
FP-GAme
FPGA-Based Retro Game Development Console

Team C1: Andrew Spaulding, Joseph Yankel

Presenter: Andrew Spaulding

Agenda: Design Review + Q&A

Application Area

● Many people are interested in retro console development.
○ Often, the console matters less to hobbyists than the experience

● Software development for retro consoles is inaccessible.
○ Requires knowing very specific hardware details
○ Kits only sold to developers for high prices (~$2000), now collectors items.

● FP-GAme will provide a similar development experience
○ Cost will be kept in the range of $200.
○ Kernel modules will be used to hide unnecessary hardware details.
○ Similar experience, more accessible.

Solution Approach: The DE10-Nano

● Cyclone V with an ARM Core
○ High speed communication

● Input/Output on board
○ GPIO
○ HDMI

● Linux support
○ No need for custom kernel and

boot
● Lots of memory

○ 1GB DDR3
○ 553 M10K blocks

System Overview

● User uploads FP-GAme
source and game to SD
Card

● U-Boot flashes bitstream to
FPGA, boots Linux Kernel

● Linux Kernel runs user’s
game

● User accesses PPU, APU,
Input through Kernel Module

System Call Interface

● Controller Calls
○ Getting controller state and masks for parsing the state.

● Audio (APU) Calls
○ Registering a callback for when the buffer empties.
○ Sending a new buffer of samples.

● Graphics (PPU)
○ Rewriting Object Attribute Memory (OAM)
○ Rewriting tile data
○ Changing the scroll value
○ Rewriting the FG/BG Name Table
○ Rewriting palette data

MMIO Interface

● Controller I/O
○ (RO) Current state

● APU I/O
○ (WO) Next buffer

● PPU I/O
○ (WO) Control
○ (WO) Background color
○ (WO) Base addresses for data
○ (WO) Scroll settings

Source: Cyclone V HPS Technical Reference Manual (Fig. 2-3)

System Interconnect

● Utilizes Intel Avalon® Interface
○ Platform Designer (Qsys)

auto-generates buses.

● Hard Processor System (HPS)
○ Accesses APU, PPU, and Input

control registers via MMIO.

● FPGA
○ APU and PPU access SDRAM via

dedicated SDRAM Interface.

● Memory Fetch Interface
○ Handles and routes DDR3 read

requests for APU and PPU.

PPU Logic

● Video Timing Generator
○ Sends control/timing signals to

Tile Engines and Sprite Engines
● Pixel Mixer

○ Prioritizes one of Sprite,
Foreground, or Background
pixel outputs.

● Tile Engine
○ Displays tile graphics, fetched

from DDR3.
● Sprite Engine

○ Tracks and displays up to 64
sprites in various sizes.

APU Logic

● I2S Output
○ Partially implemented in

DE-10 Nano Demo files.
● MMIO Control Register

○ Tells Sample Fetcher
address of audio buffer
in DDR3.

● Sample Fetcher
○ Times memory fetches

to meet continuous I2S
requirement.

○ Shifts 8-bit audio
samples to 16-bit audio
to meet I2S standard.

Metrics and Validation
Component Test Pass/Fail Condition

APU Validate audio with 2 tests:
1. HDMI -> AUX cord to -> Computer recording.
2. Sampling rate limit alias test

Audio signal undamaged: Pass
Output audio does not alias: Pass

PPU Graphics stress test:
● Scroll both directions at 1 tile per frame
● Modify all of OAM every frame.

If test runs without visual glitches:
Pass.

Input Use oscilloscope to verify 60Hz controller sample rate. If sample rate ≥ 60Hz: Pass.

System Playable game which must implement:
● Scrolling foreground and background layer
● Sprites
● Input
● Audio

If system is able to run user
program without audio/visual
glitches: Pass

If not fun: Fail

Risk and Mitigation Strategy

● Consistent DDR3 access timing may not be achievable with high traffic.
○ Mitigation 1: Use M10K memory blocks as a cache. Download pixel/audio data long before it is

needed. M10K accesses are faster and timing is deterministic.

○ Mitigation 2: Use a fast dual-port M10K memory to hold all of PPU and APU data instead of

DDR3.

● User callback for the audio buffer may not be safe for a kernel module.
○ Mitigation: The C standard reserves 2 signals for user programs. Use one of these signals to

alert when the audio driver needs a new chunk of samples to be sent.

Updated Gantt Chart for Team C1

