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Abstract— We intend to provide a convenient so-
lution to on-campus food delivery by creating a mobile
robot capable of autonomously delivering multiple or-
ders of food on CMU’s campus while avoiding pedes-
trians on its journey.
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1 INTRODUCTION

On-campus food delivery is a niche problem that tra-
ditional food delivery services cannot fully satisfy. Food
delivery in general is important because it saves users time
and is convenient for busy schedules. Ideally, a user could
walk to the door of their campus building and pick up their
food, but with the long distance between certain buildings
and open roads, using traditional food delivery can be as
inconvenient as going to an on-campus restaurant.

Therefore, we propose a last-mile autonomous food de-
livery service that can better satisfy users looking to get
convenient food while they are located on-campus. There
are some competing services that are attempting to solve
this problem as well. Some competitors use a human opera-
tor that places way-points frequently for the robot. Others
are completely remote-controlled. Finally, certain competi-
tors provide a fully autonomous solution to the problem.

We intend for our solution, GrubTub, to be an au-
tonomous on-campus delivery robot that travels on side-
walks on campus, but at a tiny fraction of the budget and
team size of our competitors.

To be a useful and easily adopted food delivery system,
the autonomous system must meet a comprehensive set of
metrics regarding delivery time, payload capacity, pedes-
trian avoidance, and delivery accuracy.

In our case, we’ve quantified the metrics for this system
as:

1. The robot must be able to traverse all roads and suc-
cessfully deliver orders following the other require-
ments in a predefined region of campus on flat ground
100% of the time.

2. The robot must be stay on the sidewalk at least 60%
of the time.

3. The battery life of the robot must be at least 30 min-
utes.

4. The robot must delivery to a certain degree of

accuracy- that is, within 3 meters of the drop-off point
100% of the time and within 1 meter of the drop-off
point 68% of the time.

5. The robot must hold and transport at least 2kg of
payload at a volume of 1ft3.

6. The robot must deliver its payloads intact 100% of
the time.

7. The robot must stay at least 0.25 meters away from
all other objects and people in transit.

8. The robot must have at most 1 human intervention
per 50 meters across all of its deliveries.

9. The tail latency of the robot-ground station connec-
tion must be at most 605 ms.

10. The robot’s delivery time for all deliveries must be
less than the Human Round Trip Time (HRTT), mea-
sured in seconds.

2 DESIGN REQUIREMENTS

Requirement 1: We ensure that our robot can reach as
many users as possible so that they can order from a more
convenient location than if they had to use traditional food
delivery or takeout. We must make sure that the robot
can drive and deliver on all flat sidewalk roads on campus.
This region is outlined in Fig. 1.The sidewalks and roads
contained within the red bounded region are entirely on flat
ground, and must be traversable by the robot. To test this,
we will run the robot on every single one of the roads in
the region with max load to make sure it can traverse them.

Figure 1: This Fig. shows the region of operation for our
solution, outlined in red.
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Requirement 2: Customers expect a level of speed and
consistency from delivery services. Our robot should not
wander off its path and slow down on its journey to the cus-
tomer. As a result, we want the robot to use the sidewalk
as much as possible. This way, we know that the terrain
is flat, free of arbitrary obstacles, and relatively smooth.
If we allowed the robot to go ”off road”, we would not
have any guarantees on the type of terrain and the robot’s
speed over it. To obtain the requirement of at least 60% of
the time on sidewalk, we used the following formulas We
assume a desired speed of 0.7m/s, given Requirement 10,
and average human walking speed of 1.4m/s. We assume
the robot’s maximum speed will be 1.0m/s. We chose this
because it is near the average walking speed of humans.
Any faster and it would be unnatural and dangerous. We
assume the robot will travel twice as slowly on grass than
on the sidewalk. In other words

s̄robot = p ∗ ssidewalk + (1− p) ∗ sgrass
0.7m/s = p ∗ ssidewalk + (1− p) ∗ 0.5 ∗ ssidewalk

0.7m/s = p ∗ 1.0m/s+ (1− p) ∗ 0.5 ∗ 1.0m/s

p = 0.6

(1)

Requirement 3: We want to ensure that our users do not
have to wait for our robot to recharge its battery in order
to get their delivery- this is a matter of timeliness. In this
case, we must ensure that our battery can last through
multiple orders. The longest delivery time between any
two points within the region defined on the map in Fig.
1 is from Resnik Hall to the entrance between Porter and
Baker Hall. On Google Maps, this route takes 8 min by
walking, one-way. We must make sure to support multi-
ple deliveries- at the bare minimum this means the battery
must last through 2 deliveries. Assuming the average hu-
man walks at the same rate the robot travels, and that
the robot starts from Resnik, the robot must travel from
Resnik to the delivery point, back to Resnik, and back to
the delivery point without running out of battery - 24 min-
utes. For slack, we’ve rounded this to an even 30 minutes of
minimum battery life for our requirements. To test this, we
will run the robot at max load until it runs out of battery
to find out the battery’s runtime.

Requirement 4: We must make sure that the user can
have the utmost convenience when picking up their order.
Therefore, they must be able to easily locate and pick up
their order at a location close to their specified dropoff lo-
cation. Thus, the robot must arrive close to the dropoff
point. For this, we’ve devised a requirement that the robot
must arrive within 3 meters 100% the time, and 1 meter
at least 68% of the time. 3 meters is a reasonable distance
for the user to conveniently grab their food, since it’s the
distance between a front door and the edge of the sidewalk-
a common type of location in which food is delivered to. 1
meter is ideal: at that distance, a user can grab the food
from arm’s length. We have to be convenient all the time,
so the robot must arrive within 3 meters 100% the time.
For the 1 meter metric, we require that the robot must be
equal to or better than a human delivery person when de-

livering within one meter of the dropoff point. Assuming
that a human delivery person drops the order at a loca-
tion specified by a bivariate Gaussian distribution across
two random variables with a mean at the true delivery lo-
cation, and a variance of one meter on each axis (due to
human imperfection), the chance that the delivery person
leaves the food within one meter of the actual delivery point
is 68% (68–95–99.7 rule). Thus, to parallel a human in de-
livery accuracy, the robot must be able to arrive within 1m
of the drop off location at least 68% of the time. We will
test this with > 30 trials as suggested by the Central Limit
Theorem [2].

Fig. 2 shows an example of a bivariate gaussian cen-
tered at a dropoff location of (1,1): X ∼ N(µ,Σ) with
µ = [1, 1] and Σ = I2x2 ∗ (1meter). Each point (x, y, z)
shows the probability of the dropoff, z, being at coordinate
(x, y).
Requirement 5: The user must be able to order enough food
to eat for this service to be satisfactory. For our solution,
we must ensure that the robot can hold enough food for the
user. We empirically measured the volume and dimensions
of a single takeout container and found that it was signifi-
cantly less than a volume of 0.25ft3 and a weight of 0.5kg.
The specific dimensions were 9” ∗ 9” ∗ 3”. We want our
solution to be able to handle multiple deliveries, so we de-
cided to give our robot a max payload volume of 1ft3 and
a weight of 2kg, as this is enough for 3 deliveries’ worth
of payload. This will lead to a substantial delivery time
speedup (since the robot can pickup and transport multi-
ple orders) but also is small enough such that the payload
can be fit onto the rest of our robot without being too large,
heavy or expensive.

Figure 2: A bivariate Gaussian distribution
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Requirement 6: The user will want to get their food
delivered in an intact form, so we have to ensure that the
food is intact upon every delivery. This requirement is one
of quality- we assume that the vendor will pack their food
sufficiently securely for delivery (as in the packaging can
withstand basic movement and tipping) and require that
our solution can deliver food intact with these assumptions
for every delivery.

Requirement 7: The user would not want their robot
hindered by bumping into random people and objects on
its transit, as that would not only decrease the timeliness
of the robot but also raise the chances of the food not being
intact upon delivery. Additionally, people that the robot
encounters during its transit will want to feel safe and not
have to worry about the robot colliding with them.

In our case, we require our robot to stay at least 0.25
meters away from all other objects and pedestrians in tran-
sit at all times: given that the average human is 0.41 meters
wide (we will round up to 0.50m) [6], half the width of a
person is a reasonable distance for the robot to stop from
a pedestrian and avoid collision.

Requirement 8: We must guarantee that the delivery
will succeed all the time, per Requirement 1. Therefore
we must account for situations in which the robot is inca-
pacitated (i.e. it’s stuck) and intervene to help the robot
manually in order to let the user get their food 100% of the
time.

For the human intervention requirement we’ve required
that the robot must have at most 1 human intervention
per 50 meters of distance travelled on average across all
deliveries.

The reasoning behind this is based of the human inter-
vention rate set by a competitor company, Kiwi. They’ve
stated that their robot operators will set a manual waypoint
once every 5 seconds CITE HERE, so assuming Kiwi’s
robots travel at 1 m/s, Kiwi’s solution will have one inter-
vention per 5 meters. We want to be 10 times better than
this, and therefore specify that our maximum intervention
rate is 1 per 50 meters.

Requirement 9: We must guarantee that the delivery
will succeed all the time, per Requirement 1. Also, in case
of dangerous situations, there should be a way to safely
operate the robot. Therefore, we must have an emergency
manual operation in case the autonomous operation fails
for some reason. For this, we have a ground station that
gives orders and emergency controls. If the latency between
robot and ground-station is too large, the ground-station
will not be able to update the robot or transfer emergency
control to an operator before the robot runs off-path or
damages itself. To prevent this, we require that the tail-
latency, i.e. the duration of the longest request, is lower
than 605ms. Given the speed that the robot travels, this
would allow the ground-station to notify the robot before
it travels off of a sidewalk. We assume the robot is travel-
ling at a max speed of 1.0m/s, the sidewalk is 1.21m wide
[3]. We assume the robot is travelling in the middle of the
sidewalk. We use the following equation to find the inter-

vention time until the robot drives off the sidewalk.

tintervention =
wsidewalk

smax

tintervention =
0.605m

1m/s

tintervention = 605ms

(2)

Requirement 10: To generate value for the customer,
the product should save them time. Ideally, the robot
should delivery food faster than it takes the human to walk
from their location on campus to the restaurant, and back.
This provides justification for the user to use our solution,
as it’s more convenient than manually getting the food.

In our case, we upper bound our delivery time by this
expectation: for each delivery, the robot must deliver its
food from a restaurant to a delivery point within the Hu-
man Round Trip Time (HRTT) of the delivery point and
the restaurant.

(The HRTT from point A to point B is defined as the
time it takes a human to walk from A to B, and back to
A- it acts as a quantitative measurement to the time a user
takes to manually pick up food.)

This metric provides a soft requirement on the average
speed of the robot in terms of the average human speed.
Given that Requirement 10 specifies the relation between
robot travel time and human travel time, and that the rela-
tionship between distances are known, the relation between
average speeds are also known

trobot =
thuman

2

drobot =
dhuman

2

s̄robot =
s̄human

2

s̄robot =
1.4m/s

2
s̄robot = 0.7m/s

(3)

This quantity is used above in (1).

3 ARCHITECTURE OVERVIEW

3.1 High-level Overview

For our solution, we decided on developing both a robot
and a ground station to implement autonomous order de-
livery. The robot and ground station operate together to
successfully deliver orders to the user in a fashion that
meets our requirements. The user will place orders with
the ground station, the ground station comes up with
the minimum-distance series of waypoints that the robot
should follow to deliver any placed orders, and the robot
plans its path to drive through that series of waypoints
while avoiding any pedestrians. Fig. 4 and Fig. 5 contain
our system diagram detailing the information flow between
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Figure 3: GrubTub’s mechanical design

the robot and ground station, as well as the flow between
the components running on each.

Robot: The robot’s flow of information is to take in in-
coming information from the ground station, such as way-
points to drive to and possible emergency controller inputs,
and output heartbeats back to the ground station that give
telemetry such as its location, status, and logs.

Using its incoming information to set its destinations,
the robot is responsible for planning its path and driving
from waypoint to waypoint while meeting our requirements,
sending heartbeats back to the ground station regularly,
and overriding its autonomous operation with any emer-
gency controls if there are any.

Ground station: The ground station’s flow of informa-
tion is to take in heartbeats from the robot and keep track
of the robot’s location and status, and based on those in-
puts send it information like waypoints to go to and possible
emergency controls if the robot is in a dangerous state.

3.2 Quick Introduction to ROS

For this project, we’ve decided to use ROS (the Robot
Operating System) as a framework for our software. ROS
is an open-source robotic application framework which pro-
vides a modular paradigm for developing our robot as well
as a robust selection of tools and libraries that supplement
development.

The ROS runtime acts as a publish-subscribe dis-
tributed system: each sensor, actuator, and high-level ele-
ment of the robot can be encapsulated within a ROS node.

These nodes can subscribe to and receive messages from
ROS topics, and publish messages on topics.

This offers us a very clean way of developing our soft-
ware: each sensor can have a node that contains its driver
and publishes its data, each actuator can have a node that
contains its driver and subscribes to commands, and each
high-level element can have a node that reads any sensor
data and drives any actuators of its choice.

With ROS, we can divide our work cleanly across com-
ponents and rigorously test each node separately in a simu-
lated environment, which not only makes the division of la-
bor clear but also allows us to develop and test our software
in true parallel without many blockers until integration.

3.3 Mechanical Overview

The mechanical design in Fig. (3) for GrubTub uses
a minimalist design language and meets all the require-
ments. The payload container is large enough to meet the
volumetric requirements and can also hold multiple deliv-
eries as motivated by Requirement 5. The design has an
area to house the electronics safely, including the Xavier,
motor controller, sensors, and batteries. The wheels were
chosen for their grip and ability to traverse small bumps on
the flat sidewalk. The design only has two drive wheels be-
cause of the requirement from the software systems. The
robot will use a differential drive paradigm, so only one
wheel is needed on either side. When an order is placed
to the groundstation, the restaurant will place the orders
within the payload container. After the robot has driven
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Figure 4: Diagram for the software running on the robot

Figure 5: Diagram for the groundstation and overall system
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to its dropoff location, the user will take their order from
the payload container.

3.4 Architectural Changes since the Pro-
posal Presentation

We have made only one small change to our software
architecture, and it is due to a hardware upgrade. Prior to
our choice of the Roboclaw motor control, we would have
had to write our own PID, encoder, and motor drivers. The
Roboclaw, however, has an onboard PID controller and a
library ROS node.

Since our proposal presentation, we have also made a
number of changes on the mechanical and hardware side,
which we will explain in Sections 4 and 5.

4 DESIGN TRADE STUDIES

The choice of our components in inherently coupled.
The terrain determines the requirements on our motors.
The motors’ max current draw determines the requirements
on our motor controller and the total capacity of our bat-
teries. Furthermore, the mechanical design also changes
the parameters for all of the choices listed above. We de-
cided to first fix the mechanical design, then determine the
motors, motor controller, and battery. Our priority was
to keep the mechanical/electrical design simple so that we
could focus our energies into the Software.

4.1 Motor Selection

Our choice of motor is limited by our budget and deter-
mined by Requirement 1, Requirement 3, and Requirement
10. The motor must be able to produce enough torque
to traverse the area we desire to delivery to. The motor
and battery combination must be efficient enough to allow
for at least 30 minutes of battery life, and the motor must
be able to meet the speed requirement of at least 0.7m/s.
Furthermore, we would prefer motors that have encoders
attached to them. This saves us the hassle and setup of
discrete encoders. The encoders are necessary for control-
ling wheel velocities and also for the localization algorithm,
as mentioned in Fig. 4, signals R0, R6.

First, let us consider the torque requirement. We mea-
sured the steepest slope on campus (between Doherty and
Wean), and found that θslope = 21◦. We made the follow-
ing assumptions: robot mass Mrobot = 2kg, payload mass
Mpayload = 3kg, wheel radius r = 0.0685m. To find the
necessary motor torque τ to traverse this, we used the fol-
lowing Equation (4):

τ = 0.5Fr

τ = 0.5[mg tan(θslope)]r

τ = 6.585 kgf · cm
(4)

We require a motor that can produce at least 6.585kgf ·
cm of torque. We were able to narrow down a series of DC

motors that were compatible with this requirement. We
chose the Pololu 37D series of motors for their high torque
capabilities and high variety of speed. Naturally, we wanted
to maximize the amount of torque the motor could output,
so we chose the model with the highest torque. This mo-
tor had a 150:1 gearbox ratio, and produced 49kgf · cm of
torque. We were confident that this would be able to tra-
verse the slopes. However, we had to change our part when
considering the motor speed requirement. Equation (5) de-
scribes the motor’s angular speed requirement in terms of
the robot’s linear max speed requirement determined in Re-
quirement 2 We require a max speed smax = 1.0m/s, and
assume the same wheel radius as before.

ω =
(60smax)

2πr
ω = 139.2 rpm

(5)

The 150:1 ratio 37D motor’s max speed was 67rpm.
Unfortunately this was not fast enough to provide the re-
quired speed. In order to choose a motor that was both
fast enough and had enough torque, we had to reduce the
gearbox ratio. To maximize torque, we simply found the
highest ratio motor that met our speed requirement. This
was determined to be the 50:1 37D motor. This motor pro-
duces 6 kgf ·cm of torque at 139rpm, with a stall torque of
21 kgf ·cm and while getting over the hill, runs at 125 rpm.
This means that it produces more than enough torque to
operate on flat ground at 1.0m/s and also enough torque
to traverse up the slopes.

We considered other motors as well. A class of DC
motors with gearboxes called hub motors are commonly
found in children’s miniature electric vehicles. We were
able to find spares on Amazon and considered using them,
as they produced enough torque to transport a small child
up slopes. This fact was qualitatively determined by exam-
ining videos of reviews on Amazon. However, we decided
against this approach because it was difficult to mount en-
coders on the motor hubs. The importance of the encoders
to both the velocity control algorithms and localization al-
gorithms outweighed the torque capabilities of these new
motors.

Figure 6: An iteration of our design from our proposal pre-
sentation to the present.
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4.2 Motor Controller Selection

After finalizing the motors, we moved to the motor con-
trollers. The Pololu 37D 50:1 gearmotors have a stall cur-
rent draw of 15.5A each. Our design uses 2 motors, so our
max current draw from the motors will be 11A. We consid-
ered several options for motor controllers. The Capstone
Inventory had a L298N based motor controller. We also
considered the Roboclaw class of motor controllers because
it was available from a previous project. We eliminated
the L298N motor controller because its max current rating
was 2A per motor [8]. Since our motors operating point
was around 1.5A each, we decided the motors would fry
the motor controller if they experienced load. We decided
the RoboClaw 2x15A motor controller was perfect for our
uses. It provides enough current per motor.

4.3 Battery Selection

After finalizing the motors and compute, we were able
to estimate the nominal current draw for the system. The
Xavier draws IX = 3.38A, while the motors draw around
IM = 4.8A total under normal operation. Equation (6)
shows the relation between our battery capacity Cbat and
the rest of our finalized components. The requirement for
operating time T = 0.5h is given by Requirement 3 A scal-
ing factor of ρ = 1

0.5 is used to express inefficiencies in the
power system that will increase the total capacity needed.

Cbat ≥ ρT (IX + IM )

Cbat ≥ 8.18Ah
(6)

We rounded up to the next highest class of batteries,
10Ah. We chose Lithium Polymer batteries because of their
high energy density. Our motors can draw up to 11A total
at a time, so we needed a LiPo battery with a discharge
rating (C) of greater than 11. We found a suitable battery,
the Turnigy 10000mAh 4S 12C. However, with our simple
LiPo charger, this would have taken 10 hours to charge. In
order to reduce the time for charging during testing, we de-
cided to use parallel batteries. We split 10000mAh into two
5000mAh batteries. This way, when testing, we could hot-
swap the two batteries, and during full trials, we could use
both of them. We finally decided on the Turnigy 5000mAh
3S 20C LiPo battery. Our motors run at a nominal voltage
of 12V, so we chose our battery to be 11.1V.

4.4 Robot Chassis Tradeoffs

We designed our chassis in Solidworks in order to make
sure we met the volumetric requirements. Our initial de-
sign in Fig. (6) was built using aluminum 8020 extrusions,
and involved several custom parts. The design using 8020
would allow us freedom in construction, since you can cre-
ate any shape you want out of it. However, the drawback
was that it would take several parts to fasten at the corners,
and a lot of hardware (nuts and bolts) to construct.

Figure 7: The raw NMEA data from our GPS sensor su-
perimposed onto campus satellite view.

Therefore, we decided to simplify this design by remov-
ing the custom parts and replacing them with a pre-made
chassis and tub. We expect this to reduce the amount
of time we spend in assembly. Design v1 costs $211.38,
whereas design v2 costs $180.24. Design v1’s estimated
build time is 3 days (have to laser cut acrylic, and cut ex-
trusions), whereas design v2’s estimated build time is 1 day
(only have to fasten nuts and bolts). Although we have a
slight reduction in cost, we are primarily optimizing for
convenience here. Given enough time to design and build
a robust robot, we would have opted for a custom option.
However, we plan on using our simple design as a showcase
for our software algorithms.

5 SYSTEM DESCRIPTION

5.1 Hardware Architecture

Our robot hardware is designed to be modular and
easy to assemble. We use off the shelf components that are
compatible with each other and meet the requirements.

The Nvidia AGX Xavier is the most powerful embed-
ded Linux platform we could find for our project (running
JetPack). We needed a Linux platform so we could use
ROS, which makes integrating and coordinating our hard-
ware much simpler. The Xavier has more than enough
compute for the algorithms we intend to run, and has
enough interface for all of our sensors and actuators.

BNO055 IMU is the IMU we chose because of its driver
availability and the fact that Advaith already had one.
It uses the I2C protocol to communicate with a master
and provides angular velocities, linear accelerations, and
magnetometer readings. The magnetometer readings are
needed because the GPS localization system only provides
location, not a heading. The absolute earth-referenced
heading is in the ENU frame (East-North-Up), and is a
requirement from the robot localization node.
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Figure 8: Specific hardware and interfaces for the GrubTub robot. All hardware was purchased; we did not design any
individual component.

Intel RealSense D435i is a stereo camera that
RTABMAP will use to create and localize itself within
a map. We chose this camera because we had easy access
to it from CMU’s Roboclub, and Advaith had a personal
copy. It is also useful for the perception system, since we
will need a distance to pedestrians for the local planner
algorithm. Furthermore, it will help us validate our Re-
quirement 7.

Adafruit Ultimate GPS is a low-cost GPS sensor. We
chose the sensor with a built in USB-Serial converter. This
means that the sensor outputs NMEA 0183 sentences di-
rectly into the serial output. The frequency is around
1Hz, and with empirical testing, the accuracy seems rea-
sonable for our application. The results are shown in Fig. 7

Roboclaw Motor Controller has a lot of built-in features
that makes it a good choice to drive our motors. It has an
on-board PID controller, supports the currents and volt-
ages our motors need, and has a library driver and ROS
node. [1]

Pololu 37D 50:1 12V Encoded Motors: the choice for
these motors is elaborated upon in the Trade Studies sec-
tion. These motors have a stall current draw of 5.5A, and
meet our requirements for torque and speed. They have
built-in encoders that operate over GPIO.

5Ah 3S 20C LiPo Batteries were chosen to power the
robot because by having two batteries, we can always have
one battery charging while using the other in testing. Ad-
ditionally, we can attach the batteries in parallel to reach
our minimum battery life requirement. As described in the
trade studies, the batteries meet the requirements from the
DC motors in terms of current draw and voltage.

Geekworm WiFi Adapter was chosen to add wireless
communication to the robot since it was relatively cheap,
had an antenna, and came with a driver intended for em-
bedded Linux platforms.

5.2 Software Architecture of the Robot

For the robot to be able to drive through a series of
waypoints autonomously, it needs high-level perception and
planning, supplemented by sensor inputs from a variety of
sensors, as well as an output to a motor controller.

Each of the software components for the robot shown
in Fig. 4 represents a ROS node with a specific function.
Every ROS topic within the signals R∗ referenced in the
Software System Diagrams (4 and 5) and these descriptions
is explicitly defined and documented in Appendix A.

Local Path Planning is a custom node which drives
the robot from global waypoint A to global waypoint B.
It receives the next waypoint to drive to and pedestrian
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perception data as input from signals R4 and R5, respec-
tively, and outputs motor velocities to the Roboclaw Motor
Node such that the robot drives while avoiding collisions
through R6. The node is abstracted such that a specific
class of collision avoidance algorithms called social navi-
gation algorithms can be swapped out. We are using a
simple one called Reciprocal Velocity Objects [19]. If we
find the time to, we can replace this with a Reinforcement
Learning algorithm. The input to these algorithms are
pedestrian locations/velocities and robot goal. The local
planner will output the desired robot frame linear and an-
gular velocities for that time step. It additionally outputs
a heartbeat with telemetry for the ground station through
topics within signal R7.

Perception provides the Local Path Planning node with
detailed information about where the robot is on the map
and what’s around the robot, providing the information
through topics in signal R5. There’s two nodes which sup-
ply perception data: Localization and Mapping, for local-
izing the robot within a static map of our delivery region,
and Pedestrian Detection, for detecting and tracking where
nearby pedestrians are. Pedestrian detection will use the
popular YOLO Convolutional Neural Network [9]. The
pedestrians will be localized in 3D using the stereo cam-
era’s disparity map. They will be tracked with velocity
using a Kalman Filter tracker. The Localization and Map-
ping node is a library node and the Pedestrian Detection
node is a custom node which utilizes existing algorithms
for its purposes.

We’re using the RTABMAP ROS Library Node for
SLAM [15].

Roboclaw Motor Node is a library ROS node which acts
as both PID motor controls for the robot and a driver for
the physical motors. It receives velocities from the Local
Path Planning node through topics in signal R6 and passes
them to its drivers, using the Roboclaw Motor Controller
to control the motors. It also contains an Encoder Driver
that outputs raw encoder data through topics in the R0
signal. We’re using the ROS node documented and imple-
mented at [1].

WiFi Driver enables ROS message sending between
nodes on the ground station and nodes on the robot. It’s
abstracted out by the ROS runtime so that our code and
the ROS library nodes never have to directly interact with
it, but it facilitates all incoming information and outgoing
information between the robot and ground station.

IMU Driver is a ROS library node which outputs raw
sensor data through topics in the R1 signal. It commu-
nicates with the IMU through I2C, wired at the Xavier
GPIO pins. The library ROS Node is documented at [11].

Camera Driver is a library ROS node for our RGBD
camera that outputs raw camera data across a variety of

ROS topics for the Perception node through topics through
signal R2. The library ROS node is documented at [4].

GPS Driver is a library ROS node that outputs raw
NMEA sentences from our GPS sensor through topic R3.
The node is documented at [13].

Data flow from the Encoder Driver/IMU Driver/GPS
Driver to Perception: For the encoder, IMU and GPS,
we need to filter the noise, raw data. We’ll use a library
ROS node to take in and filter all the raw sensor data
and output smoothed, processed data that goes into the
Perception node, as shown in Fig. 9. This involves using
the robot localization library, which has every node we
need for combining these raw sensor inputs and processing
them. The process is documented in detail at [12].

5.3 Software Architecture of the Ground
Station

The ground station has two roles to fulfill: it must send
the robot batches of waypoints to drive through to fulfill
user orders and also send it any emergency inputs that an
emergency operator may manually input.

Each of the software components for the robot shown
in Fig. 4 represents a ROS node with a specific function.
Every ROS topic within the signals denoted by G∗ ref-
erenced in the Software System Diagrams (4 and 5) and
these descriptions is explicitly defined and documented in
Appendix A.

Global Planner is a ROS node that calculates and sends
out batches of waypoints for the robot to fulfill orders
through a topic in signal G2. It takes in robot heartbeat-
s/status updates from signal G1 and any user orders from
signal G0 and batches the orders, calculating the optimal
series of waypoints to fulfill a batch of orders in a way
that meets requirement 10 while minimizing the robot’s to-
tal distance travelled from its current location. It outputs
batches of delivery waypoints for the robot.

The actual Global Planner is a ROS Node that wraps
around a novel optimization algorithm which outputs a sat-
isfactory series of waypoints for the robot to travel through
and minimize total distance travelled given a set batch of
orders. The ROS Node itself will batch incoming orders
and only send new batches of waypoints when the robot
is done with the current batch so that it never calculates
waypoints on an undefined, partially complete robot state.

It uses dynamic programming over all possible robot
states to minimize the total distance travelled by the robot
over a set graph of the delivery region.

Robot Status Processing is a ROS Node but that re-
ceives raw heartbeats and video feed from the robot from
signals G3 and G4. It processes the heartbeats and sends
clean status info like the robot’s node location to the Global
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Figure 9: This figure, drawn from a ROS tutorial, shows the details of how we will filter our sensor data (signals
R0,R1,R3) by passing it to the robot localization node.

Planner node through signal G1, and passes the raw video
feed to the screen for the emergency operator to see.

User Input Receiving/Processing is a ROS Node. The
user can send the laptop orders, either on the laptop or
through some communication, and this node sends to the
Global Planner node locally on the laptop through signal
G0.

An Emergency Operator may send the laptop some
emergency controls through a joystick, in which case the
laptop can send velocity commands directly to the robot
through the ROS runtime through topics on signal G5.

6 PROJECT MANAGEMENT

6.1 Schedule

See Fig. 10 for our schedule breakdown.

6.2 Team Member Responsibilities

Sebastian is primarily responsible for network design,
configuration and testing; and hardware driver integration.
He is secondarily responsible for the pedestrian avoidance
algorithm. Our hardware has many helpful libraries so he
might take on additional work in system integration or
wherever needed.

Michael is primarily responsible for the multi-order
planning algorithm, sensor data scrubbing as described in
Fig. 9, and system integration. He is secondarily responsi-
ble for networking and the localization algorithm.

Advaith is primarily responsible for the localization al-
gorithm and the pedestrian avoidiance algorithm. He is
secondarily responsible for the low-level controls, which has
reduced in scope since the Roboclaw has an onboard PID
that needs to be properly configured.

6.3 Budget

See Fig. 11 at the end of this document for our budget
and parts list. It does not include the spare motor that we
have already ordered.

6.4 Tools and Assembly

We will be requiring several tools to assemble our robot.
For our chassis, we will be using screwdrivers, drills, and
wrenches. For our electronics, all our components are off
the shelf, so we will be needing soldering irons, as well as
breadboards. We will require power supplies for testing the
motors and motor controllers before integration with the
battery. For developing our software, we will be using the
ROS environment that uses both Python and C++. This
can be developed in any text editor and runs on a Linux sys-
tem. Simulation work will be done in MATLAB/Gazebo.
For testing, we will be using a measuring tape to measure
the accuracy of the robot in Requirement 4, and a stop-
watch to measure Requirement 1, 2, 10.

6.5 Risk Management

There are many risks associated with the development
of an autonomous robot. As elaborated upon in our Design
Trade Studies, we had to carefully choose our motors and
batteries to meet our requirements while meeting our bud-
get cap, and also weigh the risks of buying parts for and
building our own chassis from scratch versus buying and
modifying a premade chassis. Ultimately we settled on a
premade chassis in order to save both money and time.

Additionally, perception can be difficult in an outdoor
environment so we had to mitigate the risk of having our
visual odometry fail by having a backup plan of using fidu-
cial markers around campus and hard-coding the map for
the robot.

Advaith mitigated potential problems with outdoor
lighting variance messing with our visual odometry by at-
taching a halo light ring around our stereo camera in order
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to minimize lighting differences throughout the day.

7 RELATED WORK

• Kiwi: A company developing a semi-autonomous on-
campus delivery robot. Kiwi uses operators to peri-
odically set waypoints for their delivery bots. Our
system differs in that we strive for minimal human
intervention. [5]

• Starship: A company developing an autonomous on-
campus delivery robot. Their system uses a combi-
nation of lidar and depth cameras for vision, while
ours only uses depth cameras. Their system is also
restricted to a 4 mile radius. [18]

• Nuro: An autonomous delivery robot that travels on
open roads. Our system differs in that it is smaller
and intended to drive on sidewalks, allowing it to drop
off closer to customers. [7]

• refraction.ai: An autonomous last-mile delivery robot
that travels in car and bike lanes. Again, our system
differs in that it is intended to drive on sidewalks to
allow delivery close to doors. [10]

8 SUMMARY

We hope to build a personable robot that meets the cus-
tomer requirements. Currently we are testing our high-level
algorithms and beginning assembly of the robot. We’ve
already started integration of our sensors into the Jetson
Xavier and we hope to finish on-time and with a functional
robot that can deliver food efficiently and successfully on
CMU’s campus.
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Appendix A: ROS Topics

Ground Station

G0: Orders sent to the ground station

Messages on this topic are type order. This type contains int id, int node and float weight.

G1: Robot status information sent to the ground station
This signal is identical to R7. Messages on this topic are type robotLocation. This type contains an
int location.

G2: Waypoints sent to the robot
Messages on this topic are type batch. This type has an array of waypoint messages. The waypoint type
is comprised of int32 node and string action. This signal is also R4 in the robot’s perspective.

G3: Robot heartbeats/status updates
The robot will send status updates over topics on this signal periodically such as its raw location as a
coordinate frame transformation of type tf2.msgs/TFMessage, documented at [16].

Robot

R0/R1/R3: IMU/Encoder/GPS Driver Filtered Readings
Raw sensor readings from the IMU, Encoder and GPS are combined as shown in Fig. 9 to become a filtered
odometry message for the Perception node of type nav msgs/Odometry, documented at [14].

R4: Waypoints from the ground station
R4 is G2, except it’s now in the robot’s frame of reference. Messages on this topic are type batch. This
type has an array of waypoint messages. The waypoint type is comprised of int32 node and stringaction.

R5: Perception readings to the Local Planner Node
The Local Planner Node takes a variety of topics across this signal from Perception. It takes in a tf co-
ordinate transformation (map ⇒ base link) from the Localization/mapping part of Perception that tells
it where the robot is in the map of type tf2.msgs/TFMessage, documented at [16], as well as filtered
odometry of type nav msgs/Odometry, documented at [14]. It takes in pedestrian information as well,
which is an array of PedestrianState structs. Each PedestrianState struct contains information about
where a pedestrian is relative to the robot. Specifically, it contains the pedestrian positions and velocities[
x y ẋ ẏ

]T
.

The node also needs access to the robot’s velocity in the map frame, so it will require Odometry messages
from the encoder and IMU of type nav msgs/Odometry, documented at [14]

R6: Motor speeds to the RoboClaw Motor Node

This topic sends messages of type geometry msgs/Twist, which specify linear and angular velocity. The
Roboclaw Motor Node listens to this topic and controls the motors accordingly. The type is documented
at [17].

R7: Robot Heartbeat to the Ground Station

This signal is identical to G3, except from the robot’s perspective. The robot sends the ground station
status information like its raw location as a tf coordinate frame transform through this topic periodically,
as documented in signal G3.
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Figure 10: Gantt Chart. We have three major milestones and testing.
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Figure 11: The parts used to construct GrubTub. Sources in red indicate where we did not purchase components. Total
refers to the total number of units, since some components come in multi-packs and we ordered multiple packs.


