
ppu.h File Reference

User Library for the FP-GAme PPU. More...

#include <stdlib.h>

#include <stdint.h>

#include <sys/types.h>

Go to the source code of this file.

Classes
struct pattern_t

A single 8x8 tiles worth of pattern data (8 rows of 8 pixels at 4bpp) (32B of data) More...

struct palette_t

A palette which contains 15 colors. More...

struct sprite_t

A sprite. More...

Typedefs
typedef unsigned pattern_addr_t

Address into pattern memory. Generate using ppu_pattern_addr.

typedef uint16_t tile_t

Tile data representation (technically 2B of data)

Enumerations
enum layer_e { LAYER_BG = 1 , LAYER_FG = 2 , LAYER_SPR = 4 }

An enum which specifies a render layer. More...

enum mirror_e { MIRROR_NONE = 0 , MIRROR_X = 1 , MIRROR_Y = 2 , MIRROR_XY = 3 }

Mirror state for graphics. More...

enum render_prio_e { PRIO_IN_BACK = 0 , PRIO_IN_MIDDLE = 1 , PRIO_IN_FRONT = 2 }

Rendering priority for sprites. More...

Functions
int ppu_enable (void)

Enable the PPU. More...

void ppu_disable (void)

Disable the PPU. More...

int ppu_update (void)

Request for the current frame changes to be send to the PPU on the next available frame. More...

int ppu_write_vram (const void *buf, size_t len, off_t offset)

Write directly to the VRAM buffer. More...

pattern_addr_t ppu_pattern_addr (unsigned pattern_id, unsigned x, unsigned y)

Generates a pattern_addr_t using a pattern_id, and relative (x, y) position. More...

tile_t ppu_make_tile (pattern_addr_t pattern_addr, unsigned palette_id, mirror_e mirror)

Generate a tile data for use with the ppu_write_tile functions. More...

void ppu_make_sprite (sprite_t *sprite, pattern_addr_t pattern_addr, unsigned width, unsigned height,

unsigned palette_id, render_prio_e prio, mirror_e mirror)

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

1 of 15 4/24/21, 22:48

◆ layer_e

Generate a sprite data for use with the ppu_write_sprites function. More...

void ppu_load_tilemap (tile_t *tilemap, unsigned len, char *file)

Loads tile-data from a file into an linear array of tile_t. More...

void ppu_load_pattern (pattern_t *pattern, char *file)

Loads an 8x8-pixel tile graphic into pattern from file. More...

void ppu_load_palette (palette_t *palette, char *file)

Loads a color palette from file into palette. More...

int ppu_write_tiles_horizontal (tile_t *tiles, unsigned len, unsigned x_i, unsigned y_i, unsigned count)

Writes an array to a horizontal segment of tiles. More...

int ppu_write_tiles_vertical (tile_t *tiles, unsigned len, unsigned x_i, unsigned y_i, unsigned count)

Writes an array to a vertical segment of tiles. More...

int ppu_write_pattern (pattern_t *pattern, unsigned width, unsigned height, pattern_addr_t

pattern_addr)

Writes pattern_t patterns (8x8-pixel tiles) to a specified location in Pattern RAM. More...

int ppu_write_palette (palette_t *palette, layer_e layer_id, unsigned palette_id)

Overwrites a palette in Palette RAM. More...

int ppu_write_sprites (sprite_t *sprites, unsigned len, unsigned sprite_id_i)

Overwrites one or more sprite data entries in Sprite RAM. More...

int ppu_set_bgcolor (unsigned color)

Set the universal background color of the PPU. More...

int ppu_set_scroll (layer_e tile_layer, unsigned scroll_x, unsigned scroll_y)

Set pixel scroll of the background or foreground tile layer. More...

int ppu_set_layer_enable (unsigned enable_mask)

Enable or disable one or more of the three PPU render layers using a bit-mask. More...

Detailed Description

User Library for the FP-GAme PPU.

Author

Joseph Yankel

Attention

Modifications to the PPU will not be accepted during certain busy states managed by the Kernel. Any functions which

attempt to modify PPU data will return -1 if the modification could not be made. You are encouraged to poll these

functions until they return 0 (success) if you want to ensure your changes are made.

Invalid arguments (see the function's documentation) will result in a console warning and exiting of the program. This

is to help you (the user) find bugs and unwanted behaviours.

Enumeration Type Documentation

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

2 of 15 4/24/21, 22:48

◆ mirror_e

◆ render_prio_e

◆ ppu_disable()

enum layer_e

An enum which specifies a render layer.

These enum entries can be ORd together to form a bitmask.

See also

ppu_set_layer_enable.

Enumerator

LAYER_BG Denotes the background tile render layer.

LAYER_FG Denotes the foreground tile render layer.

LAYER_SPR Denotes the sprite render layer.

enum mirror_e

Mirror state for graphics.

Enumerator

MIRROR_NONE Pattern is not mirrored.

MIRROR_X Pattern is horizontally flipped.

MIRROR_Y Pattern is vertically flipped.

MIRROR_XY Pattern is both horizontally and vertically flipped.

enum render_prio_e

Rendering priority for sprites.

Enumerator

PRIO_IN_BACK Sprite apperas behind both background and foreground tile layers.

PRIO_IN_MIDDLE Sprite appears in front of background but behind foreground tile layer.

PRIO_IN_FRONT Sprite appears in front of background and foreground tile layers.

Function Documentation

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

3 of 15 4/24/21, 22:48

◆ ppu_enable()

◆ ppu_load_palette()

◆ ppu_load_pattern()

void ppu_disable (void)

Disable the PPU.

Releases the lock on the PPU. Other processes will be able to reserve access to the PPU.

It is illegal to call this function if the PPU is not currently enabled and owned by the calling process.

int ppu_enable (void)

Enable the PPU.

Attempts to lock PPU access to this process. If successful, only this process will be able to write to the PPU.

Fails if the PPU is already owned by another process.

The caller of this function must call ppu_disable before program exit to prevent resource leaks.

Returns

0 on success; -1 on error

void ppu_load_palette (palette_t * palette,

char * file

)

Loads a color palette from file into palette.

file must be a simple text file, containing 15 lines, each with a 24-bit hex color. For example, each line has something of

the form: FF0000 The example above is a hex representation for the color RED.

Parameters

palette Palette instance to copy the color data from file to.

file File path of the text file to copy color data from.

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

4 of 15 4/24/21, 22:48

◆ ppu_load_tilemap()

◆ ppu_make_sprite()

void ppu_load_pattern (pattern_t * pattern,

char * file

)

Loads an 8x8-pixel tile graphic into pattern from file.

file must be a simple text file, containing 8 lines, each with 8 hex chars: 0-F. Each hex char represents a pixel's color for

any palette. 0 is always transparent, 1-F correspond to the 15 available colors in a palette.

Example: 112233445 F00000005 F00000006 E00000006 E00000007 D00000007 D00000008 CCBBAA998

A test file with the above text represents a multi-colored box outline with transparent center.

Parameters

pattern Pattern instance to copy the pixel data from file to.

file File path of the text file to copy pixel data from.

void ppu_load_tilemap (tile_t * tilemap,

unsigned len,

char * file

)

Loads tile-data from a file into an linear array of tile_t.

The text file contains tile_t entries specified in the following format:

An entry is formatted like (XXX,X,X), where X is a hex number (0-F).

The first three hex numbers are the pattern ID for this tile. It ranges from 000 to 3FF.

The second entry is the palette ID to use for this tile. It ranges from 0 to F.

The last entry are the tile mirroring bits. This value ranges from 0 to 3, where:

0 -> No mirror

1 -> Horizontal Mirroring

2 -> Vertical Mirroring

3 -> Both Horizontal AND Vertical Mirroring

Each entry is separated either by a space or by a newline.

Parameters

tilemap Array of tile_t to load into.

len Number of tiles to copy to tilemap.

file Path of the text file to open and read from.

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

5 of 15 4/24/21, 22:48

◆ ppu_make_tile()

◆ ppu_pattern_addr()

void ppu_make_sprite (sprite_t * sprite,

pattern_addr_t pattern_addr,

unsigned width,

unsigned height,

unsigned palette_id,

render_prio_e prio,

mirror_e mirror

)

Generate a sprite data for use with the ppu_write_sprites function.

Importantly, the sprite's position is defaulted to (0, 0).

Parameters

sprite Pointer to an empty sprite_t struct you want to initialize.

pattern_addr The address into Pattern RAM where this sprite starts. Recommended to generate using

ppu_pattern_addr.

width Horizontal width of sprite in tiles. Can take values in [1, 4].

height Vertical height of sprite in tiles. Can take values in [1, 4].

palette_id Palette from the sprites section of Palette RAM to use. Must be within [0, 31].

prio Render priority for this sprite.

mirror Horizontal/Vertical mirror setting for this sprite.

tile_t ppu_make_tile (pattern_addr_t pattern_addr,

unsigned palette_id,

mirror_e mirror

)

Generate a tile data for use with the ppu_write_tile functions.

Parameters

pattern_addr The address of this tile's pattern in Pattern RAM (see ppu_pattern_addr)

palette_id The numerical id of the palette (location in Palette RAM) this tile will use. This must be within range

[0, 16]. The final palette comes from the background layer palette section of Palette RAM if this tile

is applied to the background tile layer, and similarly for forground palettes.

mirror Mirror state for this tile's pattern.

Returns

A tile_t representing the tile data formed by the inputs.

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

6 of 15 4/24/21, 22:48

◆ ppu_set_bgcolor()

pattern_addr_t ppu_pattern_addr (unsigned pattern_id,

unsigned x,

unsigned y

)

Generates a pattern_addr_t using a pattern_id, and relative (x, y) position.

Pattern RAM is organized into blocks of 32x32-pixel chunks (or 4x4 8x8-pixel tile groups).

...

0 1 63

Note each small square tile in the diagram above represents an 8 pixel by 8 pixel tile. There are 16 such tiles per tile

group.

pattern_id selects which of these tile groups to write to. (x, y) indicates a position within this 16 tile group with the

origin (0, 0) at the top left.

Parameters

pattern_id Index into Pattern RAM selecting a tile group. Range [0, 63].

x Within the selected tile group, horizontal tile offset. Range [0, 3].

y Within the selected tile group, vertical tile offset. Range [0, 3].

Returns

A pattern_addr_t representing the address into Pattern RAM formed by the arguments.

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

7 of 15 4/24/21, 22:48

◆ ppu_set_layer_enable()

◆ ppu_set_scroll()

int ppu_set_bgcolor (unsigned color)

Set the universal background color of the PPU.

The universal background color is the color displayed when all PPU render layers are transparent.

This function will set this color to be displayed at the next ppu_update().

Remarks

Any higher-order bits [31:24] in color will be ignored!

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

color 32-bit color holding a 24-bit RRGGBB hex color value. For example, 0xFF0000 for red.

Returns

0 on success; -1 if PPU busy

int ppu_set_layer_enable (unsigned enable_mask)

Enable or disable one or more of the three PPU render layers using a bit-mask.

The enable mask has three bits which enable or disable the PPU render layers as follows: Bit 0: Enable (1) or disable (0)

the background tile layer Bit 1: Enable (1) or disable (0) the foreground tile layer Bit 2: Enable (1) or disable (0) the sprite

layer To generate the enable_mask, use an OR of the layer_e options. For example, to enable both tile layers and disable

the sprite layer set enable_mask = BG | FG.

Call this function before a ppu_update() to ensure the layer will be enabled on the next frame.

Remarks

Any higher-order bits in enable_mask not specified above will be ignored!

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

enable_mask Bit-mask used to enable/disable PPU rendering layers.

Returns

0 on success; -1 if PPU busy

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

8 of 15 4/24/21, 22:48

◆ ppu_update()

◆ ppu_write_palette()

int ppu_set_scroll (layer_e tile_layer,

unsigned scroll_x,

unsigned scroll_y

)

Set pixel scroll of the background or foreground tile layer.

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

tile_layer Either LAYER_BG or LAYER_FG. LAYER_SPR doesn't support layer scrolling.

scroll_x Horizontal pixel scroll. Values must be [0, 511].

scroll_y Vertical pixel scroll. Values must be [0, 511].

Returns

0 on success; -1 if PPU busy

int ppu_update (void)

Request for the current frame changes to be send to the PPU on the next available frame.

Any previous calls to ppu_set_[...] functions are guaranteed to take effect after this function returns successfully.

If you want to ensure your frame gets sent out to the PPU, and also want to synchronize to the PPU's internal 60FPS

timing, keep polling this function until 0 (success) is returned.

Precondition

PPU is currently locked by this process. See ppu_enable.

Returns

0 on success; -1 if PPU busy

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

9 of 15 4/24/21, 22:48

◆ ppu_write_pattern()

int ppu_write_palette (palette_t * palette,

layer_e layer_id,

unsigned palette_id

)

Overwrites a palette in Palette RAM.

Overwrites a single palette in Palette RAM at palette_id and layer_id

Recall that Palette RAM is organized into three segments. layer_id selects one of these layers: 0: Background Palettes.

16 Palettes 1: Foreground Palettes. 16 Palettes (Else): Sprite Palettes. 32 Palettes

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

palette A pointer to a palette data struct that we should write to Palette RAM.

layer_id The target section of Palette RAM to start copying the palette to.

palette_id The id of the palette to overwrite within the given layer. This must be within bounds of the palette layer

section indicated by layer_id.

Returns

0 on success; -1 if PPU busy

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

10 of 15 4/24/21, 22:48

int ppu_write_pattern (pattern_t * pattern,

unsigned width,

unsigned height,

pattern_addr_t pattern_addr

)

Writes pattern_t patterns (8x8-pixel tiles) to a specified location in Pattern RAM.

Note

As a reminder, pattern_addr points to a tile chunk and also a specific tile at (x_i, y_i) within.

Within the current tile chunk pointed to by pattern_addr, a subset of width pattern_t by height pattern_t is formed.

pattern_t tile-patterns (8x8-pixel tiles) from patterns are written sequentially by rows of width until height rows have

been written.

The example diagrams below demonstrate the effect of this function with a variable width/height and pattern_addr of 0:

...

0 1 63(w,h) = (1,1)

...

0 1 63(w,h) = (2,3)

Warning

Note, however that if the subset indicated by width, height, x_i, y_i would extend beyond a 16x16 tile-group

boundary, this function will give a warning and abort the program. For example, you are not allowed to write a 3x3-

tile pattern starting at (2,3).

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

11 of 15 4/24/21, 22:48

◆ ppu_write_sprites()

...

0 1 63NOT
ALLOWED

Another illegal example for a 2x2-tile pattern starting at (3, 0):

...

0 1 63ALSO NOT
ALLOWED

It is the user's responsibility to ensure patterns has length width * height (in terms of pattern_t).

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

pattern The buffer of pattern_t tiles. patterns must have width * height total pattern_t. Create your

buffer so that the pattern_t tiles occur row by row sequentially.

width The width (in 8x8-pixel tiles) of patterns. Range [1, 4]

height The height (in 8x8-pixel tiles) of patterns. Range [1, 4]

pattern_addr The pattern address to start at.

Returns

0 on success; -1 if PPU busy

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

12 of 15 4/24/21, 22:48

◆ ppu_write_tiles_horizontal()

int ppu_write_sprites (sprite_t * sprites,

unsigned len,

unsigned sprite_id_i

)

Overwrites one or more sprite data entries in Sprite RAM.

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

sprites A pointer to an array of sprite data entries to submit to Sprite RAM.

len Length of sprites array.

sprite_id_i The starting index of the first sprite to overwrite in Sprite RAM. This number must fall in range [0, 63 -

len].

Returns

0 on success; -1 if PPU busy

int ppu_write_tiles_horizontal (tile_t * tiles,

unsigned len,

unsigned x_i,

unsigned y_i,

unsigned count

)

Writes an array to a horizontal segment of tiles.

This function copies a buffer of length len tiles into the Tile RAM overwriting count tiles starting at (x_i, y_i) and moving

horizontally. If overwriting count tiles would exceed the boundaries of the logical screen (63, y_i), this function will

automatically wrap around to the start of the logical screen (0, y_i).

If len is lower than count, then this function repeats/tiles the given tiles buffer.

This function is more efficient than ppu_write_tiles_vertical. So if writing a rectangular block of tiles on the screen, prefer

to call this function as the inner loop (make the row, y_i be the outer loop variable).

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

tiles Buffer of tile data to write to Tile RAM.

len Length of the tiles buffer. len will be clamped to 64 if len > 64.

x_i Horizontal position of the first tile to write. Must be in the range [0, 63]

y_i Vertical position of the first tile to write. Must be in the range [0, 63]

count The number of tiles to overwrite (horizontally) in Tile RAM. count will be set to 64 if count > 64.

Returns

0 on success; -1 if PPU busy

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

13 of 15 4/24/21, 22:48

◆ ppu_write_tiles_vertical()

◆ ppu_write_vram()

int ppu_write_tiles_vertical (tile_t * tiles,

unsigned len,

unsigned x_i,

unsigned y_i,

unsigned count

)

Writes an array to a vertical segment of tiles.

This function copies a buffer of length len tiles into the Tile RAM overwriting count tiles starting at (

vertically. If overwriting count tiles would exceed the boundaries of the logical screen (

automatically wrap around to the start of the logical screen (x_i, 0).

If len is lower than count, then this function repeats/tiles the given tiles buffer.

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

tiles Buffer of tile data to write to Tile RAM.

len Length of the tiles buffer. len will be clamped to 64 if len > 64.

x_i Horizontal position of the first tile to write. Must be in the range [0, 63].

y_i Vertical position of the first tile to write. Must be in the range [0, 63].

count The number of tiles to overwrite (vertically) in Tile RAM. count will be set to 64 if count >

Returns

0 on success; -1 if PPU busy

int ppu_write_vram (const void * buf,

size_t len,

off_t offset

)

Write directly to the VRAM buffer.

Attention

This gives a lower-level access to the VRAM buffer! See the higher-level write functions such as the various

ppu_write_tiles functions, ppu_write_sprites, ppu_write_pattern, and ppu_write_palette.

Precondition

PPU is currently locked by this process. See ppu_enable.

Parameters

buf Pointer to a buffer to write to the VRAM.

len Size of buf in bytes.

offset Byte offset into VRAM.

Returns

0 on success; -1 if PPU busy

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

14 of 15 4/24/21, 22:48

Generated by 1.9.1

FP-GAme User Library: usr/inc/fp-game/ppu.h File Reference file:///home/jpyankel/projects/capstone/Library/docs/htm...

15 of 15 4/24/21, 22:48

