
18-500 Final Project Report: 03/17/2021 
 

1 

 
Abstract—Magic Mice is a small projector laptop attachment 

that will display a laptop screen on a wall from 5-15 ft away 
and includes two main interactions for the user and the 
computer: a linked pen and a series of customized body 
gestures. This will simulate the functionality of a regular laptop 
but as a “tablet on the wall” and the user can interact with the 
laptop’s wall projection as if it was a tablet. Additionally, the 
user has a series of customizable hand gestures that will map to 
Chrome macros such as refresh or previous page. This makes 
Magic Mice an affordable collaboration tool for team workers 
anywhere. 

 
 
Index Terms—Hand Gestures, Laptop, Machine Learning, 
Open CV, Projection, Sensors 

I. INTRODUCTION 
HE primary goal of Magic Mice is to turn a laptop screen 
into an interactive wall projection that will enhance the 

user’s experience and engagement online. Named Magic Mice, 
this is a small projector laptop attachment that will display the 
screen contents on a wall from 5-15 ft away and include two 
main interactions for the user and the laptop: a linked pen and a 
series of customized body gestures. Being able to dynamically 
size an interface and interact with a display gives users the 
freedom to customize their online experience in a way that best 
fits their needs, whenever and wherever.  
  With the pandemic, most education systems have been forced 
to be conducted online which only makes the learning process 
more complicated. Teachers in more wealthy areas will use 
SmartBoards or a tablet to physically draw and write with a 
SmartPen and then screen share that to whatever video calling 
platform they are on. However, not all schools can afford 
supplying these devices to every staff member. 
  Thus, Magic Mice solves two problems. The first is natural 
collaboration between teams and the second is price point. 
Magic Mice will allow users the collaborative experience that 
the Smartboard competitors have and the portability of a screen 
sharing tablet. Magic Mice will report the screen contents onto 
any flat wall and the user will be able to interact with the 
projection using a pen and hand gestures. This will update the 
system and allow the user to collaborate with anyone freely. 
Finally, by only needing a pen device and projector for 
hardware pieces, the device is much cheaper than a Smartboard 
or tablet, which can cost up to 8000$ and 1000$ respectively. 
This makes Magic Mice a more appealing collaboration tool. 

 

II. DESIGN REQUIREMENTS 
To meet our design requirements defined in Table 1, we will 

have a series of systematic unit tests between each branch of 
code logic to ensure that all parts are reaching the metrics that 
we set for them. Here, I will highlight how each software 
component is being tested. 
  For our pen component, we will be testing the gyroscope and 
accelerometer input data and verifying that the data transmitted 
through the Bluetooth is the correct output dictionary of values 
that we want. We’ll be setting 100 locations on the screen to 
test, a grid of 10x10 points evenly dividing the screen. The pen 
will be able to click within a 95% accuracy rate and click within 
a 5 pixel range from the actual point. This accuracy rate was 
chosen to leave room for error but high enough such that it does 
not affect the user experience. 5 pixels was chosen because that 
is a reasonable sizing for a web button. For the physical buttons 
on the pen, we’ll be testing single clicks on both buttons, a click 
and hold for drag, and hovering. This will be done by tracking 
the pen movement over tracing a drawing on sketch.io, a 
sketching website on Chrome.  

For the hand expressions, we’ll be testing our gesture 
recognition algorithm by verifying our laptop camera input 
maps to the correct hand expression. We’ll be splitting our 
original marked data set into a 20 to 80 for a test to train dataset 
ratio. We will be running the trained model on a 20% test data 
set and strive for an accuracy of >95%. As for new hand 
expressions that aren’t in the library already, we’ll verify that 
the system is correct 9/10 times. We will do this by taking 10 
videos of 10 different people doing the hand position. These 
videos will be inputs into the algorithm and would need to be 
matched correctly 9 times. We will repeat this for 10 hand 
positions outside of the default. The process of 10 different 
people doing the same hand movement for the test will give 
enough variation to test the accuracy of the system. 

As for our projector, we’ll be testing all distance ranges from 
5 - 15 ft in 1 ft increments to ensure calibration works at all 
reasonable distances. 15 ft was chosen as the max distance 
because it is slightly greater than the midpoint of an average 
room. Thus, users could use the projector at any point in the 
room depending on orientation. We’ll be making sure that a 2px 
thick vertical line has clearly depicted edges on the projected 
wall. 2px was chosen because it was thin enough to potentially 
be blurry in a low resolution projection screen but thick enough 
such that the user would be able to see it. If the user does not 
see this 2px stroke, then it will be difficult to see. 

 
 

Magic Mice 
Author: Bradley Zhou, Jade Wang, Jenny Han: Electrical and Computer Engineering, Carnegie 

Mellon University 

T 



18-500 Final Project Report: 03/17/2021 
 

2 

 
TABLE I. Design Requirements 

 

Component Requirements 

Pen  - >95% accuracy for location (x,y,z location 
and x,y,z velocity) 
- >95% accuracy for button to click conversion 

Gesture Expression - >95% accuracy for model on specific hand 
motions (fist, palm, OK hand sign) 
- >95% accuracy for custom hand motions 
- <100 ms to classify hand motion 

System (GUI) - Customize 5 gestures 
- Default 3 are fist, palm, OK hand sign 

System (Software) - Mouse events translate at the correct spot on 
the computer 
- <200ms latency between click and update 
- Chrome browser interactions and Desktop 
file manipulation 

 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Our system takes in two methods of human input, hand 

expressions and control of a custom sensory pen.  
 

 
Fig. 1. Overall System Block Diagram 
 

As shown in Figure 1 above, the sensory pen is made of an 
external power source and several Arduino parts that are used 
to sense inputs. Two push button switches for left and right 
mouse clicks, an BNO085 to sense accelerometer and 
gyroscope coordinates for pen location, and the HC-05 
Bluetooth module. The HC-05 Bluetooth module 
communicates all of the sensor data to the Mac laptop where all 
data processing is done. 

The sensor data is initially read as Arduino data every 200 m, 
and communicated to the laptop through an HC-05 Bluetooth 
module. This data is read as a dictionary of Python values by a 
pen tracking software. This software outputs respective mouse 
control of location, left, and right click button actions. 
Additionally, hand expressions image inputs are captured 
through the Mac laptop’s built-in camera. A gesture recognition 
software processes these image inputs and maps them to their 
respective user macros. Pen mouse control outputs and user 
macros are effectively executed on the Mac laptop. These 
actions are then reflected onto the projector screen through a 
physical wire connected to the laptop. 

 

Fig. 2. GUI System Flow 
 

The projector system is calibrated through a Mac GUI 
application. Before the custom sensory pen can be used, the 
projector must be turned on and placed at the desired distance 
away from the wall the laptop’s screen will be projecting to. 
The calibration mode is activated through an interface button as 
shown in Figure 2. The pen is placed on 9 different locations 
around the border of the projected wall area shown in Figure 3 
-- all 4 corners of the area, the center of the area, and the middle 
of each surrounding side. 

Additionally, the GUI has a hand customization mode in 
which the user can set custom hand gestures to map to any 
keyboard shortcut. As shown in Figure 2, once the 
customization mode is entered via another interface button, the 
user will must make their first custom hand gesture for several 
seconds to train the model to recognize the gesture. The user 
will then have an option to exit the interface mode and or 
continue customizing the next hand gesture. This process will 
occur 3 more times for a total of 5 customizable gestures. 

 

 
Fig. 3. Callibration points for projected screen on wall 



18-500 Final Project Report: 03/17/2021 
 

3 

IV. DESIGN TRADE STUDIES 

A. Arduino Model 
The model that we ultimately decided to use is the Arduino 

Pro Micro. We considered various models. We first looked at 
the de facto standard for many Arduino projects: the Arduino 
Uno. The limiting feature of this board is the fact it uses the 
ATmega328 microcontroller. This microcontroller does not 
have any native USB capability. USB capability is important 
because it allows the Arduino to be recognized as a 
mouse/keyboard input device. This gives us great flexibility and 
more options in actually creating the mouse movement events 
to pass through to the operating system. While the Uno does not 
support USB capability, the Arduino Leonardo and its 
ATmega32u4 does. In fact, all of Arduino’s boards with the 
ATmega32u4 microcontroller have this desired functionality. 
Though the Leonardo has all the desired technical functionality 
we needed, it did not have the ergonomic qualifications we were 
looking for. Having a width of 53.3 mm, the Leonardo was 
much too wide to comfortably shape into a pen/stylus form. The 
width of an average pencil is 6 millimeters. Of course, our 
pen/stylus will be wider than a pencil, but holding a component 
the size of nine pencils in one’s hand is excessively 
cumbersome. We then looked to the Arduino Pro Micro. The 
Arduino Pro Micro has the same technical specs as the Arduino 
Leonardo; they both use an ATmega32u4 microcontroller 
running at 16 MHz, have 32 KB of memory, and 2.5 KB of 
RAM. Having all the same technical functionality, including 
the desired USB capability in a much more compact size and a 
width of only 18 millimeters checked all the boxes we needed 
for a main board. The width is only three pencils, which sits 
significantly more comfortably in the average person’s hand 
compared to the wider Arduino Leonardo 

B. Accelerometer Model 
We were considering two models of 

accelerometer/gyroscopes - either the BNO085 or the 
MPU6050. Both were sourced from Adafruit. The BNO085 is 
more fully featured, having an accelerometer, a gyroscope, and 
a magnetometer compared to the MPU6050 having just an 
accelerometer and gyroscope. Additionally, the BNO085 
reports multiple forms of sensor data 
(calibrated/uncalibrated/raw ADC values). We considered the 
MPU6050 because it would have been simpler to work with as 
well as is significantly cheaper, which is one of the points we 
wanted to emphasize about our project. Ultimately, we decided 
on the BNO085 because cost is secondary relative to the other 
aspects of our project and having the most data to work with 
will help immensely in development. 

C. Form Factor 
The form factors we considered the most are a pen/stylus 

shape (like an apple pencil) or a glove with the user’s fingers 
being the main point of tracking. The glove is a more novel and 
unique design that is more ergonomic as it allows the user to 
have his/her hands/fingers fully relaxed compared to having to 
actually stress muscles to grip a pen, which could lead to 

fatigue. A pen shape is more classic and there are many 
preexisting analogous examples, such as an apple pencil or a 
smart board pen. We decided to go with a pen shape due to the 
simpler implementation, the lack of ubiquity for a glove shape 
(people have different sized hands), and the fact that a pen can 
allow for more natural drawing click/drag functionality, which 
is useful in scenarios such as drawing. 

D. Pen Tracking Software Architecture 
One of the biggest points of contention we had discussed was 

how to organize the software functionality. We were 
considering three different architectures for our pen tracking 
software. The high level ideas we had to work around are the 
reading of the accelerometer sensor data, the processing of that 
data to make a decision on where to move the mouse, and the 
actual translation of that decision to an OS mouse movement 
event. For each of these pieces of functionality, we had to 
decide whether we wanted the Arduino and its microcontroller 
itself to be responsible or the user’s computer and its much 
more powerful CPU to be responsible. The three options we 
considered are listed below: 

Option 1: Have the Arduino itself perform all of these 
functions. The Arduino will internally keep track of the cursor’s 
position, read the sensor values directly from the accelerometer 
attached to it, update the internal representation of the cursor’s 
position, and directly translate that into a mouse movement 
event that is then sent directly to the user’s computer via USB. 

Option 2: This option is similar to the first option except for 
the fact we will have two Arduinos instead of one. The purpose 
of the second Arduino is to act as a Bluetooth receiver. One 
Arduino will be used as the pen/stylus and it will wirelessly (via 
Bluetooth) send its sensor data to the second Arduino. The 
second Arduino will be plugged into the user’s computer via 
USB and will be the one that internally keeps track of the 
cursor’s position as well as using the sensor data received over 
Bluetooth to update the cursor’s position in real time. This 
Arduino also has the responsibility of turning the cursor 
position movements and translating them into OS events that 
are then sent via USB. 

Option 3: We only have one Arduino and its only 
responsibility is to send sensor data over to the user’s computer 
via Bluetooth. The user’s computer will be running a user space 
program that will perform the functionality of keeping track of 
the cursor’s position, receiving the accelerometer data, using 
the data to update the cursor’s position, and finally translating 
that to an OS event to move the mouse. 

Option 1 was the first one that we considered but we had to 
pivot away from it due to the restriction of being limited to 
wired USB. While it leads to a logical separation of concerns 
(all the code related to the pen movement is run on the pen 
itself) and supports the idea that the pen itself is a standalone 
input peripheral, it did not give us the Bluetooth wireless 
functionality we specified in our requirements. Option 2 was 
what we considered next. This architecture is commonly seen 
among wireless mice and keyboards that have a USB dongle 
required to use. This still gives us the benefit of having a logical 
separation of concerns, but has a higher development 



18-500 Final Project Report: 03/17/2021 
 

4 

complexity. There are more points of failure with this approach. 
Another downside to this method is the higher response time 
due to having another point of connection for data 
communication. Option 3 has multiple benefits. The biggest 
benefit is that the user's computer would be the system running 
most of the more intensive parts of the code. Macbooks have a 
2.0 GHz CPU, which is a clock speed of over 100x greater than 
the Arduino's microcontroller. Given that we are aiming for a 
125 Hz polling rate, this means that each update (reading in 
sensor values and updating cursor position) will have to be done 
in 8ms. Having the most powerful CPU possible running the 
hot path of the code will ensure that we can reach this polling 
rate requirement. A CPU running at 2.0 GHz means that each 
update will have  
 

         2 * 1024 * 1024 * 1024 / 125 = 17.18 M                  (1) 
 

17.8 million clock cycles to perform all the calculations 
necessary. Additionally, because we have multiple subsystems 
at place (pen tracking and gesture recognition), consolidating 
all the code to run on the same platform is also a benefit, though 
this benefit is more subjective and one that we decided we 
valued. Ultimately, we decided to proceed with option 3 due to 
the aforementioned benefits. 

E. Gesture recognition image processing library 
We first considered using OpenPose, a CMU developed open 

source tool to detect body positions in real-time. We considered 
this because one of our team members has experience working 
with the tool in research projects and supports our real-time 
requirements. As we researched more, there were some 
roadblocks. First, OpenPose is very computationally intensive, 
requiring a powerful NVIDIA GPU to efficiently work in real-
time. Given that our platform is meant to run on laptops, our 
workaround would have to be sending the video feed over to a 
remote machine that is running OpenPose, which although 
possible, can have reliability issues depending on the user’s 
network. Another issue is that OpenPose exists more as a 
standalone tool and integrating its output into ML models to 
actually detect gestures is unintuitive. Given all these 
limitations, we looked to OpenCV next, which is more 
lightweight. Upon research, we discovered that while OpenPose 
provides much more detail, the extra detail is not necessary, as 
gestures can be reduced to shapes that can be extracted from 
grayscale images. OpenCV sacrifices data detail for much more 
portability. OpenCV also provides a simpler interface for 
integrating with machine learning: reducing the image to just 
grayscale sequence of pixels and passing that information 
through to neural networks is a very common approach for 
recognition models (handwriting/shape/etc). We ultimately 
decided these features were more important, so we moved 
forward with OpenCV. 

F. Gesture recognition machine learning library 
There is a large variety of open source machine learning 

libraries for Python: TensorFlow, Keras, Scikit-learn, and 
PyTorch, are all options that we saw upon research. Machine 
learning is no one in our group’s specialty, but we all have a 
reasonable understanding that allowed us to reduce our problem 

to transforming a live video feed into grayscale images that can 
have shapes extracted from them using neural networks (pixel 
brightness values as inputs, whether or not there is a particular 
shape in the image as the output). This is a relatively surface 
level and more basic application of machine learning, so we 
chose the framework accordingly. It is not necessary to have 
super fine-grained control over every feature and layer of the 
model. The most important feature is being easy to work with 
while providing high performance neural network interfaces. 
Keras checked all these boxes, being less verbose than other 
libraries and frameworks while accomplishing the same tasks. 
Because Keras is built on top of and wraps TensorFlow, we 
chose Keras as our library of choice. 

V. SYSTEM DESCRIPTION 
Hardware System Description 

A. Arduino Pro Micro 
The Arduino Micro serves as the main microcontroller board 

of the pen that connects all of the Arduino sensors and 
components together. It was chosen for its small and 
manageable size and laptop mouse compatibility. The Arduino 
Micro is based on the ATMega32U4 board with built-in USB 
communication, allowing the Micro to appear to a connected 
computer as a mouse.  

B. BNO085 
The BNO085 is both the accelerometer and gyroscope sensor. 

It was chosen for its Arduino compatibility and manageable 
size. The sensor also encapsulates three sensor functionalities 
in one. The accelerometer is a 3-axis accelerometer that gives 
us coordinates about which direction is down through 
measurement of gravity. The gyroscope measures data on how 
fast the sensor is being twisted around. Finally, there is a 
magnetometer. This combination of these data types allows for 
calculation of how our sensor pen is moving through space.  

C. Buttons 
  The sensory pen has two switch push buttons in use. A 
button on the left side of the pen mimics the ‘left click’ on a 
laptop mouse, and a button on the right side of the pen mimics 
the ‘right click’ on a laptop mouse. All clicks of the buttons 
and push/hold of the buttons are detected. 

D. HC-05 
  The HC-05 Bluetooth module was selected as the mode of 
communication between the pen and software program. The 
Bluetooth module aggregates all of the sensory data through 
an Arduino script and sends all of the data to the laptop via 
Bluetooth communication. Bluetooth served as a simple way 
for us to avoid using wires for a better user experience. This 
specific module was also selected for its Arduino 
compatibility and small size. 
 
Software System Description 
 
 Python and C++ will be the main languages we will be using 
for our project. This is because Python has support for all the 
features we plan to implement (external mouse manipulation on 



18-500 Final Project Report: 03/17/2021 
 

5 

Mac, OpenCV, machine learning algorithms etc). Also, all team 
members are proficient with Python and C++. As for speed, we 
believe that python will be sufficient within our requirement 
specifications. The slowest element would be the hand gesture 
recognizer, in which case we can sample the image inputs to 
speed up the program.  

Figure 5 is the system specification for the software 
component of our design.  

 
 
Fig. 4. Software system specification overview 

 
As described in the figure above, most of the major 

computation will be done on the users Mac laptop. The laptop 
software system consists of a system/GUI, the gesture 
recognition software, and pen tracking software. 

A. GUI 
The GUI will be used for pen calibration, and customization 

of Mac laptop commands. This is what the user will interact 
with to set their own customized hand gestures to map to 
specific actions and manipulate the current dictionary of 
gestures. Additionally, the user can set the system to a 
calibration mode in case the pen click has an offset. Thus, if the 
pen is not synching correctly the user has a way to recalibrate.  

B. System 
  The system will take the inputs from the gesture recognition 
(hand position) and pen software (click type and coordinates) 
and calculate the corresponding action. For gesture recognition, 
the system will need to map the hand position to a pre-saved 
Mac user macro or an error. For the pen output, our Python 
program will read in the Bluetooth data using the PyBluez 
library, a fairly commonly used Python Bluetooth API. The 
system will need to decipher what to do based on the click type, 
such as hover, long press, scroll, click, and perform that action 
at the correct corresponding location of the computer. After 
this, the system will update the projector to update the display 
that the user sees. 

C. Gesture Recognition 
  The gesture recognition software will be used to input the 
user’s Macbook camera images to specific gestures. We will do 
this by using OpenCV to identify hand gestures. Additionally, 
we will be using Keras and Tensorflow to make use of 
convolutional neural networks, a common type of machine 
learning for mapping of image inputs to an output variable -- 
which in our case will be user macros, such as browser page 
refresh, or going  back a page. These will also be implemented 
with the same PyAutoGUI library. 

D. Pen 
  Finally, the pen will also have a software component. This is 
the only component to run code separate from the laptop 
system. For the pen, we will have Arduino code written in C++ 
that aggregates all of the sensory input. This includes left and 
right button clicks, accelerometer data, and gyroscope data. The 
HC-05 module will then take all of the data and send it to the 
Mac laptop via Bluetooth.  

VI. PROJECT MANAGEMENT 

A. Schedule 
Figure A1 of the appendix shows our schedule for the project. 

In this schedule, we broke down our tasks to smaller pieces. We 
left time buffers in the schedule for error and testing. Also, we 
tried to combine simultaneous elements at the same time. 

B. Team Member Responsibilities 
There are a few key hardware and software elements in the 

design of Magic Mice: the pen, the hand gesture recognition, 
and the overall system. Since these three elements can be done 
mostly independent of each other and then fitted together at the 
end, we decided to split tasks this way. Each team member is 
responsible for the capability of a specific section, the success 
of that element is checked by another team member, and 
everyone helps in the case the team member has issues bringing 
the design to fruition. This way, a team member should be a 
specialist in a specific area of the project. Since hand 
expressions are the more complex element of the project, we 
split the testing more finely for this element. 

Jenny will be in charge of the hand gesture recognition 
software. She will do this by linking the webcam of the 
computer to the algorithm and working on the gesture 
recognition software using open CV. She is in charge of testing 
the pen requirements. 

Jade will be in charge of the overall system requirements. 
This means she will help make sure all the input elements 
communicate with each other and update the screen 
accordingly. She will also relay information to the projection 
on the wall. Jade is in charge of testing the hand expressions. 

Bradley is in charge of assembling the hardware elements for 
the pen and writing the pen tracking and calibration software. 
He will be in charge of testing that the system updates according 
to inputs given. Also, he will be in charge of testing hand 
expressions 

C. Budget 
The spreadsheet of materials and costs can be found at the 

end of the report in Figure A2 of the Appendix. 

D. Risk Management 
We anticipate that parts will be broken as we iterate on our 

hardware design. Thus, we have ordered several backup parts 
in case some break. Additionally, we will be using version 
control and Github to manage our iterative changes and 
collaborative efforts. 



18-500 Final Project Report: 03/17/2021 
 

6 

VII. APPENDIX 

 
 

Fig. 1. Overall System Block Diagram 
 

Fig. 2. GUI System Flow 
 



18-500 Final Project Report: 03/17/2021 
 

7 

 
 
Fig. 4. Software System Specification Overview 

 

 
 
Fig A1. Gantt Chart 



18-500 Final Project Report: 03/17/2021 
 

8 

 
 
Fig A2. Budget 
 
 
 
 

 
 
 
 
 


