Bluetooth Audio Rejiggering Instrument (BARI)

Adam Quinn, Sam Rainey, Xingran Du (Group D0)

Use Cases

- Musicians use effects processors to shape the sound of musical signals for increased expression and tonal versatility
- Play with friends, busk at the park
- What if
 - Portable effect box with analog overdrive or distortion, and digital EQ, reverb, modulation
 - w/ Bluetooth speakers => for live performance
 - w/ true wireless (TWS) earbuds => for practice
 - Single device for a full band microphones, guitars, bass...up to 4 lines at a time

BARI is born!

Signals and Systems digital and analog effects design

Software Systems

digital effects implementation, UI control, Bluetooth integration

Circuits

amplification, power system, analog effect implementation, I/O, PCB design

Requirements – Operating Condition

SR1. TEMPERATURE room temperature (+27 C).

SR4. BATTERY LIFETIME > 4 hours at Standard Operating Profile

SR2. SYSTEM FORM FACTOR

< 5 kilograms < 15 cm (max dimension)

SR5. SYSTEM VOLTAGE SUPPLY standard USB-C 5V DC recharge

SR3. SYSTEM COST

production cost for the system at a volume of 10,000 units shall not exceed \$100

Requirements – Input & Bluetooth Output

SR6. INPUT CONNECTOR DEFINITION

four XLR or ¼" channels

SR7. INPUT SIGNAL DEFINITION

20 ~ 20 kHz

- "Quiet Mic": -59 dBV, ZOUT < 500 ohms, balanced;
- "Hot Mic": -32 dBV, ZOUT < 500 ohms , balanced;
- Instrument: -59 dBV (passive) ~
 1.78 dBV (active, line-level), ZOUT
 = 10~40 kohms, unbalanced.

SR8. INPUT IMPEDANCE

Balanced and > 10 Zsignal

SR13. BLUETOOTH TRANSMISSION PROTOCOL

- pairing to > 1 device
- Bluetooth 3.0 or higher
- SBC, AAC, or other common codecs, > 250kbps
- Advanced Audio Distribution Profile (A2DP) Bluetooth profile

SR14. BLUETOOTH TRANSMISSION RANGE

> 3 meters stable connection

Requirements – Analog Effects

SR9. PRE-AMPLIFIER OUTPUT

Tunable from -20 dBFS to -2 dBFS

SR10. PRE-AMPLIFIER GAIN FLATNESS

at most +/- 2dB from average in 20 \sim 20 kHz passband

SR11. PRE-AMPLIFIER DISTORTION

introduce total harmonic distortion < -60 dB (carrier)

Technical Challenge:

The pre-amplifier circuit should be able to adjust the input signal amplitude without hurting its quality

SR12. ANALOG OVERDRIVE PERFORMANCE

similar to the output of the simulated Reference Overdrive Pedal, but scale by supply voltage

Technical Challenge:

- For a pure tone with identical input amplitude and an identical gain setting, the Analog Effect shall produce a soft-clipped waveform with magnitude within 2 dB of that of the Reference Overdrive Pedal, and
 - The 2nd and 3rd harmonics of the tone shall be no more than 5 dB less than reference
- frequency characteristic is within 2 dB of reference, over 20 ~ 20 kHz.

Requirements - Digital Effects

SR15. MINIMUM DIGITAL EFFECTS

any of the following digital effects to any of the four input channels

SR16. EQUALIZATION QUALITY

bass, middle, and treble +/- 20 dB adjustable, at most +/- 3dB in non-adjusted band

SR17. REVERB WET/DRY RATIO

0% ~ 100% with 10 steps

SR18. <u>**REVERB</u> TIME** 0~3 s adjustable</u>

SR19. <u>CHORUS</u> MODULATION DEPTH

0~5ms with 10 steps

SR20. CHORUS RATE

0~5Hz with 10 steps

Technical Challenge:

The tunable chorus effect requires implementing a non-trivial algorithm on the uP

SR21. DIGITAL PROCESSING LATENCY

from input to bluetooth send <100 ms

Technical Challenge:

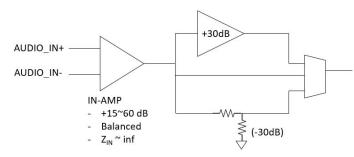
Meeting the latency requirement with limited uP compute power

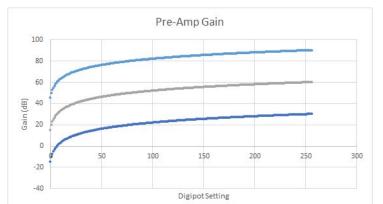
Requirements – UI

SR22. USER INTERFACE RESPONSE LATENCY < 100ms

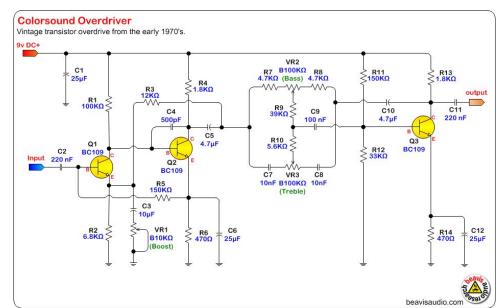
SR23. USER INTERFACE UPDATE LATENCY (setting takes effect) < 1s

SR24. USER INTERFACE INTERACTION TIME navigate to any command within 5s


SR25. USER INTERFACE FEEDBACK MECHANISM


The system shall display

- hierarchical menu
 - All settings the user can adjust
 - Highlight menu item that the user is currently interacting with
- current system state


Solution Approach

Pre-Amplifier

RF Module BM83 bluetooth module AAC and SBC codecs; I2S bus Analog Effect Colorsound Overdrive (3.3V)

Solution Approach

STM32F407

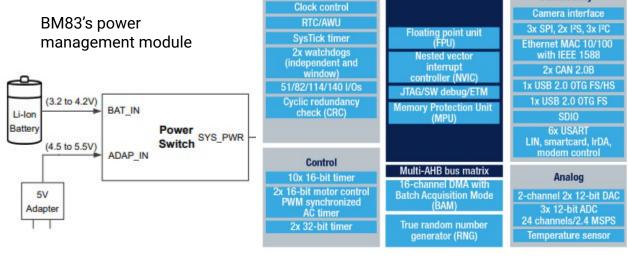
System

Power supply

1.2 V regulator

POR/PDR/PVD

Xtal oscillators


32 kHz + 4 ~26 MHz

Internal RC oscillators

32 kHz + 16 MHz

Power Module

- Battery
- Wall Adapter

MicroprocessorSignal Processing

Up to 1-Mbyte Flash

memory

Up to 192-Kbyte SRAM

FSMC/

SBAM/NOR/NAND/CF/

LCD parallel interface

80-byte + 4-Kbyte

backup SRAM

Connectivity

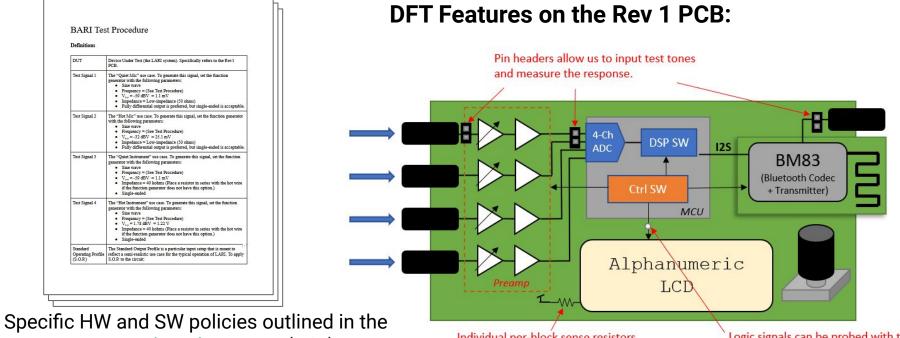
ART Accelerator™

Arm[®] Cortex[®]-M4 CPU

168 MHz

Control

STM32F407VG uP + MCP3464R-E/ST 16-bit 4-channel ADC


User Interface Module

- Output: LCD Display
- Input: Rotary Encoder (w/ button)

Design for Test

BARI Test Procedure document (WiP)

Individual per-block sense resistors allow detailed power profiling.

Logic signals can be probed with test pads to measure timing.

Battery Lifecycle Test

System Power Consumption Test

Impedance Probe Test

Pre-Amplifier Functional Test

Analog Effect SPICE Verification Test

Digital Effect MATLAB Verification Test

Processing Latency Test

User Interface Latency Test

Bluetooth Range Test

Ease-of-Use Test

All of the above tests:

Ensured by Design:

SR4 (Battery Lifetime)

(None, internal specification test)

SR8 (Input Impedance)

SR7 (Input Signal Definition) SR9 (Pre-Amplifier Output)

SR12 (Analog Overdrive Performance)

SR15 (Minimum Digital Effects) SR16 (Equalization Quality) SR17 (Reverb Wet/Dry Ratio)

SR21 (Digital Processing Latency)

SR22 (User Interface Response Latency)

SR14 (Bluetooth Transmission Range)

SR24 (User Interface Interaction Time)

SR1 (Temperature)

SR2 (System Form Factor) SR3 (System Cost) SR6 (Input Connector Definition)

Test ←→ Requirement

SR10 (Pre-Amplifier Gain Flatness) SR11 (Pre-Amplifier Distortion)

SR18 (Reverb Time) SR19 (Chorus Modulation Depth) SR20 (Chorus Rate)

SR23 (User Interface Update Latency)

SR5 (System Voltage Supply)

SR13 (Bluetooth Transmission Protocol) SR25 (User Interface Feedback Mechanism)

2/22	3/1	3/8, 3/15	3/22, 3/29	4/5	4/12
Comporient selection for Analog Effect	Tentative: 3/1 Schematic Review	Mechanical / System Int. Design	3/22 -> Theoretical Arrival Date for Rev1	Mechanical Implementation Details	DSP Signal Path Testing
High-level HW architecture	Schematic Revisions & Layout		HW Low-Level Functional Testing		Plan Full-System-Level Test
Start Schematics for Rev 1	Adam to give Design Presentation		Come up w/ Changelog for Rev2?	Hope to receive Rev2 by 4/12	Or long-time period tests like battery
catt	Target Rev 1 Order by 3/5		Rev2 Schematics, Layout> Order ASAP		
Help w/ prototyping analog effect	Helping w/ Design Presentation	Prototyping DSP Algorithms on the STM32	HW / Peripheral Code low-level imp.	DSP Implementation & Integration	DSP Implementation & Integration
Research and prototype MVP effects	Research and prototype MVP effects	User / Conceptual Design	Unit Testing	DSP Signal Path Testing	DSP Signal Path Testing
ran				Come up w/ Interim Demo	
STM32 & BM83 development resources	more on firmware setup	Develop low-level architecture / fn. prototypes	HW / Peripheral Code low-level imp.	DSP Implementation & Integration	DSP Implementation & Integration
Complete very high-level code architecture	define interface/headers	UI (assume LCD library)	Unit Testing	DSP Signal Path Testing	DSP Signal Path Testing
Order STM32 board	Plan to receive STM32 board			Come up w/ Interim Demo	
Budget Definition	Review Design Presentation Slides	Preliminary plans for the enclosure / int.; design review		4/19: slack time 4/26: Final demo prep, system testing	