
18-500 Final Project Report: 05/14/2021 1

Abstract—Magic Mice is a projector computer attachment

that displays a Windows computer screen on an indoor wall.
With a custom pen device that controls mouse movement and
the computer webcam video feed that detects hand location
and customizable hand gestures, Magic Mice simulates the
functionality of a smartboard. It allows the user to mimic
mouse movement and keyboard commands that are custom
mapped to hand gestures. Magic Mice is an affordable
collaboration tool for team workers in educational,
professional, entertainment settings, etc., as it allows users to
draw on sketch websites, navigate browsers and file systems,
and more.

Index Terms—Hand Gestures, Laptop, Machine Learning,
Open CV, Projection, Sensors

I. INTRODUCTION
N our increasingly online world, amplified by a pandemic,
much of our lives and communication with others has

become solely virtual. Many companies have switched to an
entirely work-from-home system, meaning all
communication happens over video calling platforms. Most
education systems have also been forced to be conducted
online, making the learning process even more complicated
for everyone, teachers and students alike. Our world today is
dependent on these communication platforms. However,
these technologies have their limitations. Zoom, for example,
has a drawing functionality that allows people to whiteboard,
brainstorm, and discuss ideas on video calls. Teachers in
wealthy areas will also use technologies like iPads, Surface
Pros, or Smartboards to write and teach to their students
through video calling platforms. However, not all
organizations can afford to supply $1000 devices to every
staff member.

With Magic Mice, the process of sharing information and
effectively collaborating in our online world will be more
accessible and cost effective. Magic Mice is a Windows
computer projector attachment that allows users to display
their screen content onto a wall in an indoor room with low
light. Users can then interact with the screen through a
custom sensory pen, which mimics mouse movement, and
hand gestures, which are custom mapped to keyboard
shortcuts. Magic Mice also includes a GUI that allows the
user to calibrate the system to work at any distance between
5-10 ft, add new hand gestures, and customize them to map
to keyboard shortcuts. and Magic Mice allows users to
interact with the projected wall via the pen with a delay of 20
ms, and via hand gesture with a delay of less than 50 ms. It
is also able to recognize up to 10 different hand gestures at

once with an accuracy of 17 out of 20 times. Each gesture
can be mapped to any valid keyboard shortcut on a Windows
operating system.

II. DESIGN REQUIREMENTS
Our design requirements are defined in Table 1 to ensure

the project’s functionality and a reasonable user experience.
The requirements are split into three main categories for each
component of our project: pen, gesture recognition, and the
projector system. The first component, the pen, is defined by
its location being calculated accurately enough such that the
mouse location, when viewed on the projected screen, is 1
inch away from the user’s actual pen location. The pen clicks
must also have a response time of 50 ms or less, and a polling
rate of 100 Hz. The combination of these requirements will
allow for a seamless mouse experience for the user. There
will be no noticeable lag and the user will be able to use the
pen to a degree of accuracy such that they can draw and write
legibly. The second component, the hand gesture
recognition, is defined by a 95% accuracy rate in recognizing
hand gestures. The user must also be able to remove hand
gestures and add custom hand gestures with the same amount
of accuracy. The third component is the projector system
itself which is defined by the projector being calibrated 5-10
feet away.

To test the pen’s location accuracy when drawing on the
projected screen, we will be using sketch.io, a sketching
website on the Chrome browser. We will proportionally
calculate the equivalent of 2 inches on the projected screen
based on the computer screen’s dimensions and projector’s
distance from the wall. We will then draw a square and a
circle using the pen and measuring the tip of the pen’s
distance from where the drawn point on screen actually was.
We will be doing this in 0.5 ft increments from 5 to 10 ft. To
test the pen’s button click response time, we will be utilizing
timing code that measures from the point in which the button
itself was clicked on the pen device, and the point in which
the associated command was executed, such as the PyWin32
mouse command or the calibration code. To test polling rate,
we have the program count how many Arduino IMU
readings it received through PySerial in a fixed time interval.
To test response time, we have the Arduino record a
timestamp and then send a piece of data to the computer. A
python program will be waiting to receive this piece of data
and upon receiving it, will send another piece of data back to
the Arduino. The Arduino records another timestamp upon
receiving this data and taking the difference between the first

Magic Mice

Author: Bradley Zhou, Jade Wang, Jenny Han: Electrical and Computer Engineering, Carnegie
Mellon University

I

18-500 Final Project Report: 05/14/2021 2

and second timestamps will give us an upper bound on the
round trip time of communication. Dividing by two will give
us a rough estimate of response time.

We’ll be testing our gesture recognition algorithm by
verifying our computer camera input maps to the correct
hand expression. We’ll be splitting our original marked data
set into a 20 to 80 for a test to train dataset ratio. We will be
running the trained model on a 20% test data set and strive
for an accuracy of >85%. As for new hand gestures that
aren’t defined as default gestures already, we’ll verify that
the system is correct 17 out of 20 times. We will do this by
taking 10 videos of 10 different people making the hand
gesture. These videos will be inputs into the algorithm and
would need to be matched correctly 9 times. We will repeat
this for 10 hand positions outside of the default. The process
of 10 different people doing the same hand movement for the
test will give enough variation to test the accuracy of the
system.

As for our projector, we’ll be testing all distance ranges
from 5-10 ft in 0.5 ft increments to ensure calibration works
at all reasonable distances. We’ll be making sure that a 2px
thick vertical line has clearly depicted edges on the projected
wall. 2px was chosen because it was thin enough to
potentially be blurry in a low-resolution projection screen but
thick enough such that the user would be able to see it. If the
user does not see this 2px stroke, then it will be difficult to
see.

Component Metric

Pen - 1 inches when used with a projector
- 50 ms button clicks response
- 100 Hz polling rate

Gesture Recognition - 85% accuracy
- Add/remove new gestures

System/Projector - Calibration for distances of 5-10 ft

TABLE I. Design Requirements

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. Overall System Block Diagram

Our system takes in two main methods of human input,
hand gestures and control of a custom sensory pen. The
system is also controlled via calibration and gesture name
and macro input in the GUI. As shown in Figure 1 above, the
sensory pen is made of an external power source and several
Arduino parts that are used to sense inputs. There are three
push button switches. Two are for left and right mouse clicks,
and the third one doubles as orientation calibration and

gesture input. There is a BNO055 IMU to sense
accelerometer and gyroscope coordinates for our pen
tracking algorithm, and a HC-05 Bluetooth module that
communicates all of the sensor data to the Windows
computer, where all data processing is done.

Fig. 2. GUI System Flow

The sensor data is initially read as Arduino data every 200
ms and communicated to the computer through an HC-05
Bluetooth module. This data is read in through Arduino Code
that aggregates all of the sensor data and sends it to the pen
tracking software as a dictionary of Python values. This
software also takes in hand location coordinates from the
Media Pipe Hand Detection algorithm. This is an additional
input into our design of the pen tracking algorithm since the
design report. Using these two inputs, the pen tracking
software’s algorithm then takes a weighted approach to
output respective mouse control of location, left, and right
click button actions as well as calibration and gesture input
events. Additionally, hand gesture image inputs are captured
through the Windows webcam video feed. The same Media
Pipe Hand Detection algorithm outputs isolated frames of the
user's hand and sends it to the gesture recognition algorithm.
This algorithm processes these inputs, detects which hand
gesture is being displayed, and maps them to their respective
keyboard shortcuts. Pen mouse control outputs and keyboard
shortcuts are effectively executed on the Windows computer.
These actions are then reflected onto the projector screen
through a physical wire connected to the computer.

The projector system is calibrated through a Windows
GUI application. Before the custom sensory pen can be used,
the projector must be turned on and placed at the desired
distance away from the wall the laptop’s screen will be
projecting to. The calibration mode is activated through
clicking on one of the interface buttons on the GUI. The
program will then display a solid color (default red) full
screen on the projector. The webcam should be pointed
towards the projection from the projector and will use
OpenCV thresholding to determine what portion of the
webcam’s view corresponds to the projection from the
projector. This allows us to more accurately map the user’s
hand position.

Furthermore, the GUI has a hand gesture customization

18-500 Final Project Report: 05/14/2021 3

mode in which the user can set custom hand gestures to map
to any keyboard shortcut. As shown in Figure 2, once the
customization mode is entered via another interface button,
the user can delete any of the listed hand gestures, as well as
type in a new name and keyboard shortcut should they

choose to add one. Once they click the ‘start’ button, the GUI
will automatically take them into the training mode of the
gesture recognition software. The user must make their
custom hand gesture for approximately 5 seconds while
holding the gesture input push. The model will then retrain
with the updated gesture list.

Figure 3. Enlarged Overall System Block Diagram

IV. DESIGN TRADE STUDIES

A. Arduino Model
The model that we ultimately decided to use is the Arduino

Pro Micro. We considered various models. We first looked
at the de facto standard for many Arduino projects: the
Arduino Uno. The limiting feature of this board is the fact it
uses the ATmega328 microcontroller. This microcontroller
does not have any native USB capability. USB capability is
important because it allows the Arduino to be recognized as
a mouse/keyboard input device. This gives us great
flexibility and more options in actually creating the mouse
movement events to pass through to the operating system.
While the Uno does not support USB capability, the Arduino
Leonardo and its ATmega32u4 does. In fact, all of Arduino’s
boards with the ATmega32u4 microcontroller have this
desired functionality. Though the Leonardo has all the
desired technical functionality we needed, it did not have the
ergonomic qualifications we were looking for. Having a
width of 53.3 mm, the Leonardo was much too wide to
comfortably shape into a pen/stylus form. The width of an
average pencil is 6 millimeters. Of course, our pen/stylus will
be wider than a pencil but holding a component the size of
nine pencils in one’s hand is excessively cumbersome. We
then looked to the Arduino Pro Micro. The Arduino Pro
Micro has the same technical specs as the Arduino Leonardo;
they both use an ATmega32u4 microcontroller running at 16
MHz, have 32 KB of memory, and 2.5 KB of RAM. Having
all the same technical functionality, including the desired
USB capability in a much more compact size and a width of
only 18 millimeters checked all the boxes we needed for a

main board. The width is only three pencils, which sits
significantly more comfortably in the average person’s hand
compared to the wider Arduino Leonardo.

B. Accelerometer/Gyroscope Model
We were considering two models of accelerometer and

gyroscope sensors -- either the BNO055 or the MPU6050.
Both were sourced from Adafruit. The BNO055 is more fully
featured, having an accelerometer, a gyroscope, and a
magnetometer compared to the MPU6050 having just an
accelerometer and gyroscope. Additionally, the BNO055
reports multiple forms of sensor data (calibrated,
uncalibrated, raw ADC values). We considered the
MPU6050 because it had
a simpler interface and is significantly cheaper, which is one
of the points we wanted to emphasize about our project.
Ultimately, we decided on the BNO055 because cost is
secondary relative to the other aspects of our project and
having the most data to work with will help immensely in
development. Our algorithms require us keeping track of
various different pieces of information about the pen. The
BNO055 was more complex but it had a wider variety of data
points for us to work with. The BNO055 reports absolute
orientation, which is fundamental to a lot of our calculations.
Some of the additional forms of data reporting already
combine some of the readings in ways that are helpful to
calculating these pieces of information.

C. Form Factor
The form factors we considered the most are a pen/stylus

shape (like an apple pencil) or a glove with the user’s fingers
being the main point of tracking. The glove is a more novel
and unique design that is more ergonomic as it allows the
user to have his/her hands/fingers fully relaxed compared to
having to actually stress muscles to grip a pen, which could
lead to fatigue. A pen shape is more classic and there are
many preexisting analogous examples, such as an apple
pencil or a smart board pen. We decided to go with a pen
shape due to the simpler implementation, the lack of ubiquity
for a glove shape (people have different sized hands), and the
fact that a pen can allow for more natural drawing click/drag
functionality, which is useful in scenarios such as drawing.

18-500 Final Project Report: 05/14/2021 4

D. Pen Tracking Software Architecture
One of the biggest points of contention we had discussed

was how to organize the software functionality. We were
considering three different architectures for our pen tracking
software. The high-level ideas we had to work around are the
reading of the accelerometer sensor data, the processing of
that data to make a decision on where to move the mouse,
and the actual translation of that decision to an OS mouse
movement event. For each of these pieces of functionality,
we had to decide whether we wanted the Arduino and its
microcontroller itself to be responsible or the user’s
computer and its much more powerful CPU to be
responsible. The three options we considered are listed
below:

Option 1: Have the Arduino itself perform all of these
functions. The Arduino will internally keep track of the
cursor’s position, read the sensor values directly from the
accelerometer attached to it, update the internal
representation of the cursor’s position, and directly translate
that into a mouse movement event that is then sent directly
to the user’s computer via USB.

Option 2: This option is similar to the first option except
for the fact we will have two Arduinos instead of one. The
purpose of the second Arduino is to act as a Bluetooth
receiver. One Arduino will be used as the pen/stylus, and it
will wirelessly (via Bluetooth) send its sensor data to the
second Arduino. The second Arduino will be plugged into
the user’s computer via USB and will be the one that
internally keeps track of the cursor’s position as well as using
the sensor data received over Bluetooth to update the
cursor’s position in real time. This Arduino also has the
responsibility of turning the cursor position movements and
translating them into OS events that are then sent via USB.

Option 3: We only have one Arduino, and its only
responsibility is to send sensor data over to the user’s
computer via Bluetooth. The user’s computer will be running
a user space program that will perform the functionality of
keeping track of the cursor’s position, receiving the
accelerometer data, using the data to update the cursor’s
position, and finally translating that to an OS event to move
the mouse.

Option 1 was the first one that we considered but we had
to pivot away from it due to the restriction of being limited
to wired USB. While it leads to a logical separation of
concerns (all the code related to the pen movement is run on
the pen itself) and supports the idea that the pen itself is a
standalone input peripheral, it did not give us the Bluetooth
wireless functionality we specified in our requirements.
Option 2 was what we considered next. This architecture is
commonly seen among wireless mice and keyboards that
have a USB dongle required to use. This still gives us the
benefit of having a logical separation of concerns but has a
higher development complexity. There are more points of
failure with this approach. Another downside to this method
is the higher response time due to having another point of
connection for data communication. Option 3 has multiple
benefits. The biggest benefit is that the user's computer

would be the system running most of the more intensive parts
of the code. Computers (on the low end) have a 2.0 GHz
CPU, which is a clock speed of over 100x greater than the
Arduino's microcontroller. Given that we are aiming for a
125 Hz polling rate, this means that each update (reading in
sensor values and updating cursor position) will have to be
done in 8ms. Having the most powerful CPU possible
running the hot path of the code will ensure that we can reach
this polling rate requirement. A CPU running at 2.0 GHz
means that each update will have

 2 * 1024 * 1024 * 1024 / 125 = 17.18 M (1)

17.8 million clock cycles to perform all the calculations
necessary. Additionally, because we have multiple
subsystems at place (pen tracking and gesture recognition),
consolidating all the code to run on the same platform is also
a benefit, though this benefit is more subjective and one that
we decided we valued. Ultimately, we decided to proceed
with option 3 due to the aforementioned benefits.

E. Gesture Recognition Machine Learning Library
We first considered using OpenPose, a CMU developed open
source tool to detect body positions in real-time. We
considered this because one of our team members has
experience working with the tool in research projects and
supports our real-time requirements. As we researched more,
there were some roadblocks. First, OpenPose is very
computationally intensive, requiring a powerful NVIDIA
GPU to efficiently work in real-time. Given that our platform
is meant to run on laptops, our workaround would have to be
sending the video feed over to a remote machine that is
running OpenPose, which although possible, can have
reliability issues depending on the user’s network. Another
issue is that OpenPose exists more as a standalone tool and
integrating its output into ML models to actually detect
gestures is unintuitive. Given all these limitations, we looked
to OpenCV next, which is more lightweight. Upon research,
we discovered that while OpenPose provides much more
detail, the extra detail is not necessary, as gestures can be
reduced to shapes that can be extracted from grayscale
images. OpenCV sacrifices data detail for much more
portability. OpenCV also provides a simpler interface for
integrating with machine learning: reducing the image to just
grayscale sequence of pixels and passing that information
through to neural networks is a very common approach for
recognition models (handwriting shape, etc). We ultimately
decided these features were more important, so we moved
forward with OpenCV.

V. SYSTEM DESCRIPTION

Hardware System Description

A. Arduino Pro Micro

The Arduino Micro serves as the main microcontroller
board of the pen that connects all of the Arduino sensors and
components together. It was chosen for its small and
manageable size and laptop mouse compatibility. The

18-500 Final Project Report: 05/14/2021 5

Arduino Micro is based on the ATMega32U4 board with
built-in USB communication, allowing the Micro to appear
to a connected computer as a mouse.

B. BNO055
The BNO055 is an accelerometer, gyroscope,

magnetometer, and orientation sensor. It was chosen for its
Arduino compatibility and manageable size. The sensor also
encapsulates four sensor functionalities in one. We
experimented with all the sensor readings to find an accurate
algorithm for distance. Finally, we came up with one that
combined an accelerometer, gyroscope, and OpenCV
information. The accelerometer is a 3-axis accelerometer that
gives us coordinates about which direction is down through
measurement of gravity. The gyroscope measures data on
how fast the sensor is being twisted around. This
combination of these data types allows for calculation of
how our sensor pen is moving through space.

C. Buttons
The pen has three switch push buttons in use. The button

on the top side of the pen mimics the ‘left click’ on a
computer mouse. The button in the middle of the pen
mimics the ‘right click’ on a computer mouse. The button
on the bottom is calibration mode for the projector distance.
For debugging purposes, clicking top and middle buttons
releases the cursor control from the pen to the computer
mouse. All clicks of the buttons and push/hold of the buttons
are detected.

D. HC-05
The HC-05 Bluetooth module was selected as the mode of

communication between the pen and software program. The
Bluetooth module aggregates all of the sensory data through
an Arduino script and sends all of the data to the laptop via
Bluetooth communication. Bluetooth served as a simple way
for us to avoid using wires for a better user experience. This
specific module was also selected for its Arduino
compatibility and small size. We found later on that the HC-
05 was incompatible with Mac, so we switched to using a
Windows computer.

Software System Description

Python and C++ will be the main languages we will be
using for our project. This is because Python has support for
all the features we plan to implement. For the pen output, our
Python program will read in the Bluetooth data using the
PySerial library, a fairly commonly used Python Bluetooth
API. The system will need to decipher what to do based on
the click type, such as hover, long press, scroll, click, and
perform that action at the correct corresponding location of
the computer. The system also will use OpenCV and
machine learning to detect hand gestures. These hand
gestures will map to customizable user macros. After this,
the system will update the projector to update the display that
the user sees. Figure 4 describes the system specification for
the software component of our design.

Figure 4. Software system specification overview

A. Gesture Recognition
The gesture recognition software will be used to input the

user’s webcam images to specific gestures. We will do this
by using OpenCV to identify hand gestures. Additionally, we
will be using Keras and Tensorflow to make use of
convolutional neural networks, a common type of machine
learning for mapping of image inputs to an output variable,
which in our case will be hand positions. Then, these hand
positions map to user macros, such as browser page refresh,
or going back a page. These will also be implemented with
the same PyAutoGUI library.

B. Pen
Finally, the pen will also have a software component as

this is where the processing of our pen’s sensor data to output
location is done. For the pen, we will have Arduino code
written in C++ that aggregates all of the collected data input.
This includes left and right button clicks, accelerometer data,
and gyroscope data. The HC-05 module will then take all of
the data and send it to the computer via Bluetooth. Our
program then uses a weighted approach of several inputs to
output the pen’s location. It considers the inputs of the hand’s
location detected by the same MediaPipe library used in the
gesture recognition algorithm, the location of the tip of the
pen relative to the center of the hand computed with
gyroscope data, and distance data computed from applying a
Kalman filter and double integrating the accelerometer data.

VI. TEST AND VALIDATION

A. Pen buttons/IMU/Bluetooth

These were tested and validated by sending the
IMU/button state data over to the computer over Bluetooth
and writing a python program to read in the data and see if it
matched with the data that was sent.

B. Pen tracking algorithm and calibration

These two components were tested concurrently because
they had dependencies from each other; the algorithm had
variable scale parameters that would be changed depending
on the resolution of the projector/screen as well as the
projector/screen size. We tested these functionalities by
running our calibration and then making general pen
movements with the projector at multiple different distances.
We then looked at the error between the location of the tip of
the pen and the location of the cursor and measured them to
see that they did not exceed an acceptable error range (which
we decided to be 3% of the screen size). For example, if the
projector screen was 60 inches diagonally, we wanted the
cursor to be no more than 2 inches away from the tip of the

18-500 Final Project Report: 05/14/2021 6

pen.

C. Polling rate and response time

To test polling rate we have the program count how many
Arduino IMU readings it received through PySerial in a
fixed time interval. To test response time, we have the
Arduino record a timestamp and then send a piece of data to
the computer. A python program will be waiting to receive
this piece of data and upon receiving it, will send another
piece of data back to the Arduino. The Arduino records
another timestamp upon receiving this data and taking the
difference between the first and second timestamps will give
us an upper bound on the round trip time of communication.
Dividing by two will give us a rough estimate of response
time.

D. Gesture recognition
To test gesture recognition, we trained three default

gestures (open hand, fist, thumb right) and proceeded to try
and use that gesture 20 times for each of the default gestures.
We then count how many times that gesture was correctly
recognized by our model.

VII. PROJECT MANAGEMENT

A. Schedule

Figure A1 of the appendix shows our schedule for the
project. In this schedule, we broke down our tasks to smaller
pieces. We left time buffers in the schedule for error and
testing. Also, we tried to combine simultaneous elements at
the same time.

B. Team Member Responsibilities

There are a few key hardware and software elements in the
design of Magic Mice: the pen, the hand gesture recognition,
and the overall system. Since these three elements can be
done mostly independent of each other and then fitted
together at the end, we decided to split tasks this way. Each
team member is responsible for the capability of a specific
section, the success of that element is checked by another
team member, and everyone helps in the case the team
member has issues bringing the design to fruition. This way,
a team member should be a specialist in a specific area of the
project. Since hand expressions are the more complex
element of the project, we split the testing more finely for
this element.

Jade worked on the gesture recognition software. She
helped create the model for the gesture recognition and
training mode of the project. She did research on how to best
go about the gesture recognition software. Finally, seh tested
the gesture recognition and pen components.

Jenny was in charge of the overall system requirements and
GUI. This means she helped make sure all the input
elements communicate with each other and update the screen
accordingly. She also relayed information to the projection
on the wall. Jenny also helped automate the gesture
recognition algorithm and made it smoothly link to our GUI.
Jenny worked on the pen location tracking as well by testing

different solutions, researching accelerometer-based
distance calculation papers, and testing the pen accuracy.

Bradley was in charge of assembling the hardware
elements for the pen and writing the pen tracking and
calibration software. He was also in charge of testing that
the system updates according to inputs given. Also, he was
in charge of testing hand expressions.

C. Budget

The spreadsheet of materials and costs can be found at
the end of the report in Figure A2 of the Appendix.

D. Risk Management
We anticipate that parts will be broken as we iterate on our

hardware design. Thus, we have ordered several backup parts
in case some break. Additionally, we will be using version
control and Github to manage our iterative changes and
collaborative efforts.

VIII. ETHICAL ISSUES

Like most emerging technologies, the older generation
that is not as technology literate might not be able to use our
product to its fullest capacity. Though we tried to make the
functionality as intuitive as possible (gestures and pen), the
intuition is only developed by people who have experience
using other forms of technology. If the user was disabled and
had vision impairment, a motor control disability, or etc, it
would be challenging to use this product as well. This project
depends heavily on being able to perform the hand gestures
and fine motor skills to control the pen.
Another ethical issue would be misapplication with people
who are not familiar with technology and have issues
learning new technology. People who aren’t as tech savvy
might have issues because it would require some knowledge
of how to set up a projector, how to use a OpenCV
application, and how to interact with a computer in a new
way (pen + gestures). If someone already was not good with
computers, our project would be harder for them to use. This
means it is not as friendly socioeconomically or for people
with different educational backgrounds.

Additionally, groups of people that we are less exposed to
would most likely be vulnerable to misapplication. Since one
of the technologies that we are using, Computer Vision,
depends on a machine learning model that uses real-time
camera input of a human body, we could possibly train the
model on a dataset that is not diverse enough. Thus, it is
possible that it would not work on certain groups of people.

Finally, another ethical issue would be hacking or
performing incorrect user macros. If the algorithm was
incorrectly determining hand gestures and performing
unexpected macros in a projected screen on the wall, it could
be embarrassing or inconvenient to the user who is
presenting to other people. Additionally, if the macros were
hacked to perform dangerous terminal commands it could be
dangerous to the safety of the user’s laptop information.

In the future, the ideal data we could collect would be
habits of the user’s movement. This way, we could use that

18-500 Final Project Report: 05/14/2021 7

information to predict the actions of the user before they did
anything. With this, it would improve the UI because the
system could act on these predictions and save the user effort.
Because we have only tested this on our teammates, it would
be hard to collect enough data to make this a reality. Because
we don’t have this information, we are basing actions off of
the current movement of people rather than predictions.
Otherwise, if we had enough data of other people's behavior,
we could create a prediction model with machine learning.
The ethical issue in this case would be privacy. A user can
feel uncomfortable by an algorithm memorizing and
categorizing their movements. If an algorithm were able to
do this, then they could predict what mood the user was in or
anticipate their next move. This could inform corporations
when the best time to advertise something to a user would be
or otherwise manipulate the user’s decision making when
they are most susceptible to it.

IX. RELATED WORK

Two analogous products that exist are SmartBoards and
Microsoft’s Surface Hub. The main benefits our project has
over these competing products is cost, modularity, and
portability. SmartBoards are on the order of $2500+ and
Surface Hub’s are on the order of $7000+. The only required
hardware for our project is a projector, a webcam, and the
pen itself. Users have the flexibility to use a projector that is
as good or bad as they would like; projectors can be available
for less than $100. Many users already have webcams built
into their laptop devices, which is the most common use case
with our project. The pen components themselves cost about
$75, but that cost has the potential to be reduced by choosing
components manufactured by cheaper electronic retailers.
This is a significantly cheaper price for having a similar
feature set of being able to use a pen/finger as an input
device. The user also has the freedom to choose more
expensive and featured projectors/webcams if they so desire
to have a better experience. Because our display relies on a
projector as opposed to a fixed screen, our project is
significantly more portable as well. While our product is, of
course, not as polished as those professional products, our
main focus wasn’t to try and replicate all the features; our
focus was to replicate the most important features at a
significantly lower price point while also providing room for
user flexibility.
In terms of the pen tracking algorithm, we were able to look
through multiple research articles and online resources about
how others attempted to calculate distance through
accelerometer and gyroscope readings. In terms of research
articles, we found a few alphabet matching IMU calculations
as well as methods to find the location through filters and
double integration. Other than the papers, we also found a
SciKit Kinematics library that took IMU data and translated
it into distance calculation. Although we didn’t specifically
implement any of these resources, we used what we learned
from all of these online resources to inform our software
design for the pen location tracking algorithm.

X. SUMMARY
In summary, our goal was to make collaboration among

groups more accessible. Magic Mice is able to display a
Windows computer screen onto any wall variable distance
and calibrate accordingly. The user will be able to passively
and actively interact with the projection using the pen or
with customized gestures.

Being able to dynamically change the interface of a
screen gives many benefits to an online world. From
educators to entertainers to professionals, the Magic Mice
allows people to create and share on their own terms.

XI. GLOSSARY OF ACRONYMS

IMU – Inertial Measurement Unit

XII. REFERENCES
[1] Y. Wang, H. Li and G. Shan, "Acquiring the Distance Data with
Inertial Measurement Unit in a Wearable Device for the Training of
Hammer Throwers," 2018 14th International Conference on
Computational Intelligence and Security (CIS), 2018, pp. 492-495, doi:
10.1109/CIS2018.2018.00117.
[2] Jamil, Faisal, et al. “Toward Accurate Position Estimation Using
Learning to Prediction Algorithm in Indoor Navigation.” Sensors, vol. 20,
no. 16, 7 Aug. 2020, p. 4410., doi:10.3390/s20164410.
[3] Zrenner, Markus et al. “Comparison of Different Algorithms for
Calculating Velocity and Stride Length in Running Using Inertial
Measurement Units.” Sensors (Basel, Switzerland) vol. 18,12 4194. 30
Nov. 2018, doi:10.3390/s18124194

18-500 Final Project Report: 05/14/2021 8

XIII. APPENDIX

Fig. 2. GUI System Flow

Fig. 4. Software system specification overview

18-500 Final Project Report: 05/14/2021 9

Fig. A1. Gantt Chart

Fig A2. Budget

