
1
18-500 Design Review Report: 03/17/2021

FP-GAme
Author: Andrew Spaulding, Joseph Yankel

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Software development on retro consoles is often
expensive and difficult to understand for new developers.
FP-GAme improves on this situation by providing a retro-style
hardware environment in a safe and familiar software
development environment. The device provides hardware
comparable to the Game Boy Advance in power, with 60Hz
video at 320x240, multi-layer sprite-engine-based graphics
output, and 8-bit PCM audio output at 32KHz. Additionally,
the device’s price is greatly reduced from other development
kits, to under $200.

Index Terms—Design, FPGA-SoC, Gaming Console

I. INTRODUCTION

At this time, application development for “retro”
consoles, consoles which are commonly targeted by
bare-metal software and use special hardware like
sprite-engines, is difficult. Often, development kits for these
consoles are expensive, and the process of writing software
requires an intimate understanding of the details of the
hardware. There are many developers who are interested in
creating software for such devices, but who lack the
experience or funds necessary to do so. Attempts to fulfil
this need have been made in the past, through both software
emulation and reprogrammable cartridges to aid in the
development process, but these tools fail to provide full
access to standard development tools, and often suffer from
inaccurate representation of the target hardware. The device
outlined in this document will fulfil the apparent need for
an inexpensive retro console that provides a familiar and
easy to use development environment. This allows
prospective developers to obtain the experience they desire
without being subjected to the low level details of the
hardware. The design will provide hardware similar in style
to the GBA to provide a retro experience; it will aim to
provide video at 60Hz in 320x240 resolution using a
sprite-engine pixel processing unit, and provide 8-bit PCM
audio at 32KHz. It will also allow software to be developed
and run on top of a Linux kernel, meaning that developers
have full access to the standard suite of C functions.

II. DESIGN REQUIREMENTS

In order for a device to be useful both as a game console
and as a development platform, while also capturing the
distinct “feel” of a retro system, there are a number of
requirements which must be satisfied.

A. Software Requirements
To ensure the most broad accessibility to developers

which aspire to use the platform, it must provide a simple C
interface to interact with the hardware of the console, and
must also provide full access to the C standard.
Additionally, a standard C development environment must
be made available; specifically, compiling for the system
must be at least as simple as cross compiling with gcc and a
make file. A consequence of these requirements is that the
processor chosen for the device must be of an architecture
that C code can generate efficient assembly for.

B. Hardware Requirements
The system must provide hardware that is comparable in

capabilities to the most well known retro consoles, thereby
providing the developer with a retro experience. The
defining feature of the most well known retro consoles is
the use of a sprite engine for graphical output. This method
of graphical output was used by many consoles, such as the
Nintendo Entertainment System (NES)[1], the Super
Nintendo (SNES)[2], and the Gameboy Advance (GBA)[3].
These sprite engines typically offered a background layer
and a sprite layer, with the background layer being
scrollable[1]. These background layers were composed of
tiles aligned to a grid, which were typically bitmaps that
were interpreted through a runtime-changeable pattern.
Individual sprites were also composed of tiles, but could be
placed on the screen in any location, though they were not
scrollable. On the low end of the capability spectrum, the
NES provided 1024 tiles (though only 256 were usable at a
time for the background layer) and 64 total sprites with up
to 8 sprites visible on a scanline[1]. From these, we form
our requirements for a graphics device. It must support at
least 256 tiles and 64 sprites total, with at least 8 sprites
visible on a scanline at a time. There must be at least one
background layer composed of these tiles, and said layer
must support scrolling. Additionally, its output resolution
must at least match that of the NES, which is 256x240 at
60Hz[1].

The audio hardware for retro consoles is much more
varied than that of the graphics hardware. Some consoles
used a variety of customizable wave generators[1], however
these are difficult for the average programmer to understand
and use to their fullest potential. On the other end of the
spectrum, the GBA provided 8-bit PCM audio ranging from
8KHz to 32KHz[3]. This method of audio output meshes
nicely with the requirements of an accessible and familiar
development environment, though it is admittedly at the
high end of what is considered retro. Therefore, we require
that the audio output of the system be in the range of what
the GBA provides, and must not surpass or undershoot it.

2
18-500 Design Review Report: 03/17/2021

Next, like any console, the system must provide a
controller for input. There are a large number of retro
controllers widely available for purchase. To ensure ease of
access to this component, it is a requirement of the device
that it use some widely available pre-existing controller as
an input method. Additionally, those playing games on a
console expect updates in input to be received at least as
often as the picture is updated. Since it is required that the
video output run at 60Hz, then, the controller input must be
processed at least this often as well.

Finally, in order to ensure developers using the device do
not need to be excessively concerned with their applications
memory footprint, the device must provide a moderate
amount of working and program memory. The GBA offered
around 300KiB of working memory, and cartridges varying
in size from 4MiB to 32MiB[3]. As the GBA is one of the
few retro consoles where development was done in C
(rather than assembly), it is appropriate to require an
amount of memory close to what the GBA offered. At a
minimum, the device must have at least 4MiB of program
memory and 512KiB of working memory.

C. Testing and Verification of Requirements
On the qualitative end of our requirement spectrum, we

have the need for an accessible and easy to use development
environment. This can be loosely verified by confirming
that the process of preparing the environment on a new
machine is brief and simple.

For our quantitative requirements, several tests have been
prepared. Concerning the controller input, it would be
sufficient to use an oscilloscope to inspect the signals
leaving the device and ensure that the controller state is
being sampled at at least 60Hz. Similarly, the audio sample
rate can be tested by providing a signal whose frequency is
exactly half that of the maximum frequency supported by
the device and verifying that it doesn not alias. Another test
for audio would be comparing the output of the system to a
reference output generated by software and ensuring the
integrity of the signal. As for graphics output, this can be
tested creating and using a software tool which tests the full
capability of the sprite and background tile engines by
displaying a large number of sprites on screen (and on one
scanline) and by scrolling the background layer independent
of the sprite layer.

Final testing of all pieces of hardware working together
will be done using a simple game which demonstrates all
functionality of the device. The game must accept input
from the user, use and scroll any non-sprite layers, and
utilize the sprite layer to some extent. Said game must also
support audio output, at the very least by playing music
during gameplay.

III. ARCHITECTURE AND PRINCIPLE OF OPERATION

The console we will develop is split into 4 major
components: CPU, Pixel Processing Unit (PPU), Audio
Processing Unit (APU), and I/O Subsystem. Each
component is dedicated to solving one or more of the user
requirements.

The CPU should be implemented in a modern processor -
one which is supported by a common C-toolchain. The
PPU, APU, and I/O should be implemented in an FPGA.

The CPU hosts an embedded Linux kernel, under which
the user’s game-code will run and interact with the rest of
the hardware via system-calls to our kernel modules. The
kernel modules we write will access the PPU, APU, and I/O
on behalf of the user. This is done for two reasons. The first
reason is to abstract away hardware details from the user:
Remember, our user is using our platform to write retro
games on a system with retro console capabilities - not to
write communication drivers for our specific hardware. The
only details the user will need to know in order to interact
with our hardware are the system calls used to interact with
our kernel modules. The second reason to mediate hardware
accesses via kernel modules is to provide a safe
development environment for our user. By this, we mean
that we protect the hardware itself from accidental bad
accesses.

The PPU takes commands and data transfers from the
CPU and uses them to construct 320x240 video output,
which is then scaled up to 640x480@60Hz HDMI video
output. These commands will allow the user’s game code to
modify VRAM and PPU control registers, which enables
control of a tile-background, tile-foreground, and sprite
engine: capabilities which capture the essence of
retro-games development.

The APU takes a stream of raw (PCM) 8-bit 32KHz
audio samples from the CPU and translates it to HDMI
audio signal.

The I/O Subsystem samples the buttons pressed on a
modified SNES controller connected via GPIO. The
sampling frequency is 60Hz to maximize video/input
responsiveness. This allows users to make games which
utilize frame-perfect inputs.

Fig. 1 (next page) shows the system’s operation from a
high-level perspective. From the user’s perspective, they
will simply flash an SD card with our custom binaries
(FPGA Configuration + Custom Embedded Linux) and
their compiled game code. Once the game console boots,
the FPGA will be configured, the Linux kernel will be
booted, and the user’s game code will be run. At this point,
the user’s game code is free to interact with the PPU, APU,
and I/O Subsystem via our Linux kernel modules. With our
system’s capabilities, 2D retro games, such as single-screen
games, platformers, or side-scrollers, are possible to build.

3
18-500 Design Review Report: 03/17/2021

Fig. 1. System Overview Block Diagram

IV. DESIGN TRADE STUDIES

During the development process of our system, several
designs were considered. In most cases, these designs were
proposed at the module level; there was no overarching
system design which was rejected, but rather individual
module designs which were either revised or improved
upon.

A. Software Design
At the software level, the primary subject of debate was

the method by which the expectations of the C standard and
the user would be supplied. Two implementations were
considered: using a custom kernel to implement the most
used functions of the C standard, or using the Linux kernel
with custom kernel modules to provide access to our
systems hardware. The benefits of using a custom kernel are
mainly that of control. A kernel implemented with the
specific needs of the system in mind would ensure the
simplest implementation of the C API for our device.
Unfortunately, the time and energy required to implement a
custom kernel made this option especially risky, given the
time constraints of our device’s development cycle. On the
other hand, using Linux would be a low risk option. It
would negate the need to understand the lowest level details
of the processor, and could be implemented much more
quickly. Additionally, the C standard is already fully
supported by the Linux kernel, and so we need not provide
it under such an implementation. The drawbacks of this

approach are that the Linux kernel has its own set of
expectations and requirements. Using Linux means
confining the device drivers to the rules of a Linux kernel
driver, and it also means that those developing for our
device must share resources with any Linux processes
running in the background. Due to the high risk nature of
developing a custom kernel, it was decided that our
implementation would use Linux.

B. Hardware Platform Selection
In selecting the hardware platform to build our system

upon, our primary concerns were in selecting modules
which can be used to meet our design requirements and in
ensuring that any communication between these modules
would not undermine the performance of the system. Two
hardware platforms were considered: The DE10-Nano, and
a Teensy 4.0 connected to a TinyFPGA and various other
hardware modules.

The primary advantages of using the Teensy and
TinyFPGA include their inexpensive cost and extensive
support for hardware extensions. Unfortunately, we found
many drawbacks with this approach. The barebones nature
of the Teensy and TinyFPGA meant that time would need to
be dedicated to finding, wiring, and bringing up the video
and audio devices themselves. Additionally, communication
was a major area of concern in this setup. To expand on
this, calculations were performed under the assumption that
a user for our platform would send video updates during the
vertical blanking period of each frame (which is typical for

4
18-500 Design Review Report: 03/17/2021

retro consoles) and that the user would wish to update
roughly 2KiB of data (enough to scroll a full tile, update the
new tiles, and rewrite sprite attribute memory) during said
period. Since one vertical blank period lasts 1.4ms, this
means the user would need to be able to transfer data from
the CPU to the PPU at around 11Mbps. This far exceeds the
max data rate for I2C, though it may have been achievable
under SPI. Yet, this was not the only area of concern. The
bare metal nature of the Teensy would have mandated a
custom kernel, including a driver that allows user data to be
read in from an SD card, as the Teensy only has 2MiB of
program storage (which does not meet the requirements).
This would have added a non-trivial amount of work to the
already difficult task of implementing a custom kernel.
Lastly, the TinyFPGA’s logic element count is relatively
low, which was another area of concern given the number
of modules it would need to implement.

Given the sub-optimal prospects for the usage of a
Teensy and TinyFPGA, other options were considered. We
selected the DE10-Nano as an alternative for several
reasons. First, the FPGA on the DE10-Nano is a Cyclone V,
which has a built-in HPS unit with an ARM core. Since the
ARM core is on the same chip as the FPGA, high speed
communication over AXI/Avalon is possible, negating the
communication speed risk present with the Teensy.
Additionally, the Cyclone V has a large number of logic
elements, more than 10 times that of the TinyFPGA. In
addition to the increase in logic elements, the Cyclone V
has a large number of M10K blocks, giving even more
freedom in the design of the PPU/APU, as on-chip caching
and memory can be implemented with these. The board
itself also features HDMI, meaning no additional devices
would need to be connected to achieve both video and audio
output. An extensive number of GPIO pins are also present
on the board, which can be used as a simple point of
connection for the controller. Additionally, the DE10-Nano
provides UART over USB, which can be used as a simple
method for debugging the software on the device. The
platform also features a SD card port, which can be used to
boot operating system software, such as Linux, and 1GB of
DDR3 memory. Access to both of these means the device
far exceeds our working and program memory
requirements. Among all these benefits, the only notable
drawback was the increased cost. Using the DE10-Nano
would double the expected cost to the end users of our
system. Yet, in light of the benefits of its use, we ultimately
decided on the DE10-Nano.

C. Hardware Design
The design space for the hardware of our device

consisted of three main areas: the APU, the PPU, and the
controller module.

For the controller module, two controllers were
considered for use with our device. These were the SNES
and the Sega Genesis controllers; both of which would have
met all the specified requirements for controller input.
However, the Genesis controller’s communication protocol

was quite a deal more complicated than that of the SNES
controller. Additionally, the Genesis controller used parallel
output to provide the current state of the controller, meaning
its use would require a sizable amount of wire traffic. The
SNES controller, on the other hand, used a simple serial
protocol, with the expected clock rate of the controller
being an even division of the clock rate of our selected
FPGA. Using a serial protocol also means that the SNES
controller uses half as many wires as the Genesis controller.
For these reasons, the SNES controller was selected for use.

The design variations for the APU center around the
method of transferring samples from the ARM core to the
APU. One possible method for doing this is to send the
address of a sample buffer to the APU over MMIO, and
then DMA that buffer into local memory for the APU to
send over I2S to the HDMI controller as necessary.
Alternatively, the Avalon connection allows the FPGA to
directly read the memory of the ARM core, which can be
used to pull samples directly from the DDR3 memory.

In considering the method where the audio buffer is
transferred to the APU over DMA, our primary concern was
with memory usage. This transfer would cause a burst of
demand on DDR3 at an undefined time, which may
interfere with the users program or with any possible
transfer being made by the PPU, which could be
problematic. The primary benefit of this method, however,
would be the guarantees it places on memory access time
when the APU needs its next sample.

The alternative method of using the Avalon bus would
place more consistent and spaced out demands on DDR3
memory, however it has different drawbacks. This method
requires the CPU to maintain a full copy of the buffer in
memory for the duration of its playing time, instead of the
duration of the DMA transfer. This, however, is largely not
an issue as the APU MMIO interface will be abstracted
from any developers using the system. Another potential
issue is the delay in accessing DDR3 memory. However,
assuming that the APU acquires 4 8-bit samples at a time
for 32KHz audio, and that the Cyclone V is clocked at
50MHz, the APU will have 6250 cycles to acquire the next
four samples, which far exceeds any possible DDR3 access
delay. For these reasons, the Avalon bus method was
selected for our APU.

Finally, we considered possible designs for the PPU. Two
designs analogous to those considered for the APU were
considered for the PPU: one where graphical data is fetched
as needed from DDR3 memory, and one where the CPU
instead transfers graphics data to internal double-buffered
VRAM via DMA once per frame.

When initially designing the PPU, the plan was to
directly fetch graphical data from DDR3 memory. This
design was made under the assumption that, due to DDR3
memory being on the same physical board as the Cyclone
V, the access times would be relatively fast. Unfortunately,
our Joseph’s optimistic estimates put the lower bound of
data access time at 10 cycles, which proved to be an

5
18-500 Design Review Report: 03/17/2021

unacceptable latency for our PPU design. This is made
worse by the inconsistent locations in memory in which the
PPU will need to pull graphical data from. Moreover, due to
VRAM itself being difficult to access, there is no clear safe
failure state for if the PPU cannot obtain the tile data in
time. For these reasons, a different design was drafted.

Under the revised design, graphical data is instead
transferred to memory internal to the PPU once per frame
via DMA. The destination of this DMA is not the PPU’s
primary VRAM for two reasons. First, using a secondary
buffer means that if the transfer takes too long the previous
frame can simply be repeated. Next, if the transfer was sent

directly to VRAM, it would have to take place during the
vertical blank period of the frame, which is infeasible due to
the short length of this time. Instead, the proposed solution
will send data to an internal buffer, which will be
transferred to VRAM during the vertical blank period. The
drawbacks of this design are that the PPU may not take
requests during the vertical blanking period, and that twice
the size of VRAM must be used in M10K memory.
However, given its great advantages over the other
proposed design, this is the one which was selected for
implementation.

V. SYSTEM DESCRIPTION

Fig. 2. System Interconnect Diagram

A. System Interconnect
Our system utilizes the DE10-Nano’s Cyclone V SoC.

The PPU, APU, and I/O are to be implemented in FPGA
fabric, while the CPU is to be implemented using the HPS.

Our system interconnect is detailed in Fig. 2. The red
blocks are custom logic that we will develop on our own.
The grey blocks are fixed or physical devices which we do
not implement. The yellow blocks consist of logic from one
of three categories:

1. Logic reused from DE10-Nano demo code
provided by Altera.

2. Logic generated by Quartus/Platform-Designer.
3. Interconnect which needs to be configured/enabled

in Quartus/Platform-Designer.
The major interconnects in our system utilize Intel’s

Avalon bus architecture due to its simplicity and how easily
HDL can be generated and written for it.

The CPU uses a 64-bit Avalon bus connected to the
high-speed HPS to FPGA Interface. This bus is used to
transfer sprite, tile, and pattern data into the PPU’s VRAM.
The APU takes a different 64-bit Avalon bus, which is more
directly connected to the on-board SDRAM.

A 32-bit Avalon bus is used by the CPU to write to APU
and PPU control registers. Altera recommends that this
Lightweight HPS to FPGA Interface be used for
low-bandwidth requirements such as this [5, section 9.11].
The CPU also uses this interface to read the SNES

6
18-500 Design Review Report: 03/17/2021

controller state from the IS.
To generate HDMI video/audio output, the PPU and APU

communicate with a physical HDMI TX Controller chip
(ADV7513) via a modified HDMI Generator from Terasic’s
HDMI_TX demo code. More specifics are included in the
HDMI Generator section below.

Not shown in the above diagram are interrupt signals
from the FPGA to the HPS. These signals are used to
provide the CPU’s Linux kernel modules timing signals for
the PPU and APU. More detail regarding the specific
signals will be covered in the APU and PPU sections below.

B. HDMI Generator

Fig. 3. HDMI Generator Block Diagram

The HDMI Generator consists of mainly reused logic
from Terasic’s HDMI_TX demo (included in an online CD
for the DE10-Nano [6]).

The HDMI Config block uses 20KHz I2C to program the
control registers of the ADV7513 HDMI TX Controller IC.
the DE10-Nano’s external HDMI transmitter chip. These
control registers are used primarily to configure the HDMI
video and audio formats.

A small FSM loops the I2C write protocol to send out
address-command-data strings to the ADV7513. We adapt
this HDMI Config block to our needs by customizing the
list of commands to send out. In particular, we program the
ADV7513 to output 640x480@60Hz video, and 16-bit
32-KHz audio. To meet these formats, our PPU scales up its
320x240@60Hz video output, and our APU scales up its
8-bit 32-KHz PCM audio output.

The HDMI Video Output block is partially implemented
by the Terasic HDMI_TX demo. It currently draws a static
debug pattern to the screen. We will change it to accept
pixel output from our PPU. A notable feature of the HDMI
TX Controller is that the video signals it requires as input
are very close to standard TV/Monitor video standards such
as VGA. The timings for signals such as VBLANK and
HSYNC are copied directly from VGA timings. This
familiar video signal is automatically translated to HDMI
by the ADV7513 IC and sent to the physical HDMI output
port on the DE10-Nano.

The Video Timing Generator will bridge the PPU and
HDMI Generator by handling precise timings and
forwarding the pixel color inputs to the HDMI Video
Output when they are needed. The Video Timing Generator
will send a signal to the PPU before the first pixel of a
frame is needed so that the PPU has enough time to do its

memory fetches and calculate the pixel.
The HDMI Audio Output block is also partially

implemented by the Terasic HDMI_TX demo. The demo
only plays a sine-wave from a look-up table, so we will
need to adapt this block to accept PCM samples from the
APU’s sample buffers.

C. Pixel Processing Unit (PPU)

Fig. 4. PPU Block Diagram

At a high level, the PPU is implemented as a
MMIO-accessible double-buffered VRAM and set of
control registers. Each PPU VRAM is implemented as a
collection of smaller, parallel M10K memories, organized
by the type of data they store. The types of data and how
they are organized in VRAM is explained in Table II below.
Separating the VRAM as we have enables the PPU Logic to
perform parallel reads to different VRAM sections, which
allows for parallelization of pixel-color calculations.

TABLE I. VRAM ORGANIZATION AND USE

Section Size Purpose

BG Tile Memory 8 KiB
For each background tile, stores
pattern address, palette address, and
horizontal/vertical mirror controls.

FG Tile Memory 8 KiB Same as BG Tile Memory, but only
for foreground tiles.

Sprite Memory 320 B

Stores on-screen position, pattern
address, pattern width and height,
palette address, horizontal/vertical
mirror controls, FG/BG priority.

Pattern Memory 32 KiB

Contains 4-bit color addresses (to
index into a 16-color wide palette) for
each pixel of every tile or sprite
image.

Sprite-Palette
Memory 2 KiB Contains 32 16-color wide 24-bit

depth palettes for Sprites.

BG-Palette 1 KiB
Contains 16 16-color wide 24-bit
depth palettes for use by the BG tile
layer.

FG-Palette 1 KiB
Contains 16 16-color wide 24-bit
depth palettes for use by the FG tile
layer.

In total, the expected M10K usage by both VRAMs in
our design is around 15.03%.

There are two important features of our double-buffered
VRAM design:

1. Allows the CPU more time to transfer video data
every frame. Instead of being limited to the
VBLANK (non-display) period like the single
VRAM implementation would require, the CPU
can now transfer to the VRAM not in use during

7
18-500 Design Review Report: 03/17/2021

the frame’s display time instead of in VBLANK.
2. In the case that the CPU does not finish the

transfer the user’s program requires in the allotted
time, a double-buffer implementation provides a
fall-back mechanism: Simply display the next
frame using the previous VRAM and allow the
CPU to finish the new VRAM transfer. This
“drops the new frame”, causing a visual pause or
stutter, but avoiding visual glitches.

However, these features do not come for free. The
double-buffered VRAM design introduces a mandatory
sync period where the most-recently updated VRAM must
sync its data with the previously used VRAM. It is
mandatory for our design, because otherwise, the CPU
would need to transfer double the data to keep both buffers
up to date - which limits how much useful transfer can be
done in between drawing frames. Therefore, when the CPU
transfers to the PPU’s VRAM, it must obey certain timings
in order to prevent overwriting of the buffers while they are
synchronizing.

Fig. 5. PPU-CPU Communication Timings FSM

As shown in Fig. 5 above, there are two main states for
the PPU concerning the CPU: The PPU is either currently
drawing a frame (labeled DRAW) using VRAM, or it is
waiting for the start of the next DRAW period (VBLANK).
We choose to use this downtime between DRAW states to
synchronize and swap the VRAMs.

The CPU can only write to the VRAM not currently in
use by the PPU Logic during the DRAW state. We choose
to let the CPU write to the other VRAM during the DRAW
period (as opposed to the VBLANK period) since we want
the CPU to have more time to transfer data over the Avalon
Bus. The synchronization between VRAMs during
VBLANK is expected to require a relatively shorter
duration anyways, since writes between these VRAMs can
be parallelized on FPGA-fabric.

Not shown in Fig. 4 is the Lightweight Avalon Bus which
allows the CPU to write to control registers directly in the
PPU Logic (see Fig. 6). These registers include:

● Layer Enable/Disable: Enable or disable rendering
of particular layers independently (Foreground,
Background, or Sprite).

● Universal Background Color: Set the default color
for the PPU to use when overlapping pixels on all
three layers are transparent.

● Foreground/Background Scroll: Independently set
the scroll amount in both X and Y directions. This
tells the PPU how many pixels to shift the final
image by.

Fig. 6. PPU-Logic Block Diagram

The PPU logic consists of three main sources of pixel
color: Two Tile Engines and one Sprite Engine. The two
Tile Engines are identical in structure, but calculate the
foreground and background tile graphics respectively.
Given the current scan line (row), the Tile Engine fetches
the tile data from Tile Memory for that row and uses the
addresses within to obtain the pixel values needed from
Pattern Memory. The Sprite Engine must read all of Sprite
Memory and decide based on the current scan-line which 16
out of 64 total sprites to display, minimizing the number of
fetches to Pattern Memory required. Once all three Engines
pick a color for the given pixel, the Pixel Mixer decides
which color to display based on implicit priority (FG takes
priority over BG) and sprite priority (sprites can choose
whether to appear above or behind the FG or BG).

D. Audio Processing Unit (APU)

Fig. 7. APU Block Diagram

The APU handles fetching and storing of 8-bit PCM

8
18-500 Design Review Report: 03/17/2021

32KHz sample buffers from SDRAM.
The Sample Fetcher tracks which buffer needs to be filled

next and periodically sends the CPU an interrupt to request
that a new buffer be placed in SDRAM.

The MMIO Control Registers in the APU allow the CPU
to set the address of a newly prepared sample buffer in
SDRAM

When the Sample Fetcher requires a new buffer, it reads
from SDRAM via the FPGA SDRAM Controller interface,
using the address supplied by the CPU in MMIO Controller
registers. These samples are upconverted to 16-bit PCM (to
adhere to the I2S standard) and are streamed out to the
HDMI Audio Output block, which handles the transmission
of PCM data to the HDMI TX Controller via I2S.

E. I/O Subsystem

Fig. 8. I/O Subsystem Block Diagram

Our system uses a SNES controller connected to the
DE10-Nano’s GPIO pins. Reading the SNES controller’s
inputs requires interfacing with a very simple protocol [7].
The I/O Subsystem drives the Data Latch GPIO pin high
every 1/60th of a second, which causes the SNES controller
to output the currently pressed buttons in a 16-bit serial
stream. These inputs are read into a 16-bit shift register,
which is then made available to the CPU via an MMIO
status register.

VI. PROJECT MANAGEMENT

A. Schedule
The first major deadline is for the Interim Demo.

Notably, the PPU’s major features as well as the APU in its
entirety are to be completed so that we can showcase the
visual and auditory components of our system. Around the
deadline, we will begin to develop a prototype game demo
to show off these features. We do not expect to fully
complete the game demo and user-facing documentation
until the Final Presentation/Demo.

Our schedule is noticeably frontloaded, as we expect our
other coursework loads to increase towards the end of the
semester. We have included 2 weeks of slack time towards
the end of our schedule for the purpose of finishing up any
small tasks.

See Appendix B for the project schedule Gantt Chart.

B. Team Member Responsibilities
Andrew is working on the Input Subsystem, APU, and

most Linux kernel modules. Before the interim demo,
Andrew will write a demo game to showcase the
functionalities the project has implemented at that point.

Joseph is working primarily on the PPU, and once
finished, will work on the PPU driver kernel module. After
the PPU work is complete, Joseph will assist in completing
the demo game for the Final Report and Presentation.

Both team members will work together on class-related
deliverables, such as presentations and reports.
Additionally, team members are working together and
providing feedback via internal design reviews.

See Appendix B for the project schedule Gantt Chart.

C. Budget
Our project is built to be cheaper than traditional

development kits. For reference, the official development
kit for the Nintendo Game Boy costs $4000 for a debugger
and $3000 for an FPGA-based emulator [4].

There are only two main components to our project that
our end users are likely to need to buy:

● The DE10-Nano development board was chosen
due to the cost-effectiveness (in terms of
features/price) that it offers. The cost for this board
is $135.

● A SNES controller is modified by adding
GPIO-compatible jumper cables to the controller’s
5 output wires. These are attached to the
DE10-Nano’s GPIO pins, which allows for user
input. The SNES controller costs $18.

More detailed information on our project budget and
end-user costs is provided in Appendix A. Notably, we
separate our personal project costs from those required of a
typical user without hobbyist supplies (cables, electrical
tape, etc.). Additionally, our personal costs incorporate both
the need to order 2x the project materials (due to remote
project development) and reuse/scavenging of some items.

D. Tools
To develop for the DE10-Nano’s Cyclone V SoC, we use

two sets of tools: Quartus and Platform-Designer for
building and configuring the FPGA components, and the
ARM-none-gnueabihf cross compilation toolchain for code
running on the HPS.

Quartus compiles our SystemVerilog and Verilog HDL
into a bitstream we can flash onto the SD Card along with
the Linux kernel and U-Boot bootloader.

Platform-Designer (formerly Qsys) is a sub-component
of Quartus which automatically generates interconnects
between IPs in a design. We use it to generate the Avalon
Buses between the HPS and FPGA components for our
design.

Additionally, for verifying the Input Subsystem’s polling
rate, Joseph will use his oscilloscope.

9
18-500 Design Review Report: 03/17/2021

E. Risk Management
We have identified two major risks in the project so far:

1. Unreliability in timing requirements with the PPU
and DDR3 memory access

2. Linux Kernel Module APU Uncertainty
The first major risk mitigation strategy we employed was

to redesign the PPU to be less dependent on SDRAM
timings. Our research into the Cyclone V SDRAM
controller and the external SDRAM IC showed us that
SDRAM contention between the CPU, PPU, and APU
causes read latency to be inconsistent. Since the PPU’s
video output requires consistent timings, and we could not
place a reasonable upper bound on the SDRAM read
latency without major assumptions, we decided to rework
the PPU’s interaction with memory entirely. The PPU’s
design now utilizes an M10K FPGA-fabric memory, which
provides consistent read and write timings. The CPU to
PPU memory write timing requirements were relaxed with
a double-buffer fall-back mechanism, ensuring no visible
glitches would occur in the case that the CPU spends too
long writing to PPU memory.

Another risk we have identified is in the APU system call

interface. Our APU system call will require a callback
function from the user to fill a new buffer. It may not be
possible to write a Linux kernel module which can call a
user mode callback function without also allowing the user
to “escape” into kernel mode; creating an unacceptable
security risk. If it proves impossible to directly force the
user into a callback function from the kernel module, an
alternative would be to use one of the C standards reserved
signals (SIGUSR1 or SIGUSR2) as a means of executing a
callback, and instead having the kernel module send a
signal to the users process as appropriate.

REFERENCES

[1] https://www.copetti.org/writings/consoles/nes/
[2] https://www.copetti.org/writings/consoles/super-nintendo/
[3] https://www.copetti.org/writings/consoles/game-boy-advance/
[4] https://www.retroreversing.com/gameboy-development-kit-hardware/

#is-cgb-emu-nintendo-game-boy-color-emulator
[5] https://www.intel.com/content/dam/www/programmable/us/en/pdfs/li

terature/hb/cyclone-v/cv_5v4.pdf
[6] https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=Engli

sh&CategoryNo=205&No=1046&PartNo=4
[7] https://github.com/marcosassis/gamepaduino/wiki/SNES-controller-i

nterface

https://www.copetti.org/writings/consoles/nes/
https://www.copetti.org/writings/consoles/super-nintendo/
https://www.copetti.org/writings/consoles/game-boy-advance/
https://www.retroreversing.com/gameboy-development-kit-hardware/#is-cgb-emu-nintendo-game-boy-color-emulator
https://www.retroreversing.com/gameboy-development-kit-hardware/#is-cgb-emu-nintendo-game-boy-color-emulator
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_5v4.pdf
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=1046&PartNo=4
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=1046&PartNo=4
https://github.com/marcosassis/gamepaduino/wiki/SNES-controller-interface
https://github.com/marcosassis/gamepaduino/wiki/SNES-controller-interface

10
18-500 Design Review Report: 03/17/2021

VII. APPENDIX

A. Project Bill of Materials (BOM)

TABLE II. DEVELOPMENT AND END-USER BOM

Development BOM End-User BOM

Item Quantity Price Item Quantity Price

DE-10 Nano 2 $135 DE-10 Nano 1 $135

SNES Controller 1 $17 SNES Controller 1 $17

GPIO-Compatible
Jumper Cable Set 1 $7

GPIO-Compatible
Jumper Cable Set 1 $7

SNES Controller 1 Reused Electrical Tape 1 $5

GPIO-Compatible
Jumper Cable Set 1 Reused

Total Price 294 Total Price 164

Links to purchase pages for project materials are included below.

DE-10 Nano FPGA Board ($135):
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046

SNES Controller ($17):
https://retro-bit.com/ryu-dual-link-controller-snes-pc-mac.html

GPIO-Compatible Jumper Cable Set ($7):
https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_6?dchild=1&
keywords=jumper+wires&qid=1615682122&sr=8-6

Electrical Tape ($5):
https://www.amazon.com/Wapodeai-Electrical-Temperature-Resistance-Waterproof/dp/B07ZWC2VLX/ref=sr_1_3?_enc
oding=UTF8&c=ts&dchild=1&keywords=Electrical+Tape&qid=1615682353&s=industrial&sr=1-3&ts_id=256161011

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=1046
https://retro-bit.com/ryu-dual-link-controller-snes-pc-mac.html
https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_6?dchild=1&keywords=jumper+wires&qid=1615682122&sr=8-6
https://www.amazon.com/Elegoo-EL-CP-004-Multicolored-Breadboard-arduino/dp/B01EV70C78/ref=sr_1_6?dchild=1&keywords=jumper+wires&qid=1615682122&sr=8-6
https://www.amazon.com/Wapodeai-Electrical-Temperature-Resistance-Waterproof/dp/B07ZWC2VLX/ref=sr_1_3?_encoding=UTF8&c=ts&dchild=1&keywords=Electrical+Tape&qid=1615682353&s=industrial&sr=1-3&ts_id=256161011
https://www.amazon.com/Wapodeai-Electrical-Temperature-Resistance-Waterproof/dp/B07ZWC2VLX/ref=sr_1_3?_encoding=UTF8&c=ts&dchild=1&keywords=Electrical+Tape&qid=1615682353&s=industrial&sr=1-3&ts_id=256161011

11
18-500 Design Review Report: 03/17/2021

B. Project Gantt Chart

TABLE III. FP-GAME GANTT CHART

