk Mitigation

Blur classification CNN incorrectly classifies a blurred image
as sharp

Require that all images recorded be put through a 2D
convolution with an averaging kernel, have their difference
taken from the original image, and find the average
difference in pixel value. If the value is above 0.035, force the
image to be processed as blurred

User recording in hazardous environments (rain, snow,
extreme temperature).

Print the camera frame with stronger material and add
insulation around the external exposures (charging port and
camera lens), so the components are no affected

CPU overload due to multiple threads There is a Thread CPU count to ensure there are available
threads. We also have a maximum threshold and maximum
number of threads in order to mitigate the amount of threads
being processed.

Project Management
Tasks Sean Nathan Rebecca

Training Data Acquisition (created and downloaded) ✓

Equipment, component, part Acquisition ✓

CNN: development and training ✓ ✓

OpenCV/Shell Scripting/Backend development ✓

Deploying Software to Jetson Nano ✓

Create a 3D model to act as camera’s frame ✓ ✓

System Integration ✓ ✓ ✓

Developing deblurring metric and quantifying it ✓ ✓

Updated Schedule

