## **GRUBT**

#### **Product Pitch**

GrubTub is an autonomous, on-campus delivery robot which facilitates delivery between on-campus restaurants and buildings.

*Core services*: it must be able to deliver at least 2 kg of food intact across flat sidewalks of campus. **Pedestrian avoidance:** it must be able to avoid pedestrians and collisions in-transit. Quality: it must efficiently deliver the food close to the drop-off point and have at least 30 minutes of battery life. *Emergency operation*: the robot must be able to connect to a ground station for emergency control with a maximum latency, and have minimal human intervention in its deliveries.

After rigorously testing the robot, we found that it **satisfies our "core services" requirements** and has met our battery life and human intervention requirements, but cannot meet some of our "quality", "pedestrian avoidance", and "emergency operation" requirements due to inconsistent on-campus wi-fi and noisy sensors.



#### System Architecture

### GrubTub

#### Team C9: Michael Li, Sebastian Montiel, Advaith Sethuraman





#### **System Evaluation**

| Method          | Pros                                                                                      | Cons                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Online          | Emergency Operator/Ground Station can connect                                             | Need constant network connectivity, otherwise ROS hangs                                                                          |
| Offline         | Can travel across areas without Wi-Fi                                                     | No emergency operator/ground station for routing- all onboard                                                                    |
| RTABMAP         | Lower position error than GPS when it tracks                                              | Bad tracking above 0.5 m/s, when turning, or being outdoors<br>Poor recovery from lost tracking (robot usually lost it in tests) |
| ORBSLAM         | Loses tracking less often than RTABMAP<br>Better recovery from lost tracking than RTABMAP | Less than ideal tracking outdoors, still loses tracking given only turns                                                         |
| GPS/IMU/Encoder | Does not lose tracking at higher speeds (not affected by motion blur/camera framerate)    | GPS jitter causes issues in the filtered position data<br>Wheel slipping in grass causes encoders to disagree with the IMU       |
| RVO             | Automatic pedestrian avoidance                                                            | Very sensitive to noise in input sensor data (drove into grass)                                                                  |
| TVLQR           | No parameter tuning, only specifying a trajectory Solves for the optimal controls         | Can only specify a continuous combination of function trajectories<br>Have to specify reference trajectories and velocities      |
| PID             | Simplest controller, intuitive                                                            | Parameter tuning is a massive time sink, may never be consistent<br>Not optimal, only minimal oscillations/quicker convergence   |

| (m) | Food Intactness (Bool) | Interventions/Meter | HRTT Time (s) | Robot Time (s) | % Over HRTT  | Path Length (m) |
|-----|------------------------|---------------------|---------------|----------------|--------------|-----------------|
|     | Intact                 | 0.015               | 240           | 397.1          | 0.6545833333 | 160             |
|     | Intact                 | 0.02                | N/A           | 240            | 0            | N/A             |
|     | 100%                   | 90%                 | N/A           | 0.00%          | 0.00%        | N/A             |

# Electrical & Computer ENGINEERING

