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Abstract—An AI trash can which automatically
sorts items into two categories: recyclables or non-
recyclables. Users can throw away objects one-by-one
into a box, and have them moved into the correct bin
by a sliding mechanism. We embedded multiple sen-
sors underneath the platform of the box and mounted
a camera on the trash can lid to identify the object’s
primary material with several sensor classifiers and an
image classifier using a neural network model. Accord-
ing to the sensor classifier outputs and the predicted
category from the image classifier, an item will be clas-
sified as either recyclable or non-recyclable.

Index Terms—Classifier, Jetson Nano, Neural Net-
work, Recycling, Sensor Array, Timing Belt

Figure 1: User Flow

Figure 2: Final Trash Can Exterior

1 INTRODUCTION

The city of Pittsburgh’s current recycling rate is a stag-
geringly low 17%[9]. Compare that to CMU’s recycling rate
of 35%[3], which is still incredibly low considering that ide-
ally, these rates could be above 50% as seen in some other
countries. Bottom line, people do not know how to recy-
cle as well as they think they do. In fact, many people
engage in “hopeful recycling”, meaning that they recycle
what they think should be recyclable, rather than what
actually is. Only 31%[5] of people always recycle a recy-

clable item, meaning that the rate of contamination (non-
recyclable items in the recycling pipeline) is extremely high,
which reduces the percentage of items in recycling that ac-
tually become recycled. Our goal is to help increase the
recycling rate on CMU’s campus.

To do this, we created an intelligent waste bin capable
of sorting waste one item at a time into either the recy-
clable bin or the non-recyclables bin in under a second and
with an accuracy rate of 90%. There are four main types of
materials we consider recyclable: metals, glass, PET and
HDPE plastics, and paper/cardboard. In terms of similar
products on the market, there are few, and some are priced
upwards of $1,000. Thus, our trash bin offers a less expen-
sive solution to recycling. Zero thinking is involved in the
use of our product as users simply place a waste item into
the bin and can walk away. The trash bin automatically
classifies that waste item as recyclable or non-recyclable
and disposes of the item into the correct bin housed within
our product. Gone are the days of debating whether or
not certain trash is recyclable, which ultimately leads to
low recycling rates and high contamination, as we welcome
this easy-to-use and innovative solution.

2 DESIGN REQUIREMENTS

Our main goal is to improve CMU’s recycling rate, so
our trash can makes recycling easier, more convenient, and
more efficient for the average user. Thus, we have devel-
oped several accuracy and latency requirements that are
critical to the success of our project.

2.1 Classifier Accuracy

First, the accuracy of the overall classifier used to sort
items into recycling and non-recycling categories must be
at least 90%. This accuracy rate is significantly higher than
both the average recycling rate and contamination rate.

The overall classifier combines outputs from the image
classifier and sensor classifiers. We tested each individual
classifier and then tested the overall classifier to ensure that
the resulting percentage of correctly categorized items was
at least 90%. To test the image classifier accuracy, only
images were used. We used a pre-labeled data set in addi-
tion to our own manually collected and labeled data set. To
test the sensor classifiers, we placed objects into the sorting
box that corresponded to that classifier’s target material.
For example, metals were used to test the accuracy of the
metal classifier. Once we tested the individual classifiers,
we placed objects into the sorting box for the overall clas-
sifier to categorize as recyclable or non-recyclable so that
we could verify the overall accuracy rate.
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2.2 Mechanism Accuracy

The second requirement refers to the accuracy of the
mechanism that pushes an item into one of the two bins.
This accuracy relates to the likelihood of moving an item
into a bin after classification occurs. Therefore, this accu-
racy level needs to be at least 99% in order for the overall
system to work as well as possible.

To test this accuracy rate, objects were placed into the
sorting box. The rate of successfully placed objects by the
mechanism into the specified bin was calculated and com-
pared to 99%.

2.3 Latency

The third requirement for this project is overall latency,
which should be less than one second. We define overall la-
tency as the end-to-end processing time of one object. This
is measured as the time between an item being dropped into
the sorting box of the system and the sliding mechanism
returning back to the center of the platform after moving
the item into a bin. Thus, this latency includes classifier
latency (the time taken to classify an object as recyclable
or non-recyclable) and mechanism latency (the time taken
to move an object into a bin). This requirement is less than
one second, since this is approximately how long it takes
for a user to drop a piece of trash into the bin. This also
accounts for different scenarios in which users will throw
away trash, such as waiting in a line with other people to
throw away trash, or simply throwing away multiple pieces
of trash by themselves. This timing requirement ensures
usability of the overall system with the processing of items
one-by-one.

Overall latency was tested by adding the total classi-
fication latency to the mechanism latency. Both of these
individual metrics were measured separately and averaged
over multiple inputs.

2.4 Object Scope

The last requirement ensures that our trash can is able
to accept a variety of items including common trash such
as water bottles and food containers. Given that our trash
can is intended for CMU’s campus, we aimed to handle
small to medium sized objects of reasonable weight. We
define this as objects less than 10x10x10 (WxLxH) inches
in size and less than 2kg (around 4.4lbs in weight). This
allows us to accept most items that are able to fit into the
sorting box, even ones that wouldn’t be common around
CMU campus, like a brick.

In addition, we are not accepting any liquids or sauces
poured directly into the sorting box, as this can interfere
with our sensor readings and sensors. Therefore, we are
only accepting items that have dry exteriors.

We tested these requirements by placing items of vari-
ous size, shape, and weight into the sorting box, and then
verified that the mechanism pushed that item into the cor-
rect bin.

3 ARCHITECTURE OVERVIEW

Please refer to Figure 4 and Figure 17 for our system
and software specifications. Figure 4 contains our overall
system specification diagram. Figure 17 contains a class
diagram which depicts the interfaces that we have defined
to facilitate integrating each of our components together.

All of our processing is contained within the Jetson
Nano. The limit switch connects to the Jetson Nano via
GPIO and indicates whether the trash can lid is closed.

The Jetson Nano receives images from the Raspberry
Pi v2 camera, which is connected via MIPI CSI-2 (Cam-
era Serial Interface) and mounted underneath the trash can
lid. The inductive and capacitive sensors embedded in the
platform underneath the lid send digital output (1/0) to
the Jetson Nano. These sensors are connected to GPIO
pins on the Jetson Nano. The LED strip is connected di-
rectly to an external power supply so it does not need to
be connected to the Jetson Nano.

Figure 3: Camera Mounted Underneath Trash Can Lid

The Jetson Nano also controls the motor driver and
communicates between the motor controller using two
GPIO pins and the RpiMotorLib Python library. The mo-
tor driver drives the stepper motor for the sliding mecha-
nism.

Once the limit switch is activated, the Jetson Nano be-
gins classification of the next item. The image classifier
obtains and resizes images from the camera via the Pi-
Camera library. The image classifier then uses the trained
ResNet101 model to classify the object as non-recyclable, or
one of the recyclable categories (metals, paper/cardboard,
plastics, glass).

Our sensor array feeds data through GPIO pins into
the sensor classifier, which we created ourselves. Within
the sensor classifier, there are individual material classi-
fiers which output whether or not the inputted item is of
that particular material. Each of these individual sensor
classifiers is composed of various sensors that are able to
detect certain materials. For example, in the metal classi-
fier, inductive sensors were used to determine whether an
item was composed of metal or nonmetal because inductive
sensors are specifically able to detect the presence of metal.

The image classifier predicted category and the output
of the different types of sensor classifiers are used in the
overall classifier, which makes the final classification deci-
sion of recyclable or non-recyclable. This decision is then
sent to the motor controller which prompts the stepper mo-
tor of the mechanism to move the sliding belt so that the
item is pushed into the corresponding bin.
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Figure 4: System Specification Diagram

4 DESIGN TRADE STUDIES

Throughout the design process, we discussed several dif-
ferent approaches for our mechanical, software, and hard-
ware components. For each of these decisions, we consid-
ered the solution which would be able to meet our design
requirements with minimal cost and complexity.

4.1 Mechanism

Timing Belt Mechanism: While developing the mech-
anism, we considered a variety of different linear motor
actuators including a conveyor belt, rack and pinion mech-
anism, and timing belt mechanism. We ultimately chose
the timing belt mechanism because we would not be able to
embed sensors onto a moving conveyor belt platform and
the cost of the gear rack for the rack and pinion mechanism
was much more expensive than the timing belt. During
the design presentation, we had intended to use an existing
CAD model to laser cut most of the major components of
our mechanism including the pulley gear and the motor
mount. This method was significantly less expensive than
ordering parts, but required time for manufacturing parts
and would have to be significantly modified to fit our slid-
ing box design.

Since no one on our team had significant mechanical design
experience, we instead decided to repurpose a timing belt
mechanism from one of our teammates’ previous projects
which was based on this model from Thingiverse [8]. We
still needed to make some modifications such as increasing
the size of the timing gear and redesigning the moving
platform, but these modifications were much more feasible
and only required us to 3D-print the motor and linear rod
mounts.

Motor Control: We chose the Nema 17 Stepper Mo-
tor and A4988 motor driver because they were among the
cheapest models that fit our use case. Based on our design
requirements, the mechanism should achieve an approxi-
mately 0.5 second latency and be able to move small to
medium sized objects. We calculated that the Nema 17
would be able to meet these metrics given its 59 Ncm hold-
ing torque and 600 RPM motor speed.

The maximum linear speed of the belt mechanism is
dependent on both the motor’s speed and the size of the
pulley gear which turns the belt. Because we can control
the pulley gear size, we only needed to calculate the exact
gear diameter necessary to meet our latency requirement.

speed =
2 ∗ 10 in.

0.5s
= 40in/s = 1.016m/s (1)

d =
60 ∗ speed
π ∗ rpm

=
60 ∗ 1.106

π ∗ 600
= 35mm (2)

Equation 1 details the linear speed of the belt needed to
move the sliding box off of the platform and back in 0.5
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seconds. Equation 2 then details the diameter of the gear
needed to meet this linear speed given the Nema 17’s 600
RPM. From our calculations, we can meet our mecha-
nism latency metric using any pulley gear with a diameter
greater than 35mm. As a result, we have selected a 42mm
gear.

Then, to verify that the stepper motor would be able
to meet our weight requirements, we calculated the mini-
mum torque required to move a mass of 2kg (our maximum
object weight).

F = m ∗ a = 2kg ∗ 9.8m/s2 = 19.6N (3)

torque = F ∗ r = 19.6N ∗ 0.0175m = 34.3Ncm (4)

Equation 3 details the force of a 2kg object, and Equation
4 details the torque needed to move that amount of force
given the radius of our gear. Since the Nema 17 has a max-
imum holding torque of 59cm, we should easily be able to
support small to medium sized objects.

4.2 Hardware

Jetson Nano: We chose the Jetson Nano over similar plat-
forms like the Raspberry Pi 3 for its powerful GPU and
higher performance. The Jetson Nano was designed to run
multiple neural networks in parallel and contains a quad-
core ARM processor with an 128 core GPU, which allows
us to minimize our image classification latency. Initially,
we had considered using an Arduino in addition to the Jet-
son Nano to interface with the motor driver, but decided
that step was redundant since the Jetson Nano contains
22 GPIO pins and supports our motor driver. Thus, an
Arduino would add unnecessary complexity and latency to
our project.

Camera: We chose the Raspberry Pi v2 camera because of
its compatibility with the Jetson Nano. The camera con-
nects directly to the Jetson Nano’s CSI port and can be
easily controlled using the PiCamera library. We had con-
sidered other cameras with higher quality, but decided that
a standard 1080p resolution and 30fps frame rate would be
sufficient for our use case. We do not require a higher
resolution because we decreased the size of our image for
image classification anyway to reduce latency in the neural
network. Similarly, we do not require a higher frame rate
because we assume that the item is stationary within the
bin so we do not need to process a smooth video stream.

4.3 Sensors

We had originally intended to segregate garbage using
only computer vision. Although this method was simpler
and less expensive than adding a sensor array, we realized
that a camera would not be sufficient for classifying visually
similar materials such as different types of plastic. Thus,
we decided to add a variety of sensors, ensuring that at least

one sensor was capable of detecting the following materi-
als: glass, plastic, and metal. While selecting sensors, we
consulted research papers and previous projects whenever
possible to roughly estimate the sensor’s material detection
accuracy.

Capacitive Sensor: Capacitive sensors are commonly
used for material detection because they are capable of be-
ing fine-tuned to detect different capacitance levels. Using
capacitive sensors alone we would theoretically be able to
distinguish between all of our recyclable materials because
each has a specific capacitance range. However, capaci-
tance sensors cost significantly more than any of the other
sensors that we were considering such as LDR and IR. This
is partly because the sensor output is binary, so we re-
quire two capacitive sensors to detect the lower and upper
range of capacitance for each target material. In addition
to this, we cannot afford capacitive sensors with large sens-
ing ranges, so we would need to purchase many capacitive
sensors for full coverage of our platform. Despite all of
these drawbacks, we found that alternative sensors such as
LDR and IR could not reliably detect our target materi-
als. Consequently, we used capacitive sensors for all of our
non-metal sensor classifiers (glass and HDPE plastics), but
significantly limited the amount used. We would have also
used capacitive sensors to detect paper and PET plastics,
but found that those material capacitance ranges were not
detectable through testing.

Inductive: To detect metal, we decided that using only
inductive sensors should be sufficient based on a research
paper which achieved 98% metal detection accuracy using
inductive sensors alone [2]. We also considered using ca-
pacitive sensors, but due to its previously mentioned draw-
backs, opted for inductive sensors as a less expensive al-
ternative. Inductive sensors are still more expensive than
some alternatives such as ultrasonic sensors, but we decided
that its high accuracy rate warranted the extra cost.

4.4 Sensor Array

We decided to place our sensors in the formation of a
sensor array because most of our sensors have small de-
tection ranges. In fact, the sensing range of our inductive
sensor is so small (8 mm over the sensor’s 0.5 inch contact
point) that we would need 400 inductive sensors to fully
detect any object on our 10x10 inch platform, which is in-
feasible given our current budget. After measuring common
objects such as water bottles and tin cans, we decided to
limit our scope to a 2x2 inch minimum detectable object
size because we can rely on our image classifier for smaller
objects. Based on this assumption, our inductive sensors
can be spaced 2 inches apart, reducing the number of sen-
sors needed from 400 to 16 sensors. Because we require two
capacitive sensors at each point to detect the lower and up-
per range of capacitance, we would still require 32 capaci-
tive sensors for each target material to meet this minimum
object size. This means that we would need a total of 64
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capacitive sensors to detect both glass and plastic, which
would exceed our budget. As a result, we decided that we
could reduce the total number of capacitive sensors to 12
and rely on using the image classifier for other materials.

In addition to budget constraints, the number of GPIO
pins was a major limitation in the design of our sensor ar-
ray. The Jetson Nano only has 22 GPIO pins, but given
the original design of our sensor array, we would need 28
GPIO pins (12 for capacitive and 16 for inductive). We
considered using shift registers but realized that the logic
of our system could be simplified to avoid this added com-
plexity. For example, if any one of the inductive sensors
detects a metal, the classifier should identify that a metal
was detected, even if the other inductive sensors did not
detect anything. Because we only need the output of one
sensor to be high in order to detect the object, we can wire
sensors in parallel which uses only 1 GPIO pin. Overall,
we needed 9 GPIO pins (4 for the capacitive sensors, 1 for
the inductive sensors, 3 for the motor driver, 1 for the limit
switch). We cannot further reduce the number of pins used
for capacitance because the capacitance output is binary, so
we must be able to detect the lower and upper capacitance
range of each target material, glass and plastic. Therefore,
we need 1 pin per upper bound, and 1 pin per lower bound.

4.5 Software

Jetson Inference: We had originally intended to train our
model on AWS, but decided to train on the Jetson Nano’s
GPU for simplicity. We used the deep learning library Jet-
son Inference for both offline training and eventual image
classification. This library was designed specifically for use
on Jetson platforms and has been optimized for the Jetson
Nano. In particular, it uses NVIDIA TensorRT to speed up
TensorFlow inference, which helps to minimize our classi-
fication latency.

ResNet101 Model: ResNet101 is a built-in model from
the torchvision.models module in the Pytorch library. It
consists of a convolutional neural network made up of 101
layers that has been pre-trained on over a million different
images. We decided to use an existing model for our im-
age classifier rather than build a new one from scratch due
to the difficulty of determining an object’s material from
images (i.e. visually similar objects could have different
materials), which is necessary in order to correctly classify
the object as recyclable or non-recyclable. We had orig-
inally considered using ResNet50 because that model has
been used to obtain 95% accuracy for garbage classification.
However, we found that ResNet50 performed poorly in test-
ing. Switching to ResNet101 did not affect our overall la-
tency, but it did significantly increase our training time.
For 60 epochs, the training time increased from around 11
hours to 24 hours, but we decided that this added cost was
worth the gain in accuracy. To further increase our image
classifier accuracy rate, we also combined images from the
Kaggle dataset[7] with our own images. For example, af-

ter preliminary testing, we found that plastic bottles were
rarely detected by the image classifier, so we specifically
added more images of plastic bottles to our dataset.

Training Epochs: Increasing the number of epochs in-
creases our classification accuracy rate but also increases
our training time. Figure 5 depicts the validation accuracy
for both ResNet50 and ResNet101 as the number of epochs
increases. In preliminary testing, we trained our model for
only 30 epochs, achieving around 50% validation accuracy.
In the final version, we switched to 60 epochs which dou-
bled our training time from 12 to 24 hours but increased
our validation accuracy to around 74%. We decided that
training for additional epochs would not significantly in-
crease our accuracy because validation accuracy begins to
level off around 60 epochs as shown in Figure 5.

Figure 5: Number of Epochs vs. Validation Accuracy

5 SYSTEM DESCRIPTION

5.1 Image Classifier

The image classifier only uses images as input to clas-
sify an item, and has 5 different categories for the output.
These categories consist of non-recyclables, and the differ-
ent types of recyclables: metals, plastics, paper or card-
board, and glass.

An existing dataset[7] from Kaggle, along with our own
images, was used to train the model for the image clas-
sifier. The model we are using is ResNet101, which is a
convolutional neural network with 101 layers. ResNet101
is part of set of pre-trained models from PyTorch’s torchvi-
sion.models, a machine learning library. The model was
trained on the dataset offline using the Jetson Nano’s GPU.

Figure 6: Image Classification Flowchart
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Figure 7: Results of Image Classifier

5.2 Sensor Classifiers

There are three sensor classifiers that correspond to
each of the recyclable categories: metals, HDPE plastics,
and glass. Each of these sensor classifiers uses a specific
kind of sensor to distinguish between each material.

The metals classifier distinguishes between metals and
non-metals. This was done using output from a set of 16
connected inductive sensors. The output of each inductive
sensors is binary, so each inductive sensor acts similar to a
switch and turns on when metal is within the sensing range,
and remains off otherwise. By connecting all of these in-
ductive sensors together, the final output of the set of these
sensors is “on” if any of the 16 sensors detects a metal, or
“off” otherwise. Thus, this sensor classifier for metals has
a binary output to distinguish metals and non-metals.

The plastics classifier distinguishes between certain
types of plastics (HDPE) that are considered recyclable,
and other kinds of plastics that are not. The sensors used
to detect these types of plastics are capacitive sensors. The
output of each capacitive sensor is also binary, but not all
of the capacitive sensors can be connected in the same way
as the inductive sensors. For every position on the platform
we want to detect plastics, there needs to be two adjacent
capacitive sensors. Every pair of capacitive sensors was
then connected to the Jetson Nano. Materials like plastics
have a range of capacitance values, so we need to know if an
object lies within the lower and upper bound of the capac-
itance ranges for HDPE plastics. Each of the two adjacent
capacitive sensors were for these lower and upper bounds,
respectively. In addition, since the capacitive sensors can
only determine if an object has a capacitance value above
a certain threshold, successful plastic detection for objects
means that one capacitive sensor had output 1 (for lower
bound), and the adjacent capacitive sensor had output 0
(for upper bound).

The glass classifier distinguishes between glass and non-
glass objects. Similar to the plastic classifier, we used out-
put from capacitive sensors. Since the output of both of
these kinds of sensors is binary, we similarly use a binary
output for the glass classifier.

5.3 Overall Classifier

Figure 8: Classifier Flowchart

After combining the output from the image classifier
and the outputs of the three sensor classifiers, the over-
all classifier determines the final category of recyclable or
non-recyclable for an item.

The image classifier output is used for most items when
the confidence level of the output category is high. This
confidence level threshold was determined through later
testing of the overall model, and changed for each category.

However, when the image classifier is unsure of the clas-
sification of an item (low confidence level), the sensor classi-
fier outputs is used to corroborate or reject the image classi-
fier decision. This depends on whether the image classifier
output is part of recyclables or non-recyclables.

If the image classifier output is one of the recyclable
categories (metals, paper/cardboard, plastics, or glass), the
sensor classifier for that recyclable category is used. The
output category from the image classifier and correspond-
ing sensor classifier must agree in order to classify an object
as recyclable. This agreement between the image classifier
and the appropriate sensor classifier is necessary to reduce
the chance of false positives for recyclables, which is more
important than false negatives. This is because items that
are non-recyclable and sorted into the recycling bin increase
the contamination rate, but recyclable items sorted into
the non-recyclable bin do not have a similar negative con-
sequence.

Otherwise, if the image classifier output is non-
recyclable, the sensor classifier output is used to make the
final decision. For example, if the image classifier deter-
mines an object to be a kind of metal, but the metals
classifier output doesn’t detect any metal, the final clas-
sification of the item will be non-recyclable. In the other
case where the sensor classifier does classify an item as one
of the recyclable categories, the final classification of the
item will be recyclable.
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5.4 Sensor Placement

We created a sensor array, which is a configuration of
various sensors in a strategic pattern, because most of our
sensors have a very small sensing range and thus would
make our sensor classifier extremely unreliable if we just
used one sensor.

The grid depicted in Figure 9 shows a bird’s eye view of
our platform. Our platform is 10x10 inches and 2x2 inches
is our minimum detectable object size. So, based on our
sensor configuration, we are able to detect an item with
some part of the sensor array no matter its placement on
the platform. Items smaller than 2x2 inches are primarily
handled by our image classifier.

In total, 16 inductive sensors and 12 capacitance sensors
were placed throughout our sensor array. Again, 2 capaci-
tance sensors are used in pairs to detect specific materials
since one is needed for the lower bound of capacitance for
that material and the other for the upper bound. The nec-
essary spacing to avoid interference between sensors has
also been taken into account.

Each sensor is mounted underneath the platform
through cut-out holes so that the sensors are flush with
the platform. Furthermore, as shown in Figure 11, our ca-
pacitive and inductive sensors have a built-in contact point
as depicted by the orange cap.

Figure 9: Sensor Array Diagram

Figure 10: Final Sensor Array

Figure 11: Inductive Sensor

5.5 Mechanism

For our mechanism, we used a sliding mechanism that
pulls a box structure across the platform, swiping the item
into either the recyclable or non-recyclable bin. As pre-
viously discussed, we used a Nema 17 Motor and A4988
motor driver to control our mechanism. Given the Nema
17’s 600 RPM motor speed and 59 Ncm holding torque,
our mechanism should meet our latency and object scope
requirements.

In regard to the design of our sliding mechanism, please
refer to Figure 12 and Figure 13. Linear ball bearings
attached to metal linear rods make up the fundamental
sliding portion of our mechanism. The linear rods are 31
inches in length to allow the box to push trash entirely off of
the platform, and they are spaced approximately 11 inches
apart to allow room for the box to move in between. The
four mounts located on each side of the rods support the
linear rods, pulley gears, and stepper motor. These mounts
were 3D printed and drilled into the sides of our trash can
exterior. To turn the belt, we used two 42mm pulley gears,
one fitted around the shaft of the stepper motor and the
other held in the opposite mount as shown in Figure 12.
The timing belt wrapped around both of these gears and
also fastened to the box. The box was constructed from
four wooden walls, each the size of our platform (10x10
in). The box was then attached to small shelves protrud-
ing from the linear ball bearings as seen in Figure 13. These
shelves were directly drilled into the linear bearings.

Once the overall classifier makes its decision, the motor
driver drives our stepper motor to turn the gear around its
shaft and move the timing belt. Because the belt is fas-
tened to the box, the box is pulled in the same direction as
the belt, pushing the item off of the platform and into the
correct bin.
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Figure 12: Mechanism CAD Model

Figure 13: Mechanism Diagram

6 TEST AND VALIDATION

In the testing of Bin There Dump That, our main met-
rics were latency and accuracy. In the following subsec-
tions, we will go over how we tested our product and what
our results were.

6.1 Mechanism

Concerning our sliding mechanism, we define the ac-
curacy as the percent of items successfully pushed into the
correct bin after classification. We tested a variety of waste
items and were able to achieve 100% accuracy for the phys-
ical movement of our mechanism. Our original goal was to
achieve an accuracy of 99%, so we are happy we exceeded
this goal.

The latency of our mechanism was measured by timing
how long it took to push an item into the correct bin and
return back to the sensor platform. We timed the motion
from the instant the mechanism began to move, up until it
came to a complete stop. Unfortunately, we were not able
to reach our latency goal of less than one second, as our
mechanism’s average latency was 2.66 seconds. This was
the result of a combination of trade-off decisions that we
made. Specifically, we decided to go with a greater mo-
tor step delay, which increased the accuracy of the sliding

box, but decreased the speed of the mechanism. Due to
the added weight of the box, which attached to our slid-
ing rails, our motor was unable move at the max speeds
it is capable of. In order to improve this latency, a much
stronger and more expensive motor would be needed. We
did however choose a larger gear size for the mechanism,
which helped decrease the latency.

6.2 Classifiers

Figure 14: Classifier Accuracy Results (%)

Figure 15: Waste Material Breakdown (%)

Our overall system consists of the following three clas-
sifiers: sensor, image, and overall. We tested each of these
classifiers separately by placing items into the sensor box
and verifying each classifier’s predicted classification. As
can be seen in Figure 14, our accuracy differs for each
material and classifier. For each individual classifier (sen-
sor and image), we conducted 50 trials per material. For
the overall classifier, we conducted 100 trials per material.
Taking a closer look at some of our significant results, our
overall metal classification is extremely accurate at 98%.
This is because of how accurate our inductive sensors are
in detecting the presence of a metal. Our glass and plastic
accuracies are lower because of how far apart our capaci-
tance sensors were placed, due to how few there were for
maximizing coverage of the sensor platform. So, depending
on how an item lands in the bin, it may not activate any
capacitance sensors. However, we did achieve a higher ac-
curacy for glass and plastic after combining sensor outputs
with our image classifier outputs.
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We also calculated the false positive and false negative
performance of our product. We recorded a false positive
rate of 11%, which refers to when a non-recyclable waste
item was classified as recyclable. In the world of recycling,
this is also known as the contamination rate, which nega-
tively affects the proportion of recyclables in the recycling
bin that actually get recycled. Since the national contami-
nation rate is 25%, this is a significant improvement. Our
false negative rate was 6.6%, which refers to when a recy-
clable item is classified as trash. Contaminating the recy-
cling pipeline with non-recyclable items is much more costly
than putting recyclables in the trash, so the contamination
rate is the more important statistic.

In regard to the latency of our classifiers, the classifica-
tion is extremely quick as the average time it takes for our
classifiers to run is 0.117 seconds.

6.3 Overall System

For our overall system, we were able to reach our ac-
curacy goal of 90%, achieving an accuracy of 90.6%. In
calculating this overall accuracy rate, we weighted each ma-
terial’s individual accuracy according to the breakdown of
trash in 2018 as reported by the EPA, which can be seen
in Figure 15. We did this to more accurately represent our
system’s accuracy rate by reflecting how people throw away
waste in the real world.

However, we were not able to reach our overall system
latency goal of less than one second. To determine latency,
we timed how long it took the classifiers and the mechanism
to run. We were able to achieve an average latency of 2.777
seconds. While we missed our target latency metric, we do
feel that our current latency is still quite quick and users
of the product will not suffer from poor user experience.
We also were not able to successfully push our maximum
object weight of 2kg (around 4.4 lbs); instead, we found
that our product can only support weights up to about 1kg
with reasonable latency as shown in Figure 16.

Figure 16: Weight (kg) vs. Mechanism Latency (s)

7 PROJECT MANAGEMENT

7.1 Schedule

In our schedule, we prioritized developing the image and
sensor classifiers so that we could better mitigate against
unforeseen risks. We ended up allocating more time for cal-
ibration due to re-calibration being necessary after attach-
ing paper over the platform, as well as wiring of the sensor
array because we needed to switch from a solderless bread-
board to a perma-proto breadboard that was solderable.
Integration of parts also took longer than expected since
our original Jetson Xavier NX stopped working halfway
through the semester, so we needed to start from scratch
with the Jetson Nano afterwards. The exterior also needed
to be re-built due to wrong measurements, so that also
added to integration delays. The full Gantt Chart can be
found in Appendix B.

7.2 Team Member Responsibilities

Our project is divided into two main categories: mech-
anism/hardware and classifiers. Lauren’s primary respon-
sibility was calibrating the capacitive sensors for detecting
glass and HDPE plastics, and wiring our sensor array to
a breadboard. She also helped re-train the final version of
the ResNet-101 model for our image classifier, and improve
the image classifier performance by tuning the confidence
levels used after testing. Jessica worked on building the
image and sensor classifiers, as well as training our initial
and final versions of our ResNet model. Jessica also inte-
grated all components with the Jetson Nano, and designed
the mechanism. Tate’s primary responsibility was assem-
bling the mechanism and building the trash can exterior.
All of us collected objects used for sensor calibration and
subsystem testing. Tate did the majority of testing for the
image, sensor, and overall classifiers, and Jessica and Lau-
ren worked on the latency testing.

7.3 Budget

The budget can be found in Appendix C. Since we
reused parts for our mechanism and didn’t end up using
some other parts, there is a large discrepancy between the
cost used by our budget and the total cost needed to recre-
ate the project from scratch. We have separated the cost
from our budget and the cost of recreating the project into
the columns “Total Spent” and “Total Cost,” respectively.
The parts that were purchased but not used in the final
version of our product have been grayed out.

7.3.1 AWS

We want to thank Amazon for providing AWS credits
for our use in this project. We used $0.13 for trying out
AWS instances for training.
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7.4 Risk Management

Our main risk factor was classifying edge case objects.
In particular, items placed at different angles or items com-
posed of multiple materials are more difficult to classify.
This risk can be mitigated against by adding more training
data and adding different types of sensors. To account for
items placed at different angles, for instance, we included
images of items at various angles in our image classifier
training set. To account for items composed of multiple
materials, we assume that the item has a primary material
and we classify based on that primary material. For exam-
ple, although water bottle lids are not recyclable, we still
categorize the entire water bottle as recyclable. Because
we anticipated that other edge cases with regards to our
classifier would appear throughout the semester, we priori-
tized classifier testing in our schedule. This gave us enough
time to order more sensors such as the ultrasonic sensors
and collect more training data as needed.

With respect to our sensors, our largest risks were their
accuracies and small sensing ranges. Although we had re-
searched each sensor’s approximate accuracy at detecting
its target material, it was difficult to estimate their accu-
racy levels without further testing. To mitigate against
this, we prioritized testing our sensors so that we could
quickly determine which sensors might need to be replaced.
For example, we had expected the IR sensor to not detect
glass because infrared rays do not pass through glass. How-
ever, while testing, we found that the results were more
erratic and were able to order ultrasonic sensors as a po-
tential replacement. We later found that ultrasonic sensors
could also not reliably detect glass, so we decided to use
capacitive sensors in the final version.

In terms of small sensing ranges, our inductive and ca-
pacitive sensors have around an 8mm and a 10mm sensing
range, respectively. As a result, we have designed a sensor
array such that a normally sized object should have con-
tact with at least one of each type of sensor. If the object
is abnormally small, then we rely on our image classifier to
make the final classification decision instead. We also left
room in our budget so that we could order more sensors for
our sensor array if necessary during the semester.

Furthermore, we mounted an LED strip inside the trash
can so that our image classifier could still function in low
light conditions.

8 ETHICAL ISSUES

Our product uses a camera mounted underneath its lid,
which has the potential to be abused by people who use
the camera to take pictures of people or other unintended
objects. The camera takes a picture once the switch is
pressed, so people could position our product to use the
camera for their own purposes. This would negatively af-
fect everyone’s privacy.

Users have access to the internals of our product when
they open the lid, so it is possible for them to put their

hand inside while the mechanism is pushing the box off of
our sorting platform. This may cause injury if such a per-
son does not remove their hand from our product, since the
box would collide with their hand.

In addition, users with physical disabilities that have
trouble with fine motor skills could find it difficult to use
our product if they cannot open the lid. This would con-
tribute to unequal access in using garbage cans.

To mitigate the above risks that come with having an
open lid, we could permanently attach the lid to our prod-
uct, making it impossible to use the camera to take pictures
of people or use it for other unintended purposes. The lid
would then become part of the roof of our product, and
the camera would stay pointed downwards at the sorting
platform. To accommodate this change to the lid, we could
cut out a hole on the side of our product for users to put
trash into instead of through the top of our product.

There is also the potential for our trained model to not
perform as accurately for different parts of the world, since
the model is only trained on certain items in our dataset.
For example, different objects are more commonly thrown
away in different areas or countries. To improve usabil-
ity for this reason, we could add a much greater variety of
items to our dataset.

9 RELATED WORK

There are several projects related to automatic trash
sorting. These projects tend to use either computer vi-
sion or sensors for classification and are able to achieve
reasonable accuracy. Researchers from MIT have used soft
robotics to create a trash sorting robot based on touch [4].
The robot can detect size and hardness of the material by
squeezing the object. On the other hand, Oscar the AI
trash can uses solely computer vision for classification[1].
Similar to our project, Oscar is intended for consumer use
and can only sort one item at a time.

While initially developing our project, there were sev-
eral projects that heavily influenced our decisions. For the
sensors, we used the results of “Design and Development of
the Trash Splitter with Three Different Sensors” to narrow
down which sensors to consider for material detection[2].
We were also inspired by the mechanism in the “Sorter
Bin” project which used a stationary platform embedded
with sensors and a sliding box to push the trash off of the
platform[6]. Unlike the ”Sort Bin” project, however, we
used more sensors and computer vision to aid our classifi-
cation. We also used a belt driven mechanism rather than
a ball screw mechanism to decrease mechanism latency.

10 SUMMARY

Our system was able to meet all but one of our design
specifications. It achieved at least 90% accuracy in classify-
ing objects correctly, ultimately reaching 90.6% accuracy.
Our product was also able to meet our 90% accuracy re-
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quirement for our mechanism in moving classified objects
to their correct bin since it has a 100% accuracy rate.

Our end-to-end latency requirement of less than 1 sec-
ond was not met, however, since our product takes 2.78
seconds on average to sort each object. Our other design
specification of maximum object weight was also not met,
since objects weighing less than 2 kg (around 4.4 pounds)
were not able to be successfully able to be pushed into one
of the bins; instead, we were only able to support objects
weighing up to around 1kg.

To improve our system performance if we had more
time, we would re-train our image classification model with
many more of our own images (hundreds or even thou-
sands). We would also purchase more capacitive sensors to
spread out more evenly on our sensor platform, since this
would improve the sensor array’s ability to detect glass and
HDPE plastics. Additional capacitive sensors could also be
used to detect materials like cardboard, which would also
improve our sensor classifier’s performance. Finally, to im-
prove our mechanism, we would purchase a stronger motor
that could move 2kg of weight at 600 RPM. The Nema 17
motor that we purchased can handle our weight and latency
metrics separately, but slows down significantly for heavier
loads.

We learned several lessons while developing this project.
First, we should have completely planned out our design
before beginning to build. In particular, we began building
the trash exterior before finalizing the mechanism so we
did not fully account for the height of the mechanism. We
also failed to account for the minimum distance between
the camera and our sorting platform that was necessary in
order to take a bird’s eye view picture of objects. Conse-
quently, we had to completely reassemble the exterior so
we were not able to integrate the camera with the exterior
until much later than expected. Secondly, we should have
left more time for testing in our schedule so that we would
have more time to detect and handle edge cases, as well as
handling unexpected delays in the creation of our product.
At the beginning of the semester, we tended to underesti-
mate how much time menial tasks like taking pictures, la-
beling images, and testing the system could consume, and
didn’t account for parts getting delayed or breaking, which
happened during the semester.
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Appendix A

Figure 17: Class Diagram
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Appendix B

Figure 18: Gantt Chart
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Appendix C

Figure 19: Budget


