FP-GAme

FPGA-Based Retro Game Development Console

Team C1: Andrew Spaulding, Joseph Yankel

Presenter: Joseph Yankel

Agenda: Final Presentation + Q&A

Application Area

- Many people are interested in retro console development.
 - Often, the console matters less to hobbyists than the experience
- Software development for retro consoles is inaccessible.
 - Requires knowing very specific hardware details
 - Kits only sold to developers for high prices (~\$2000), now collectors items.
- FP-GAme will provide a similar development experience
 - Cost will be kept in the range of \$200.
 - Kernel modules and user library will be used to hide unnecessary hardware details.
 - Similar experience, more accessible.

Solution Approach

Complete Solution

• Overall design is as outlined in the previous slide, no major changes to system architecture.

- Public demonstration will include two technical demos
 - Simple tech demo demonstrating scrolling, sprites, layering, and basic audio.
 - NES Console emulation demonstrating more advanced usage.
 - Consistent APU usage.
 - Stressful CPU and memory usage.
 - Graphics accelerated high-level emulation.

Metrics and Validation

Component	Test	Pass/Fail Condition
APU	 Validate audio with 2 tests: 1. HDMI -> AUX cord -> Computer recording. 2. Sampling rate limit alias test 	Audio signal undamaged: Pass Output audio does not alias: Pass
PPU	Graphics Stress Test (Changed)	N/A
Input	Use oscilloscope to verify 60Hz controller sample rate.	If sample rate ≥ 60Hz: Pass.
System	System Stress Test Playable Tech Demo which must implement: • Scrolling foreground and background layer • Sprites • Input • Audio	If system is able to run user program without audio/visual glitches: Pass

Results - Input

Input confirmed to sample at 60Hz

Design Tradeoffs - APU

- More flexible latency demands, so no need for internal caching via M10K.
- Original library design called for user-mode callbacks from the interrupt
 - Linux does not support upcalls
 - Signals were used, with libraries wrapping the callback usage, instead.
- Sample buffer size was decreased to 512 bytes
 - More demanding for the CPU, but our CPU can handle it
 - Lower latency from audio generation to playback

Results - APU

- Signal Integrity Test
 - Original audio compared with output from the APU (by signal subtraction).
 - Signal integrity intact, minus some noise (Test Pass).

- Sampling Rate Limit Test
 - 16KHz sine wave played
 - Check for aliasing
 - Aliasing did not occur (Test Pass).

Design Tradeoffs - PPU

- Placing upper bound on SDRAM read latency not feasible.
 - No failsafe for long read delays
 - Direct read method complicates logic
- New Design:
 - Fixed-latency M10K VRAM simplifies logic
 - Double Buffered VRAM implements failsafe
- One more tradeoff:
 - 64-bit AXI Bus (low latency)
 - OR 128-bit SDRAM bus (higher throughput)
 - We chose this option.
 - New PPU design no longer requires low read latency.
 - Instead requires high throughput

Results - Tech Demo

Results - System Stress Test

• Places the system under stress comparable to running a full game.

- Tech demo run with an NES game emulation (no video) executing in the background.
 - Observed greater than 50% CPU utilization.
 - Emulator is known to make a large number of memory accesses.
 - Emulation requires computationally intense floating point math to generate sound output.

- Results: No issues observed.
 - No audio glitches.
 - No video issues or missed frames observed.
 - No apparent emulation slowdown.

Updated Gantt Chart

- Many initial tasks took longer than expected.
 - Tile engine was coupled with other tasks.
 - APU, Sprite Engine, and Drivers took longer than expected.
- Initial project tasks finished :)
- New task for extra project documentation
- New task NES Emulator Port
 - \circ $\,$ Used for public demo

FP-GAme Schedule								-				
Task	Week	2/22	3/1	3/8	3/15	3/22	3/29	4/5	4/12	4/19	4/26	5/3
CPU												
Define System Call Interface			A/J									
Implement PPU Driver										J		
Implement Audio Driver							Α					
Implement Controller Driver						Α						
Slack												
PPU												
Design PPU Interface			J									
HDMI - Video/Audio Bringup		J										
Timing and PPU FSM Design				J								
Row Buffers, VRAMs, CPU->VRAM Interface	9								J			
PPU SDRAM DMA									J			
Sprite Engine										Α		
Tile Engines							J					
Video Demo								J				
Slack					J	J		A/J				
Audio												
Design APU Interface			Α									
Research I2S		Α										
PCM Sample Buffer Transmit over I2S							Α					
APU -> CPU Interrupt on Buffer Empty							Α					
APU -> SDRAM Bug									Α			
Input												
Design Controller Interface		Α										
Decide on Controller		Α										
Implement Input Protocol			Α									
Expose to CPU (Bring up FPGA -> CPU Interface)				Α								
Slack					Α							
Misc												
Implement Tech Demo											J	
Port NES Emulator												Α
Project Documentation and Public Repositories												J
Class												
Design Presentation Slides			AJ									
Design Presentation Report				A/J								
Interim Demo								A/J				
Final Presentation											A/J	A/J
Final Video											A/J	A/J
Final Report												A/J