
18-500 Final Report: 05/14/2021

1

Abstract —The use of Virtual and Augmented Reality systems

has become exponentially popular in recent years. The human-
environment interaction methods have become increasingly
expensive and existing controllers are clunky objects that need to
be held. In this paper we propose a wearable glove system with
haptic feedback, which produces different vibrations. Our design
consists of Infrared LEDs, image processing, a RaspberryPi, an
Inertial Measurement Unit, a wearable Arduino, and Infrared
Cameras.

Index Terms — Haptic Feedback, Motion Tracking, Infrared
Tracking, Inertial Measurement Unit (IMU), Wearable
Technology, Game Controller, Bluetooth LE, Unity, Arduino,
Raspberry Pi

I. INTRODUCTION
HE first mainstream application of motion-tracking

technology for video games was the Wii Remote,
developed by Nintendo for the Wii game console. Since then,
motion tracking has also been explored in the Xbox Kinect and
most recently, various virtual reality (VR) controllers. The main
drawback to the Wii Remote was its bulk, which made it non-
intuitive to use for some games that required abrupt motion. The
Xbox Kinect solved this problem by removing the need for a
controller altogether by using an array of sensors to detect
motion from a single device sitting in front of the television.
However, the Kinect was not without its own drawbacks. The
Kinect required a significant amount of space to function, and
lacked the ability to provide haptic feedback to the user, causing
a less immersive experience [1]. These drawbacks as well as the
expensive price of the Kinect led to its eventual discontinuation.
The market currently lacks a device that combines the strengths
of these two technologies. A motion-sensing glove can allow
for haptic feedback and high-quality motion detection while
removing the need to grip a bulky device and can work in a
small space.

 A successful implementation of this design should achieve
a number of quantitative goals that are intended to provide a
seamless user experience. The glove must output positional data
at a rate greater than or equal to 30Hz, which roughly equates
to the frame rate of most video games. The resolution must be
capable of detecting motion of as little as 1 inch from a distance
of 13ft from the sensor. Latency must be minimized, and cannot
exceed 100ms, so as to maintain a smooth user experience. This
latency applies to both motion detection as well as the delay for
haptic feedback from in-game events. Finally, these goals will
be demonstrated in a Fruit Ninja-style arcade game. Fruit Ninja
was chosen as it is a familiar game to many people, with over 1

billion downloads, and requires a very quick swiping action [2].
This swiping action works best without having to hold a bulky
controller, and any implementation that falls short of our design
goals will lead to a rocky gameplay experience.

II. DESIGN REQUIREMENTS
The main goal of the project is to create a smooth user

experience that would be comparable to other products on the
market. Breaking this down further, the glove needs to meet
the goals specified earlier in the introduction, in addition to
other qualitative specifications. The haptic feedback motor
on the glove must be calibrated to provide a vibration effect
as strong as the rumble feature in typical game controllers.
The quantitative metrics described earlier will be sufficient
to design a game that runs smoothly, however, the game has
to effectively take advantage of the positional data to offer a
high quality experience. As such, there will be a calibration
step at the beginning of the game where a user can mark each
of the four corners that they wish to use to bound the motion
area. All of these setup steps must be simple and quick so as
to not cause unnecessary friction for the user before the game
can be played. Finally, to achieve our goal of providing a
lightweight and comfortable experience, the glove must not
have a bulky microcontroller or too much excess weight.

Team C5 - Fruit Ninja AR

Author: Arthur Micha, Ishaan Jaffer, Logan Snow: Electrical and Computer Engineering, Carnegie
Mellon University

T

18-500 Final Report: 05/14/2021

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
The main component of the glove controller (Fig 1.) is the

wearable FLORA Arduino. There is an Infrared LED on the
glove which we use for positional tracking (more details in the
next paragraph). There is also a Bluetooth module which is
connected to the FLORA in order to receive haptic feedback
from the Unity game. Depending on what this feedback value
is, the Arduino has a script to turn on the appropriate Haptic
Motor Controller (with the use of a Multiplexer), which itself
controls a Vibrating Mini Motor Disc. In this manner, the player
will receive different vibrations depending on the current game
state. Finally, the Arduino is powered by a battery holder so that
it can be wireless. This is critical for convenience and usability
since we want this controller to replace the current Augmented
and Virtual Reality controllers that exist at the moment.

In between the Hardware glove controller and the Unity
Software (Fig 2.), the IR LED on the glove will be tracked by
the IR Camera Module which is attached to a RaspberryPi. The
RaspberryPi can then transmit this positional data to Unity with
Serial Communication. It can also receive haptic feedback from
the game and send this back to the FLORA on the glove via the
Bluetooth Module that is connected to the Arduino. In our final
design, we propped up the IR camera just above the laptop, so
that the player can simply look at the screen to play the game
while this camera tracks the IR LED on the glove. The player
could point this camera anywhere they desire to play
Augmented Reality Fruit Ninja on the background that they
choose.

The Software diagram (Fig. 3) shows an arrow coming into
the block on the left. This is the positional data being sent from
the glove controller. Since Unity has Bluetooth communication,
it is able to send and receive data to/from the Arduino’s
Bluetooth module on the glove. This positional data needs to be
interpreted and converted into a mouse on the screen. From
there, Unity can simply assume that the mouse is the input for
the Fruit Ninja game. We can then do some Collision detection
with the mouse and the other objects in the game (fruits, bombs,
special fruits/bombs). For both Fruit and Bomb objects, we can
keep track of their position, their name or type of fruit/bomb,
the number of points that they are worth, and whether they have
been cut or not. The game keeps track of an array of fruits and
bombs that are on-screen and have not been cut. The game
physics in Fruit Ninja are relatively simple: the fruits and
bombs spawn at the bottom of the screen and then travel in an
arc motion, first up to the top of the screen and then back down.
The game timer is in charge of actually spawning these objects
and will spawn more over time as the game progresses. Finally,
our game will also have a Main Menu.

Fig. 1. Zoomed-In Glove Schematic.

Fig. 2. Zoomed-In RaspberryPi + Laptop Schematic

Fig. 3. Zoomed-in Software Schematic

18-500 Final Report: 05/14/2021

3

Fig. 4. Complete Block Diagram

The figure above (Fig 4.) shows the Block Diagram as whole,

which is a combination of Figures 1, 2, and 3: the glove
controller, the RaspberryPi and cameras, and the Unity Fruit
Ninja Game.

IV. INTERFACES

A. LED-Laptop Interface
The Laptop camera will capture video of the surrounding

environment and OpenCV computations will track the position
of the LED.

B. Arduino-RaspberryPi Interface
The bluetooth serial module connected to the arduino

periodically sends the IMU accelerometer readings to the
Raspberry Pi.

The Raspberry Pi sends the haptic feedback signal to the
arduino when the motors need to be triggered.

C. IR LED – RaspberryPi Interface
Infrared Cameras connected to the Raspberry Pi will track

the IR LED position in real time.

D. RaspberryPi – Laptop Interface
The RaspberryPi sends the following data to the laptop:

1. Processed IMU positional data
2. Processed IR LED positional data

The laptop sends the following data to the RaspberryPi:

1. Haptic feedback signal to trigger Arduino Motor
Controllers

E. Unity – Laptop Interface
The laptop provides Unity with the processed glove

position. Unity sends the haptic feedback signal to the laptop.

18-500 Final Report: 05/14/2021

4

V. DESIGN TRADE STUDIES
In order to ensure an ergonomic system, the glove tracking

should have a high accuracy and minimal latency. In order to
achieve this requirement, the following approaches were
considered.

A. Using colored LEDs with OpenCV:
This approach consisted of tracking the specific color of the

LED and involved resizing each frame, blurring it, converting
it to HSV and then applying a mask for the specific LED color.
The accuracy of this approach depends on the field of view of
the camera, and number of pixels used per feature. In order to
verify if this solution would meet our accuracy requirements we
used the following figure:

Fig. 5. Camera Field of View

Based on the figure, the following equations were derived to
calculate the minimum required sensor resolution:

The following values were used (assuming the system was
used on a MacBook 2020 Laptop):

Variable Value
Minimum Working Distance (meters)
[3]

0.5

Maximum Working Distance (meters)
[3]

2.5

Sensor Resolution (pixels x pixels) [4] 1280x720=928,800
Sensor Angular Field of View 54°
Pixels per feature 2
Size of LED to track (millimeters) [5] 5

Using the following fixed values, the table below

demonstrates the minimum sensor resolution required to
accurately track a 5mm LED based on variable working
distance.

Working Distance
(meters)

Linear Field of
View (meters)

Minimum Sensor
Resolution (pixels)

0.5 0.5095255779 203.8102312
1 1.019051156 407.6204623
1.5 1.528576734 611.4306935
2 2.038102312 815.2409247
2.5 2.54762789 1019.051156

5 5.095255779 2038.102312

Since the camera provides us with 1280x720 pixels all

measurements up to a working distance of 1.5 meters would be
possible, however, the accuracy along the y-axis would reduce
when working distance ⩾ 1.5 meters. This approach also
involved 3 OpenCV operations on every frame which would
take 𝑂(𝑊𝑖𝑑𝑡ℎ	 ∗ 	𝐻𝑒𝑖𝑔ℎ𝑡) runtime and lead to poor latency.

B. Inertial Measurement Unit (IMU)

The IMU consists of an accelerometer and gyroscope unit

that can be used to track the glove position in 3-D. The
accelerometer can provide 3-D acceleration measurements,
acceleration due to motion am, a gravitational acceleration
component ag and error ε [6]. This provides us with the
following equations:

Assuming initial glove velocity is v(t1), the glove velocity at

an instant of time t2 can be calculated by accumulating
acceleration changes [6].

Similarly, the displacements s(t), can be estimated by

accumulating changes in velocity.

After testing the IMU on our subsystem we found poor

accuracy as compared to the LED due to the following reasons:
• Double integration of acceleration to find new

positions. This implies that any errors in
acceleration measurements will increase
quadratically.

• Position error accumulates because the new position
depends on the initial position.

• Errors associated with IMU hardware itself.

C. Infrared LED and Receiver

These components help accurately track the position of the
glove in the x,y,z planes using the setup outlined in Figure 6
(below):

18-500 Final Report: 05/14/2021

5

Fig. 6. Infrared LED – Camera Setup

The IR LEDs provide a radiometric power of 530MW,
wavelength of 850nm. The receiver resolution of 1080x720
pixels for video provides accuracy similar to using a laptop
camera for color detection. Using IR tracking provides the
following benefits over the previously discussed approaches:

• Optical tracking is less susceptible to background
noise.

• Since the input frames will only consist of the
Infrared signal there will be 1 filter applied to every
frame. A reduction in computation requirements
will ultimately lead to a reduction in latency.

Comparison of Proposed Solutions

Metric OpenCV +
LED

IMU IR LED +
Receiver

Resolution 1280x720 - 1080x720
Accuracy Can provide

required
accuracy up to
1.5 meters
from camera

Poor
accuracy,
needs to be
recalibrated
often

Can provide
required
accuracy up
to 1.5 meters
from camera

2-D
Tracking

Yes Yes Yes

3-D
Tracking

No Yes Possible
with two
receivers

Input
Signal
Noise

If background
consists of
colors similar
to glove LED

High Low

Latency High latency,
3 filters
applied to
each frame

Low
latency,
minimal
computation

Low latency,
1 filter
applied to
each frame

VI. SYSTEM DESCRIPTION

Fig. 7. Overall system

The overall system is composed of a Unity Game, IR
Camera, Raspberry Pi and Glove. Each of these components are
used to run the following 5 subsystems.

• Bluetooth Communication Module (on Glove)
• Serial Communication Module (Glove to Laptop)
• Infrared Position Module (on Glove and

RaspberryPi)
• Game Module (Unity game run on Laptop)
• Haptic Feedback Module (on Glove)

These subsystems combine to allow for the project to achieve
the desired goals and a smooth gameplay experience.

A. Bluetooth Communication Module
Haptic feedback will be achieved via a Bluetooth Low-

Energy (BLE) connection to the Raspberry Pi. The Raspberry
Pi is the communication bridge between the computer running
the game and the glove itself. The data flows in the following
manner for the haptic feedback event - the Unity game
encounters a fruit or bomb slash, the game then calls a function
which invokes a script to send a serial message (see Section
VI.B) to the Raspberry Pi, which triggers the Raspberry Pi to
send a Bluetooth signal to the Arduino FLORA, which receives
it and triggers the rumble effect. The Adafruit BLE library is
used to handle Bluetooth communication on the Arduino Flora.
Adafruit provides drivers which are used to interface with the
FLORA Bluetooth module [7]. On the Raspberry Pi, the
standard socket library is used to interface over Bluetooth. The
protocol that drives the Bluetooth communication defines the
following messages:

• “init” – sent by the RaspberryPi, and necessitates a
response of “init:true” within 2.5 seconds if the
FLORA is in working order

• “rumble” – sent by the RaspberryPi, and expects the
FLORA to trigger a rumble effect on the glove

B. Serial Communication Module
The Raspberry Pi communicates via a serial connection with

18-500 Final Report: 05/14/2021

6

the computer. The communication protocol is as follows: For
both sides of the communication, a message is defined as a
sequence of bytes followed by a line separator. A message is a
loosely-defined and extensible sequence of bytes that controls
an effect on the receiving end of the message. One such
message is the “init\n” message sent by the PC to the Raspberry
Pi. It expects a response of “init:true\n” or “init:false\n” within
5 seconds, where a timeout implies a failure to connect. A value
of true denotes that the Raspberry Pi was successfully able to
communicate with the Arduino FLORA, and a value of false
means that the communication check failed. After initialization
has succeeded, the PC can send a message of the form
“rumble\n” to the Raspberry Pi at any time in order to cause a
rumble effect. The Raspberry Pi outputs the calculated
positional data via messages of the form “x:3, y:7, z:-9\n”. The
pySerial Python library is used to handle the sending and
receiving of these messages on both the Raspberry Pi and host
machine [8]. To facilitate communication between the game
environment and the Python script managing the serial
connection, a simple library is provided for the Unity game.
This library exposes a function Init() which starts the Python
script and connects to its socket. An event handler is registered
during the Init() process which is invoked when new position
data is available. A Rumble() method is also exposed which
sends data over the Python socket to trigger the rumble effect
on the glove.

C. Infrared Position Module
Infrared Position tracking is the main module responsible for

determining the glove’s position. It performs this via an infrared
camera on the Raspberry Pi which follows an Infrared LED
mounted on the tip of the glove. The Raspberry Pi handles the
image processing and transformation of raw image data into x,
y, and z position mappings. The calculation for mapping
coordinates from the infrared camera to game coordinates will
be performed by this module on the Raspberry Pi. This allows
for the data which is transmitted over serial to the PC to be pure
positional coordinates that can be accessed with no calculation.
The design intentionally leaves open the potential to add an
additional Raspberry Pi and camera module which tracks the IR
LED from a different perspective, allowing for 3D depth
sensing. Absent of this upgrade, the z coordinate will always
remain constant at 0.

D. Game Module
We intentionally designed our system such that it is not

tightly integrated into the game code. The game is merely
treating the glove system in a black-box way, where it does not
deal with the data processing itself. It simply expects the
positional data to arrive over a socket connection, and displays
the game objects accordingly. Therefore, a different game could
make use of our glove without re-engineering the underlying
components. The Fruit Ninja game is intended to be a
demonstration of using the glove system, and as such is
intentionally designed to not be tightly integrated. It has full
access to the glove system via the scripts and socket connection,
but the details for how position is sensed and tracked are

irrelevant to the game developer. This is crucial for portability
of the glove system. For the Fruit Ninja game implementation
specifically, the game begins by performing a setup process as
defined by our Unity API, which confirms all components are
connected. During the initialization, the player will be asked to
move their hand to draw the corners that define the border of
where they will be playing. An on-screen prompt explains this
process. After initialization has been completed, the game
begins, and motions of the player’s hand will swipe and slice
fruit which float into the screen. The game uses the Unity 2D
Colliders, Unity Rigid Bodies and Collision detection to
simulate the effect of fruit being tossed onto the screen and
sliced when the glove interacts with them [9].

E. Haptic Feedback Module
The haptic feedback module depends on the previous

modules for communication, and builds upon them to provide a
rumble effect on the glove. The rumble effect is achieved via a
simple vibrational motor disk. This motor disk is controlled by
the Adafruit haptic motor controller, which communicates with
the FLORA over I2C [10]. When the FLORA receives a
Bluetooth message to trigger a rumble, it sends an initialization
sequence followed by a simple rumble code as documented on
the Adafruit website. The power for the motor controller is
connected in parallel with the 3.3V power supply for the
Arduino FLORA.

VII. TEST AND VALIDATION
To test our system, we used three primary specifications:

Latency should be minimized and should not be larger than
100ms. Precision should be maximized such that small
movements within our interaction area are accurately detected
and tracked by the system. Motion of 10mm should be
detectable within our interaction area. And finally, the tracking
rate should be maximized, so that data is output with a rate of
at least 30Hz.

A. Results for Latency
To measure latency, we describe the following apparatus in

Diagram A:

As shown in the diagram, we have a user (“tester”) wear the

glove and wave their hand between two visible barriers.
Meanwhile, a camera is configured to record both the hand
motion as well as the screen with the cursor’s motion.
Afterwards, the film is manually examined frame-by-frame to
count the number of frames between the physical motion
reaching the barrier, and the frame in which the cursor
completes it’s motion. This number of frames is then used to
compute the latency in the following equation, where n
represents the number of frames and k is the camera’s framerate
in frames per second (FPS):

18-500 Final Report: 05/14/2021

7

Latency (ms) = 1000 * n / k
We performed 10 trials of this test, and charted the results in
Diagram B:

The average latency we achieved was 133ms. At 133ms, we are
exceeding our theoretical goal of 100ms by 33ms. We chose
100ms because it seemed to be a reasonable standard compared
to other video games. Ping latency for online video games is
under 100ms on average, which is why we chose it [11].
Although we did not achieve 100ms, our qualitative experience
suggests that 133ms is still reasonable for playing our system,
although future iterations could use this as an aspect for
improvement.
 Major factors limiting latency appear to be software-related.
The script computing the location of the LED is fast but adds
small latency. Serial communication adds minimal latency. The
Python script running on the computer that moves the cursor
appears to add some latency, because the library used for
controlling the cursor is not instant.

B. Results for Precision
We used a similar testing apparatus to test precision, as

shown in Diagram C.

In the precision test, the tester waves their hand like last time,

but now only a small distance. Also, the distance from the
sensor is recorded. The tester continues to do smaller and
smaller motions until the system becomes unable to detect the
motion (outputs the same coordinates before and after motion).
This value is recorded, and then the tester steps back a step, and
repeats the trial. Our results are documented in Diagram D.

We suggest that the reason precision was roughly stable

before a distance of 6 ft was due to the inherent difficulty of
trying to consistently move the glove small distances of <5 mm.
A future improvement to the testing setup could perform this
test with a mechanical apparatus, instead of relying on a human
hand and a ruler. Regardless, we see that within the range of 6ft
to 13ft, the precision is bounded between 5 and 20 mm, which
was acceptable for playing the game. We reach our original goal
of 10mm at distances < 7ft from the sensor.

The main factor limiting precision is the resolution of our
infrared sensor, which we discuss further in Results Section C.

C. Results for Tracking Rate
Our tracking rate was determined by the number of data

points received by the client laptop per second. Our goal from
the outset was 30Hz, which was chosen because 30 frames per
second is standard for most computer displays. Our infrared
sensor attached to the Raspberry Pi offered different
configurations that traded framerate for resolution. We chose
the option that maximized resolution, leaving the framerate at
30Hz. To verify that the framerate of the camera was the
limiting factor for tracking rate, we wrote a script on the client
laptop to count the number of data points per second, which
averaged to 30Hz. With this configuration, we were able to
reach our goal tracking rate, while maximizing the resolution of
our system.

VIII. PROJECT MANAGEMENT

A. Schedule
It is important to reiterate the primary focus of our project:

the glove controller. Thus the first half of the project, and of the
semester, is dedicated to building the glove and testing it. We
need to make sure that the Bluetooth communication between
the Arduino and the RaspberryPi works. To test this, the
Arduino must be able to send the positional data (from the IMU
and the IR LED) to Unity and receive the feedback that it sends
back based on the game state. Once all parts on the glove have
been tested and we are sure that the back and forth
communication functions correctly, then we can move onto the
Software side of the project. This includes the base game
engine, collision detection between the fruit/bomb objects and

18-500 Final Report: 05/14/2021

8

the mouse, game physics, and any other functionalities for the
Fruit Ninja game.

B. Team Member Responsibilities
Due to the circumstances that arise from this global

pandemic, this course is being taught remotely. For this reason,
it makes sense to have one member of our group in charge of
assembling the Hardware so that we don’t need to each build a
glove. So, all of the parts have been ordered to Arthur’s house,
but the three of us will meet on campus to build it. Then, all
three of us will be focused on the back-and-forth
communication between the glove and Unity (positional data
and haptic feedback). While Arthur is testing the functionality
of the glove, Ishaan and Logan will test the Bluetooth
Communication between Unity and the FLORA Arduino. Then,
Ishaan and Arthur will write Collision Detection algorithms in
Unity while Logan builds the basic game engine for Fruit Ninja.
Once we have the skeleton of the game, the three of us will
focus on the game physics and some last details for certain
game functionalities.

C. Budget
To date, we have purchased all of the components outlined

in our design, and almost all components have arrived. There
are a number of components that have been ordered and arrived,
but may not make it into the final system. This was a conscious
decision, however, since the total cost for our components was
always expected to be relatively low, so wasted budget was not
a large concern. The breakdown of components and budget is
appended in a table at the end of this report (Figure 8).

D. Risk Management
Already this project has faced a number of unexpected

deviations from the initial idea. Some strategies we have made
to reduce risk are inherent to the modular design of the
system, and our plan to frontload work on the physical aspects
of the project, while leaving software finishing touches to the
end. With our initial design, we wanted to track position via a
laptop webcam and an RGB LED. We then explored swapping
this method for an IMU sensor, however, preliminary research
showed that since IMUs can only detect acceleration, position
is achieved by a double integration. This means that any error
would be squared, so drift would be quadratic, and unsuitable
for our purposes. Therefore, our current plan is to use an
infrared LED and camera for position tracking. For another
layer of risk mitigation, if the IR system does not achieve our
required benchmarks for precision, we can add the IMU
module back on the glove to assist with position tracking,
while using the IR system to gain a reference point. We are
capable of making this pivot if necessary because the
Bluetooth module is designed to be extensible and transmit
data as needed to the Raspberry Pi receiver box.

IX. ETHICAL ISSUES
At first glance, a wearable video game controller may seem

benign to most ethical issues that are prevalent in other
engineering projects, however, there are still important
potential ramifications of the project to consider.

Perhaps most obviously, the issue of accessibility certainly
pertains to our glove. Currently, it is only designed for right-
hand-dominant people and would be awkward to use by left-
hand-dominant people, thereby putting them at a disadvantage.
This could be easily solved by future work to mirror the glove
design on a left-hand glove. Ensuring that both models are
readily accessible would be important if the design were ever
brought to market. Additionally, it would also be ideal to have
a left-handed glove so that more interactive games can be made,
which potentially use both hands. It is also important to
consider that some people lack arms or suffer from diseases that
make motion of the arms and hands difficult, such as
Parkinson’s Disease or Tourette Syndrome. These people
would also be put at a severe disadvantage if using these gloves
for interaction became commonplace. A potential solution for
accessibility would be to allow for traditional ergonomic
computer mice and other accessible computer interaction
devices to be compatible with the system and future games.

Another ethical consideration is the potential for the glove to
be used for other applications than video game interaction. For
example, the CyberGlove by CyberGlove systems is a similar
device that tracks hand movement via a glove, and their haptic
feedback glove system is marketed for, “industrial engineering,
military, and academic research applications” [12]. Should a
future iteration of our glove be used in other applications, the
ethical considerations for potential uses would need to be
discussed. Any military or government usage of the glove
would inherently incur political aspects to consider.
Additionally, as it stands, a system failure in the glove does not
have any negative externalities, however, if the glove were used
in a mission-critical application in the military, a system failure
could be catastrophic. Therefore, any future applications and
development for our glove should be framed such that these
ethical considerations are acknowledged and reflected in future
designs.

X. RELATED WORK
The main commercial product that relates to our system is

the CyberGlove by CyberGlove Systems, which is a company
with over 20 years of work in building motion and finger
tracking gloves. As such, their products are $30,000 per glove
and incorporate advanced sensors [12]. Researchers such as
Johnny Lee have successfully used the infrared camera
bundled in the Wii remote to track infrared-emitting objects in
a room [13]. This approach is similar to our plan to use an IR
tracking system. One academic approach that makes use of an
IMU system for finger tracking was explored by The Control
Systems Group in Berlin [14]. By using high quality 9DOF
IMU sensors, the researchers were able to track finger
movements within an error of +/- 3% over a 15-minute period.
The advantage of IMU approaches is the lack of a dependency
of line of sight. This is not a design constraint of our project,
but past work on stabilizing IMU position data via point of
reference dead reckoning could allow us to achieve higher
quality data.

18-500 Final Report: 05/14/2021

9

Fig. 8. Final Schedule

XI. SUMMARY

Our system was able to achieve an average latency of

133ms and minimum precision of 25mm when played from
distances up to 15 feet from the sensors. FruitNinja AR can
detect movement along the x, y axes and can be improved by
tracking movement along the z axis (distance from the glove
to the IR sensor).
 Through working on this project our group learned the
importance of planning work on large projects and
parallelizing tasks. Initially we made limited progress when
the entire team worked on the glove tracking subsystem but
found it most effective to divide work into the following –
Haptic feedback system, Tracking system and Unity
environment. We also learned to effectively account for
deviations from our original plan, and to leave appropriate
time to test and validate our decisions.

18-500 Final Report: 05/14/2021

10

XII. REFERENCES

[1] Prakash Haridas (December 2020). How Fruit Ninja
Achieved 1 Billion Downloads Over 5 Years.
Retrieved 17 March 2021.
https://www.referralcandy.com/blog/fruit-ninja-
marketing-strategy/

[2] Richard Leadbetter (5 March 2018). What Went Wrong
with Kinect? 17 March 2021.
https://www.eurogamer.net/articles/digitalfoundry-
what-went-wrong-with-kinect

[3] UNITED States Department of labor. (n.d.). Retrieved 18
March 2021
https://www.osha.gov/SLTC/etools/computerworkstati
ons/components_monitors.html

[4] Hiner, J. (2020, March 18). Apple's new 2020 MacBook
air left out one important upgrade. Retrieved 17 March
2021, from https://www.cnet.com/news/apples-new-
2020-macbook-air-left-out-a-key-upgrade-for-people-
working-from-home/

[5] Cooper, T. (n.d.). All about leds. Retrieved 17 March
2021, from https://learn.adafruit.com/all-about-
leds/what-is-an-led

[6] Trung, L. H. (2019). Retrieved 17 March 2021
Https://euroasia-science.ru/pdf-arxiv/the-
controllability-function-of-polynomial-for-descriptor-
systems-23-31/

[7] Adafruit FLORA Bluetooth LE (12 May 2015). Retrieved
17 March 2021. https://learn.adafruit.com/adafruit-
flora-bluefruit-le

[8] pySerial (22 November 2020). Retrieved 17 March 2021.
https://pypi.org/project/pyserial/

[9] Unity Physics (2020). Retrieved 17 March 2021.
https://docs.unity3d.com/Manual/PhysicsSection.html

[10] Adafruit DRV2605L Haptic Controller Breakout (17
December 2014). Retrieved 17 March 2021.
https://learn.adafruit.com/adafruit-drv2605-haptic-
controller-breakout/downloads

[11] Lag! Top 5 Reasons your Ping is so High (29 January
2020). Retrieved 14 May 2021.
https://www.hp.com/us-en/shop/tech-takes/5-reasons-
your-ping-is-so-high

[12] CyberGlove Systems. Retrieved 17 March 2021.
http://www.cyberglovesystems.com/cyberglove-iii

[13] Johnny Lee (2008). Retrieved 17 March 2021.
http://johnnylee.net/projects/wii/

[14] Christina Salchow-Hömmen et al. (19 January 2019).
Retrieved 17 March 2021.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC63392
14/

18-500 Final Report: 05/14/2021

11

Fig. 9. List of Parts for Budget

