
Tile Engine DDR3 SDRAM Timing:
● Very Nontrivial.
● The DDR3 we use has a programmable CAS latency (read address to output data timing

in clock cycles) (read about CAS latency here [0]) (find SDRAM datasheet in CD or here
[1]). We need to know what this is programmed for.

Above: Block diagram of the HPS’s SDRAM Controller [2, 12-7]

Vocab:

● MPFE: Multi-Port Front End.

MPFE Multi-Port Arbitration:

● This is a “scheduler” of sorts. It is a logic block under the HPS SDRAM Controller which
decides which ports get Single-Port Controller access when multiple requests are made.

● Two criteria: Priority and weight.
○ Priority: Set by programmable registers. Higher priority ports always win over

lower priority ports. Ports with the same priority have weighted round-robin
access.

○ Weight: Set by programmable registers. Higher weight has more
time/representation in round-robin.

○ By setting static weights correctly, you effectively allocate a percentage of
bandwidth to a particular port.

Set all sources to the same priority and same weight. The worst case is the following sequence
of commands (assuming command FIFO is empty) executed all at once:

● HPS read
● HPS write
● PPU - BG Tile Engine read
● PPU - FG Tile Engine read
● APU read

What is the size of the FIFOs? Need to know how many can commands can be queued up to
calculate actual worst case read latency.

Notes 3-10-21:

● GHRD uses 400MHz clock for SDRAM

● Notably, the GHRD is configured for a memory CAS latency of 7 cycles.

Above: Source is [1, pg. 12].

Above: Source is [1, pg. 14].

● Need to find the corresponding AL for a CL of 7. The speed bins are organized by the
exact chip number, but the datasheet is for a collection of chips. Time to consult the
schematics (or physical board) to find out the exact chip!

● Worst case would be AL = CL-1. Then total Read Latency RL
(HPS_command->SDRAM->HPS_read) = CL + CL - 1 = 2CL - 1. With CL = 7 this
means RL = 13.

● Best case would be AL = CL + 0 = CL = 7.
● Note that AL is set somewhere. According to [1, pg. 9], the control registers in our

SDRAM have no default values and must be fully initialized after power-up/rst.

Above: Schematic from DE10-Nano Online CD.

● The chip number is IS43TR16256A-15HBL.

Above: [1, pg. 82]

● The speed bins refer to this part as 1333MT/s

It turns out not very many embedded memory controllers support the Additive Latency feature
and automatically program this value to be 0.
https://e2e.ti.com/support/processors/f/processors-forum/442397/additive-latency-value-for-ddr3
-memory

● The portion of the Cyclone V that controls this is the DDR PHY [2, 12-25]. The DDR PHY
handles memory device initialization and reinitialization after reset.

● Based on the lack of information here, I think I could assume that DDR PHY doesn’t
support the Additive Latency Feature. The worst case RL = 7.

Memory Clock Speed and Can I Lower CL?

https://e2e.ti.com/support/processors/f/processors-forum/442397/additive-latency-value-for-ddr3-memory
https://e2e.ti.com/support/processors/f/processors-forum/442397/additive-latency-value-for-ddr3-memory

Above: Speed bin for our SDRAM chip [1, pg. 56]. Contains recommended clock rates for a
given CL value. I’ve circled the GHRD in green.

● 400MHz corresponds to the upper bound tCK < 2.5 (clock period average) for CL=7.
● This tells me that we should choose a clock rate which matches the MAX TCK(AVG)

period recommended by the speed bin.

How to read memory specs:
The spec says “9-9-9 (-15H)”. What does this mean?
The first column is CAS latency (CL): 9
The second column is RAS to CAS delay: nRCD
The third column is row precharge time: nRP
See [3] for more information.

The actual metric most people use to determines memory speed is the tCLK * CL ~ the actual
delay between read command and response data.

Above: Calculations of Min. Freq., Max Freq., Min. Response, and Max Response from data in
[1].

● Clearly, the best setting for lowest read latency is CL=7 at 400MHz. The GHRD makes
sense.

TLDR 3/10/21 (Joe rambles too much):

● The read latency from the PHY Interface (SDRAM Controller) to the SDRAM is 7 clock
cycles, with a clock rate of 400MHz. This should be treated as the theoretical best-case
(likely unreachable) latency for our system.

● The next piece of research is to determine:
○ Worst-case travel time for read-command -> SDRAM controller subsystem

(across h2f_sdram bridge)
○ Worst-case travel time for read-command in SDRAM controller subsystem to be

output to the actual SDRAM (through any FIFOs/buffers/scheduling/etc).

CL
tCK(AVG)
(min)

tCK(AVG)
(MAX) Min Freq. Max Freq.

Min
Response

Max
Response

5 3 3.3 0.303030303
0.333333333

3 15 16.5

6 2.5 3.3 0.303030303 0.4 15 19.8

7 1.875 2.5 0.4
0.533333333

3 13.125 17.5

8 1.875 2.5 0.4
0.533333333

3 15 20

9 1.5 1.875
0.533333333

3
0.666666666

7 13.5 16.875

10 1.5 1.875
0.533333333

3
0.666666666

7 15 18.75

○ Worst-case travel time for read data in SDRAM controller subsystem to be sent
back to the PPU/APU (through h2f_sdram and any FIFOs/buffers/etc.)

Notes 3/12/21:

● MPU clocked at 800 MHz. I’m going to be using this in my assumptions about the

latency due to clocked logic (if any) inside of the HPS’s SDRAM controller.

To compute an upper bound on the time between sending the read command from the
PPU/APU and receiving the data, I have to make some assumptions and simplifications:

1. The “10 Command FIFO Buffers” simply store 10 commands.
a. There is no “First-in-First-out” guarantee, since the scheduler+arbiter picks which

operations happen in which order.
b. Worst case, your command is received by the SDRAM controller along with 9

others in parallel - and your command is sent to the SDRAM chip last.
2. The latency from the PPU/APU Avalon Master sending a command to the SDRAM

controller receiving that command is 1 clock cycle. Similarly, for SDRAM data to
PPU/APU Avalon Master.

a. In other words, any unknown bus element delays add up to 1 clock cycle.
3. The latency from the SDRAM controller receiving a command to sending one (not

necessarily the original command) is negligible.
a. i.e., scheduler and arbiter take much less than 16 cycles to decide which

command is getting sent to the SDRAM.
b. This is reasonable since our MPU is clocked at 800MHz, which is 16x our

FPGA’s clock frequency. 16 clock cycles seems like enough time to do any
scheduling/arbiting before sending the command out to SDRAM. It also seems
possible that these scheduler and arbiter elements are implemented in
combinational logic (requiring 0 clock cycles if fast enough). The Cyclone V
manual does not give any information about the specific implementation or
timing, however.

4. The latency from the SDRAM controller sending a command and receiving the data is 7
clock cycles at 400MHz.

a. This takes almost 1 clock cycle equivalent on our 50MHz FPGA (400 MHz
achieves 8 clock cycles per one 50 MHz clock cycle).

5. The latency from the SDRAM controller receiving data and sending it back out is
negligible. This stems from the fact that the MPU is clocked at 800MHz. Definitely
enough time to do any logic and reordering before sending the data back out on the bus.

With these assumptions, the calculation for worst-case latency is as follows:
● PPU logic will set addr and set read signal high on the Avalon-MM read-only master. 1

clock cycle later, this info is sent across the bus.
● Another clock cycle later, the address and read command is received by the SDRAM

controller.
● 9 other command signals were received by the SDRAM at the same time (or are in the

FIFOs). These 9 commands take 9 50MHz equivalent clock cycles before our command
is sent to the SDRAM.

● Our read command is sent to the SDRAM. The SDRAM controller receives the data back
one 50MHz-equivalent clock cycle later, and sends it across the bus.

● It takes one more clock cycle for read data to appear on the Avalon-MM Read-only
master due to any bus delay element.

In total, there were 1+1+9+1+1 = 13 clock cycles in our worst case scenario.

● Sounds reasonable given this source about the DE2 (Cyclone IV’s) worst case read
latency

● https://community.intel.com/t5/Intel-FPGA-University-Program/my-SDRAM-takes-14-cloc
k-cycles-to-read-data/td-p/68175

Notes 3/13/21:
I forgot one aspect of the timing calculation. The actual worst case scenario is much worse,
since CAS timings assume the same row of data is being accessed each read. This will likely
not be true for non-burst reads.

This means the worst-case latency of 13 clock cycles is only achievable in burst-read scenarios
where accesses have locality.

When the accesses are not in the same row, the actual command->data latency is RAS->CAS
latency + CAS latency. RAS to CAS timing (also known as tRCD) of our chip can be found in the
table below for our chip’s speed bin:

https://community.intel.com/t5/Intel-FPGA-University-Program/my-SDRAM-takes-14-clock-cycles-to-read-data/td-p/68175
https://community.intel.com/t5/Intel-FPGA-University-Program/my-SDRAM-takes-14-clock-cycles-to-read-data/td-p/68175

Above: Table for our SDRAM chip from [1].

tRCD = 13.5 ns or just under 20ns (the length of one 50MHz clock cycle). If we round up to one
50MHz clock cycle, this changes our worst case calculation to:

● PPU->BUS: 1 clk
● BUS->SDRAM Controller: 1 clk
● 9 other read commands SDRAM Controller -> SDRAM: 2 clk each for a total of 18 clk
● Our read command SDRAM Controller -> SDRAM -> SDRAM Controller total of 2 clk
● BUS->PPU: 1 clk

Total: 1 + 1 + 18 + 2 + 1 = 23 50MHz-equivalent clock cycles.

Resources:
[0] https://en.wikipedia.org/wiki/CAS_latency
[1] DDR3 Chip the DE10-Nano is using
http://www.issi.com/ww/pdf/43-46tr16256a-85120al.pdf
[2] Cyclone V SOC pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v
4.pdf
[3] Explanation of Memory Timing terms. Helpful when reading a datasheet for SDRAM.
https://en.wikipedia.org/wiki/Memory_timings

https://en.wikipedia.org/wiki/CAS_latency
http://www.issi.com/ww/pdf/43-46tr16256a-85120al.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://en.wikipedia.org/wiki/Memory_timings

