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Abstract—Backpack Buddy is a backpack-based
smart inventory system designed for on-the-go stu-
dents. The system utilizes Bluetooth Low Energy tags
attached to items to actively track what items are in the
user’s backpack. Unlike existing commercial products,
which only focus on tracking individual items, Back-
pack Buddy manages collections of items in relation to
the user’s schedule, and notifies them when they are
missing items for their next event.

Index Terms—Asset-tracking, Bluetooth Low En-
ergy, Image recognition, Raspberry Pi Zero, RSSI,
Smart inventory, Web application, Django

1 INTRODUCTION

One of the most common struggles students face is try-
ing to keep track of their items between all the classes,
meetings, sports practices, or other events they may have.
Students can lose things like their wallets, keys, water bot-
tles, and even skateboards (as can be seen in the Facebook
group ”CMU Lost and Found”). It’s clear that there needs
to be a better way for students to keep track of their items
with their busy schedules.

Existing solutions involve social groups like ”CMU Lost
and Found” – however, this relies on the kindness of
strangers, the luck that your missing items are found, and
the fact that students are only notified retrospectively af-
ter their item has been lost – and the Tile tags or Ap-
ple AirTags, where tags are attached to each item and
are tracked individually. However, this often entails a large
burden on the user and isn’t manageable for large collec-
tions of items. Our project, Backpack Buddy, offers a bet-
ter asset-tracking solution by focusing on where these items
are stored to be moved around: the backpacks and bags of
students.

Backpack Buddy is a smart inventory system that in-
volves three components: (1) BLE tags on items to-be-
tracked (the same technology that Tile uses in their tags),
(2) A backpack-based scanner which keeps track of which
tagged items are inside the backpack, and (3) A mobile-
accessible web application which allows users to manage
their items in relation to their schedules. This application
will also have an image recognition component to stream-
line the item registration process.

Driven by our application area, we have specific design
requirements. At a high level, the main requirements of our
project are:

1. Detect what tags are in the backpack

2. Display the item list to the user and report of missing
or list items

For our specific, quantitative requirements, the BLE
tags should be easy to attach and unobtrusive, no larger
than 40 x 40 x 10mm. The scanner should have a less than
1 second delay for tag detection per tag and be able to accu-
rately detect 10 items within a 0.5-meter range (± 10cm)
with 100% accuracy and last 18 hours without recharge
while fully operating. For the phone application, the inter-
face delay between when an item is added/removed to the
backpack should be less than 3 seconds per item, and the
item recognition built into the application should have at
least 80% accuracy (i.e. out of the three names suggestion,
the correct name should be one of the options at least 80%
of the time).

2 DESIGN REQUIREMENTS

Based on the use case and application area for our prod-
uct, we determined quantitative metrics which our system
should meet. Whether or not our product meets these re-
quirements will illustrate how effective our product is and
demonstrate how good our work has been.

2.1 Hardware Requirements

For tag communication and detection, we require that
the scanner have a delay of less than 1 second between when
a tag is removed or placed into the backpack and when the
system detects the tag’s changed status. This requirement
ensures that a user will have updated information about
their backpack’s contents in a prompt manner at all times.
Additionally, the scanner must accurately detect and iden-
tify 10 tags placed within a 50 (± 10) centimeter sphere
of the backpack device with 100% accuracy. Our system is
designed to help users track their items, so it must itself
be capable of accurately determining what items are in the
backpack. We have chosen to test with 10 items, as that is
the maximum number of major items that we believe a user
will need to track (we do not expect users to tag individual
pencils, for example). We have also chosen 50cm as the cut-
off distance because it is the size of an average backpack,
and we gave ourselves a ±10cm error range (a tag could
be included up to 60cm away, and excluded up until 40cm
away) as backpacks vary in shape and size, and therefore
it is ultimately up to the user to ensure that there are no
items near the backpack but not in the backpack when they
use the system. Finally, the backpack system must last 18
hours without recharge while fully operating, as we have
determined this to be the maximum amount of time that a
student will spend away from their home before returning
on a typical school day. We will test the latency for tag
detection by placing a tagged item into the backpack and
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timing when the system updates the item’s status as in the
backpack. We will do the same for removing the item from
the backpack, and time when the item’s status is updated
to being outside of the backpack. We will test the 10 items
within 50 (± 10) cm by placing 10 items within the back-
pack itself and checking whether the item list produced by
the system displays the ID’s of all 10 tags correctly. To test
the battery life of the backpack device, we will place 10
tags in the backpack to maximize the power consumption
of the system, and we will also alternate between removing
a tag from and replacing that tag into the backpack every
30 minutes. If the system is still on after 18 hours, then it
will pass the test.

2.2 Machine Learning Requirements

During registration of items with our web application,
the item recognition component of our system will sug-
gest three names for each item based on the three highest
ranked options produced by our CNN model. We require
that, for 80% of items, at least one out of the three sug-
gested names will be the correct category for that item.
This requirement ensures that our item recognition com-
ponent actually proves useful to the user. To test this re-
quirement, we will input images from a dataset of 21 com-
mon items a student would carry and see what percentage
of the images the model is able to correctly identify within
its top 3 highest classifications. Initially, our requirement
for item recognition accuracy was only 60%. However, after
training the ML classification model on thousands of im-
ages, we discovered that the image recognition component
is able to exceed our initial requirement of 60% accuracy.
Thus, to further decrease the user’s burden of manually
typing all the item information when registering the item,
and to improve our system, we have instead decided that
80% accuracy is a more appropriate requirement than 60%
accuracy.

2.3 Web Interface Requirements

In addition to the scanner tag detection delay require-
ment, we also require that the web interface delay be less
than 3 seconds from when the scanner reports a change in
item status. To test this requirement, we connected the web
application to our backpack-mounted system, and placed
and removed items from the backpack. We then timed how
long it took after the scanner item list is updated for the
web interface to update. The total update delay will be the
sum of both the scanner tag detection delay and this web
interface update delay.

We also required our web interface application to be
able to manage scheduling of up to 25 weekly events. We
chose this requirement of 25 weekly events because that
is the maximum number of events a student may need to
attend per week. To test this requirement, we created 25
events through the web application. We then closed the web
page and reopened the web page and checked that all 25
events were still displayed correctly on the web interface.

Finally, we required that notifications must appear at
the correctly specified notification time for each event, no-
tifying the user if they are currently missing any items in
their backpack that are required for their event. We tested
this by creating events with notification times on trials
where:

1. All items required for the event were already in the
backpack

2. The user was missing at least one item from their
backpack required for the event

and checking that each notification properly notified the
user of the status of their items for each event at the cor-
rect notification time.

Our justification for this requirement is that it’s one
of our critical requirements for our use case – that users
are able to keep track of items in their backpack for their
events, and that our system will notify them should they
be missing any necessary items.

3 ARCHITECTURE OVERVIEW

There are three main modules to our project: the
backpack-mounted Raspberry Pi scanner system, the web
application to manage items and events, and the machine-
learning-based image recognition module for item registra-
tion.

The processes involved on the hardware side are illus-
trated in Figure 1. First, The BLE tags transmit their MAC
address information via Bluetooth to the scanner, which
will be an RPi Zero attached to a backpack or bag. The RPi
Zero uses a distance-pruning algorithm (which we wrote
ourselves) to determine which MAC addresses are coming
from tagged items within our 50±10cm range, to determine
whether or not an item is actually inside the backpack. The
list of items inside the backpack is then sent to the Python-
based Bluetooth GATT server which is also running on the
RPi Zero. This server handles connecting to the web app,
and sends the list of items to the web app once connected.

The web application design and its interaction with the
item recognition component are illustrated in Figure 2. On
the software side, our Web Application receives the list of
MAC addresses from the RPi Zero and uses it to create
the checklist interface where users are able to track which
items are currently inside their backpack. This list of MAC
addresses also helps feed information about which items
are missing for a specified event. As shown by our entity-
relationship diagram (see Figure 3), every user has multiple
events and multiple tagged items, and each event contains
a subset of all tagged items. This means that multiple or
no items are associated to each event that the user has,
as shown by the intersection table ”EventItems”. Users are
able to register each MAC address as an item and assign it
a readable name via the item registration process. This pro-
cess also features the image recognition component, where
users are able to take a photo of their item, and have 3
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Figure 1: Hardware Block Diagram
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Figure 2: Software Block Diagram

names suggested for that item which they can use, instead
of manually typing out the name of the item. In addition to
registering items, the user will create and schedule events
in the calendar. The user then assigns registered items to
each of these events. Alternatively, the user can utilize the
schedule learning feature to automatically assign items to
their events, based on their activity.

Figure 3: Entity-relationship diagram

To learn the user’s schedule, the schedule learning fea-
ture collects data about which tagged items are inside the
backpack at what times. By correlating these times with
events the user has scheduled, the schedule learning sys-
tem can determine which items are most often located in
the backpack during each event. After obtaining data in
the form of timestamps and item lists, the schedule learn-
ing system automatically assigns items to the events based
on which items appeared with at least 85% appearance fre-
quency. The system continues to refine the item lists as
the user attends more events. This automatic assignment of
items saves the user the burden of having to assign items to
events manually. Our image recognition component is built
into the web application during the onboarding process
when users are first registering their tagged items. Using a
phone’s camera, the user can take a picture of the item with
a physical tag. Figure 4 describes the image recognition and
classification process using Python. A Convolution Neural
Network (CNN) model, which is trained with scraped im-
ages from a search engine, will identify each item. These
scraped images are augmented by image processing tech-
niques to increase the size of the training data. Through
the CNN model, the classification of the input image is
given. The three highest ranked classifications will become
the top three suggestions for the item’s name.
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Figure 4: Overall Image Recognition Block Diagram

Figure 5: Overall System

4 DESIGN TRADE STUDIES

4.1 Controller Comparison

We chose to use a Raspberry Pi Zero W for Backpack
Buddy rather than other alternatives, such as an Arduino
or an FPGA. This was because writing a Bluetooth commu-
nication protocol program for either the Arduino or FPGA
was infeasible for our project. On the other hand, the Rasp-
berry Pi Zero W runs on the Linux-based Raspbian oper-
ating system. We can use the built-in BlueZ Bluetooth pro-
tocol stack for Linux to handle Bluetooth communications,
including scanning for tags and connecting to the user’s

smartphone. We chose the Raspberry Pi Zero W over other
Raspberry Pi models for its small form factor, low power
consumption, and built-in WiFi/Bluetooth antenna.

4.2 BLE vs. RFID

Once our team decided to build a smart-inventory sys-
tem, we had to compare existing asset-tracking technolo-
gies. Two of the most important considerations we made
were budget constraints and integration with other compo-
nents of our system, such as the web application. As shown
in Figure 6, BLE best fits our needs in terms of budget and
integration, particularly for smartphone compatibility [13].
Although RFID tags are quite cheap, their reader costs
far overextend beyond our allotted budget (1 would cost
anywhere from $800-$1600, which much overextends our
allotted budget). Individual BLE tags are more expensive
than RFID tags, and also have a limited battery life (2-5
years), however the tags can be read with any common
Bluetooth scanner, and BLE technology is already very
commonly used in many asset-tracking commodities such
as Tile. With its simple integration, smartphone compati-
bility, and budget-friendly reader cost, BLE is the correct
asset-tracking technology for our project.

Figure 6: BLE vs. RFID

4.3 BLE Distance Analysis

To determine which items are located within our back-
pack, we are using a distance-based gating algorithm. The
approximate distance of each item to the Raspberry Pi is
calculated from the received signal strength indicator value
associated with the item’s Bluetooth signal. To do the con-
version from power level in decibels of milliwatts (dBm) to
meters, we are using a formula published by David Young
in a blog post about contact tracing for COVID-19:[18]

d = 10
p−s
10n (1)

In this equation, d represents the distance in meters, p is
the measured power at 1 meter distance in dBm, s is the
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received signal strength in dBm, and n is a calibration con-
stant which represents how quickly the signal decays in air.
The constant p can be experimentally determined by aver-
aging the signal strengths of multiple beacons at 1 meter
distance from the Bluetooth sensor. The constant n can
then be determined by measuring the signal strength at
varying distances from 0.5m to 2m in 10cm increments,
and fitting the curve using least-squares.

Bluetooth distance estimates are not accurate enough to
provide centimeter-level precision, and the precision wors-
ens as the distance between the beacon and Bluetooth sen-
sor increases. For our purposes, we do not need precise dis-
tances, and the distance between the beacon and Bluetooth
sensor (the Raspberry Pi Zero) is short (less than 1 meter)
for the beacons whose distance we care about. Therefore,
Bluetooth distance estimation is suitable for our applica-
tion and eliminates the need to use triangulation or other
localization techniques to determine which items are in the
backpack.

4.4 Web App vs. Native Phone App

In both our proposal presentation and design review
presentation, we planned on developing a phone app for
Android phones in Kotlin using Android Studio. We chose
to develop specifically for Android devices for ease of test-
ing, as all three team members use Android phones. We
chose Kotlin over Java for its coroutines, code safety, and
other features that would be advantageous to our project.

However, we quickly ran into issues with Android Stu-
dio. Our two main concerns were the clunkiness of collab-
oration on Android Studio as well as the numerous errors
with Gradle, Android Studio’s builder.

Since our main focus was building our MVP as quickly
in preparation for the interim demo, we decided that the
best course of action would be switching to developing our
interface application as a web application. Not only does
this streamline collaboration between our team members,
it also offers more accessibility from more platforms instead
of Android phones.

4.5 Integrated Device

Our system incorporates a web app loaded on the user’s
phone to display the items present inside of the back-
pack. Another potential approach was to have an integrated
LCD panel in the backpack which would display the items
present, rather than a web app. The panel would have a
set of arrow and control buttons next to it to enable navi-
gation and configuration of the system. However, this inte-
grated system would have a number of disadvantages versus
a smartphone-based app.

First, the usability of our system would be reduced with
an integrated system. With a smartphone app, the user can
easily pull their phone out and quickly view what items are
in their backpack. Additionally, users are more accommo-
dated to navigating and using smartphone apps, versus a
novel integrated system where the user would have to learn

how to use the arrow keys to navigate the options on the
LCD panel. Although touchscreen LCD panels are avail-
able, they are more expensive than non-touchscreen LCD
panels, and often have worse touch detection than common
smartphones. Since most users already own a touchscreen
in the form of their smartphone, it was more sensible for
our system to integrate into the smartphone rather than
have its own dedicated touchscreen LCD panel. Moreover,
it would be difficult to design an integrated system that
would allow the user to interact with the system while
wearing the backpack. Such a design would require hav-
ing the LCD panel and controls on a separate arm that
would extend from behind the user (where the backpack
is) to the front. Having a smartphone-based app means the
user can simply look at their smartphone while wearing the
backpack and still have view and control of the system.

Second, the smartphone app enables more features than
an integrated system. The smartphone app allows the user
to schedule events and register new items which are tasks
that would be difficult to do with an integrated system.
Additionally, most smartphones have built-in cameras, so a
smartphone app allows the user to take images of new items
for the registration process. To implement this functionality
on an integrated system, we would have to include a camera
in the backpack, which would likely be lower quality than a
smartphone camera and increase cost. Smartphones usually
have cellular data, meaning that the app will have constant
access to the cloud server where the events and items are
stored. Although an integrated system could have WiFi ac-
cess, the integrated system’s internet access would be cut as
soon as the user left their home WiFi network, rendering
the system unable to communicate with the cloud server
while the user is travelling.

Given these factors, we decided to use a smartphone-
based web app as the user interface for our system, rather
than having a system fully integrated into the backpack.

4.6 Image Recognition Model

For the image recognition algorithm, a suitable machine
learning model needs to be trained. Among various ma-
chine learning models, including Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Logistic Regression,
we chose to use a Convolutional Neural Network (CNN) to
accomplish our image classification.

CNN’s are the best choice for image classification for
two main reasons. First, whereas other machine learning
models first require a separate step of feature engineer-
ing before the model can be trained, CNN’s automati-
cally extract features from the image datasets and therefore
do not require feature engineering. Using the learned fea-
tures, CNN’s use multiple layers extract the feature weights
through downsampling and convolution.[14] Finally, the
last prediction layer uses the feature weights to output the
classification result of the image.

The second reason the CNN model is superior to other
models is that CNN’s are scalable for large datasets. In or-
der to produce an accurate classifier, the model needs to be
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trained on a large number of labeled student items. Nor-
mally, the large number of images leads to more parameters
in a neural network, which makes the training of the model
exponentially more computationally heavy. However, the
multiple convolution filters present in the convolution lay-
ers of a CNN effectively reduce the dimensions of each the
image, reducing computational load. Even though the im-
age dimensions are reduced, the images still retain the in-
formation from the original image, resulting in efficient but
accurate image classification.[14]

4.7 Image Recognition Datasets

To train the CNN model for the image classifier, the
dataset of images needs to be generated. In machine learn-
ing, we need to increase the size of the training data to
achieve higher accuracy. One option of choosing an image
dataset is to use a pre-existing dataset such as ImageNet.
ImageNet is used for various CNN research papers and is an
appropriate dataset for the image classification task. How-
ever, since we only need to identify 21 common items that
students would carry in their backpacks, a dataset con-
taining a variety of images will decrease the classification
accuracy for the item recognition. Therefore, we decided to
scrape the images of student items from the search engine,
DuckDuckGo, using an Image Dataset Tool (IDT) image
scraper library.

There are several reasons that the IDT library is supe-
rior to other software libraries. First, the library is designed
around creating datasets specifically for training machine
learning models such as the CNN model for image classifi-
cation. IDT supports separation of training data and test
data, which prevents the model from training on test im-
ages and potentially skewing the test results.[11] Second,
the library supports standardization of the images, as im-
ages from search engine results are of different sizes and
aspect ratios. Using the IDT library, images can also be
downscaled and compressed for more efficient storage on
our AWS server while we are training the CNN model. Fi-
nally, the library allows for multiple searches with differ-
ent keywords. For example, when searching images for a
reusable water bottle, a user will search it by typing dif-
ferent keywords such as “water bottle,” “reusable water
bottle,” or “plastic bottle” for the same results. The IDT
library enables the user to put multiple keywords so that
the user can collect various images to better train the ma-
chine learning model.

5 SYSTEM DESCRIPTION

The hardware portion of our system consists of three
parts: 10 iBeacon tags attached to individual items, a
backpack-mounted Raspberry Pi Zero W with a recharge-
able battery and power controller, and the user’s smart-
phone. The control flow for our system starts with the
iBeacons. Each iBeacon tag broadcasts its UUID over Blue-
tooth every 500ms. Then, the Raspberry Pi scans for tag

UUID’s and determines which tags are close enough to be
considered inside the backpack based on the received signal
strength of each broadcast. The Raspberry Pi then trans-
mits the list of UUID’s of the tags inside the backpack to
the user’s smartphone via a Bluetooth connection. Finally,
The user’s smartphone handles events, item information,
and notifying the user when they are missing items.

5.1 iBeacon Tags

The iBeacons used by our system are the H1 Beacons
from Moko Technology Ltd.[10] These beacons are based
on the NORDIC nRF52 chipset and have adjustable trans-
mission power and broadcast intervals. For our project, the
H1 Beacons will be set to transmit at the lowest power
level (-12 dBm) and longest interval (1000ms) available.
This provides the maximum possible battery life for the
beacons, which is approximately 15 months as specified by
the datasheet. The dimensions of the H1 Beacons are 32.5
x 32.55 x 7mm with a weight of 7.8g. This is small enough
and light enough to be securely attached to most user items.
The beacons also feature a keyring hole, which allows the
beacon to be attached via a keyring to an item if the user
so desires. The beacons also have flat backs, and can be
attached via double-sided adhesive tape to items for which
a keyring is not suitable.

5.2 Raspberry Pi

The Raspberry Pi Zero in our system is powered by an
Anker 10000mAh portable USB power bank. The user will
be responsible for plugging in the power bank to charge ev-
ery night so that the power bank will have full charge the
next day. RPi Zero is running the Raspbian Lite operating
system. This OS only has a command-line interface instead
of a graphical desktop, to reduce the computational load on
the Raspberry Pi. At startup, the Raspberry Pi runs two
Python programs: the distance pruning algorithm, and the
Python Bluetooth GATT server. The distance pruning al-
gorithm utilizes a modified version of the Python aioblescan
package created by François Wautier.[16] Using this pack-
age, the algorithm continuously scans for Bluetooth beacon
advertisement packets. For each packet, the distance to the
beacon which sent the packet is determined by converting
the received signal strength indicator (RSSI) value into a
distance using Equation 1 found in section 4.3. The con-
stant n in the equation is set beforehand via calibration
tests done with power level measurements of multiple tags
at a set one meter distance. The distances are averaged
over an interval of 3 seconds, and any beacon whose aver-
age distance over this interval is within 0.5m is included
in the item list. The algorithm sends this item list to the
second program, the Python Bluetooth GATT server, once
every second. The Python GATT server is based off of an
example server created by Github user Douglas6 to report
Raspberry Pi CPU temperatures.[8] The GATT server ad-
vertises a GATT Service called ItemListService, which is
discoverable by Bluetooth-enabled devices. Upon receiving
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a request to connect, the GATT server produces the neces-
sary packets to establish a Bluetooth GATT connection. As
a BLE protocol, the GATT connection does not require an
pin code verification to connect. Once connected, the Item-
ListService has a Bluetooth ”characteristic” named Item-
ListCharacteristic. This characteristic has a string value,
with the string being a semi-colon delimited version of the
full item list. Thus, by reading this characteristic, the web
app instance running on the connecting device is able to
retrieve the item list off of the Raspberry Pi Zero via the
GATT server. The item list is transmitted once per second
via this method, and the web app updates its stored version
of the item list accordingly.

5.3 Smartphone Web App

Our web application was built using the Django frame-
work and hosted on the AWS Elastic Beanstalk service. We
used the Web Bluetooth API [17], which allows us to com-
municate with other Bluetooth devices via JavaScript, to
receive the list of MAC addresses of items currently inside
the backpack from the RPi Zero. This API retains the full
Bluetooth functionality of a native phone app, including
requesting and connecting to nearby BLE devices, read-
ing/writing Bluetooth characteristics & descriptors, and re-
ceiving GATT notifications when devices get disconnected.
The web application uses this list of MAC addresses to
create the checklist interface, where users can track which
items are currently inside the backpack.

The web application also manages (allows for the cre-
ation, editing, and display of) events and displays them on
a calendar-like interface. Code was referenced from Hui-
wen’s blog post on a Django Calendar system.[6] By design
of our system, users will have multiple events in their sched-
ule, where each event contains a subset of items from the
entire list of tagged items (i.e. each event can have mul-
tiple or no items associated with it). This is represented
as a ManyToMany relationship between Events and Items.
Users first create events manually in the web app. Then,
in a separate interface, the users register their items and
assign item names to tag MAC addresses. The CSS used
for this step is referenced from Petia’s CodePen project for
a MultiStep Form.[3] The user is then asked to take an
image of each new item. This image is then sent to the im-
age recognition algorithm, which suggests a name for the
item to the user. The user can choose to either accept the
suggested name or manually override the name. Once the
items and events are created, the user can choose to ei-
ther assign items to events manually, or have the schedule
learning feature automatically assign the items to events.
All events, items, and assignments of items to events are
then stored on the AWS server database for the web appli-
cation to retrieve later.

In order to make our web application mobile-accessible,
we had to make the server HTTPS compatible, as the Web
Bluetooth API only enables Bluetooth connections for se-
cured websites. To do so, we generated an SSL certificate
locally using openssl.[9] We then used the AWS Certificate

Manager to upload this certificate to AWS, then configured
the HTTP listener of our server to use the certificate to
support HTTPS connections. Finally, we then installed the
SSL certificate on the smartphone we used for testing. To
deploy our web application to the public, we would need to
obtain a true SSL certificate issued by a certified author-
ity, however obtaining one would have added cost to our
budget and was unnecessary for our small-scale project.

5.4 Notifications

Our system sends notifications for two scenarios – miss-
ing items and lost items – using web push notifications. For
our project, we used the Django-Webpush package to send
web push notifications.[7]

For missing items, the system scans through all events
tied to a user. If the notification time of an event is less
than or equal to the current time and if the event has not
yet been notified for, the system will begin drafting a no-
tification to send to the user. Two scenarios exist for the
kind of notification sent:

1. At the time of notification for an event, the user al-
ready has all the necessary items for the event in their
backpack

2. At the time of notification for an event, the user is
missing at least one item necessary from their back-
pack that is necessary for the event

In the first scenario, the system will simply send a noti-
fication to the user letting them know of their upcoming
event and that they already contain all the necessary items
within their backpack. In the second scenario, the system
will send a notification to the user notifying them of their
upcoming event as well as a list of all items missing for that
event.

For lost items, the system scans through all events tied
to a user. Both at the start time of an event and the end
time of an event, the system takes a snapshot of the item
list (i.e which items are currently inside the backpack at
that time). If the list of items at the end of the event is
shorter than the list of items at the beginning of the event,
the system notifies the user, letting them know that they
might have left an item behind at an event.

5.5 Schedule Learning

An additional feature of our software component is
the Schedule Learning feature, which automatically assigns
items to events. This is accomplished by continually taking
snapshots of the user’s item list (i.e. the items currently
inside their backpack) at various timestamps. When a user
chooses to opt an event into schedule learning, the sys-
tem begins scanning through all the snapshot pairs. If any
pair has a timestamp that falls within a schedule learn-
ing event’s time window (i.e. between the start time and
end time), then the items associated to that time stamp
have their counter for this event incremented by 1. The
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system continually assigns items with the counter values
greater than 85% of all counter values for a specific event.
The models used for schedule learning can be seen in the
pseudo-code below:

c l a s s TimeItemListPair :
user = ForeignKey ( User )
timestamp = datet ime
i t e m l i s t = ManyToMany( Item )

c l a s s ItemCounter :
event parent = ForeignKey ( Event )
counter = i n t
i tem parent = ForeignKey ( Item )

The automatic assignment of events reduces user bur-
den by eliminating the initial registration and manual as-
signment of items to events.

5.6 Image Recognition

Our image recognition was primarily developed using
Python. We chose Python because it is the most commonly
used language in machine learning development and can
be easily integrated with the web application, also written
in Python. Within Python, the CNN model was built us-
ing the Tensorflow and Keras library. Among various CNN
models, the image recognition module used the VGG16
model provided by the Keras library.[15] Code for the CNN
model that specifically used the VGG16 model was refer-
enced from Iftekher Mamun’s image classifier model.[1] The
overall CNN model was trained on an AWS server.

The CNN model was trained using a dataset of images
from the search engine DuckDuckGo scraped with an Im-
age Dataset Tool (IDT) library. Through the IDT library,
images of the 21 identified student items were collected.
250 images per item were collected for the training data
and 150 different images per item were collected for the test
data. The images used for the test dataset were scraped and
saved in different directories for testing purposes. Then the
training data images were augmented with image process-
ing techniques such as image distortions and mirroring to
create up to 1000 images per item (from 250) using Python
and MATLAB. This image augmentation was performed
to create multiple variants of a single image. This also ac-
counted for the user taking distorted or slanted photos of
items during registration. Additionally, validation data im-
ages of 150 images per item, which were also separate from
the training and test dataset, were collected. The main pur-
pose to add the validation dataset was to evaluate the per-
formance of a classification model and to tune the hyper-
parameter (number of epochs to train the model) from the
validation accuracy. The training image was then resized
to 224x224 pixels to feed into the VGG16 model. When
the image of any size is inputted from the web application,
the image is then resized to 224x224 pixels to fit to the
VGG16 CNN model, and the CNN model classifies the im-
age into one of 21 classes of items. The model outputs the
top 3 highest matching classifications and communicates

these to the web application. The user can select the cor-
rect classification result or manually input the information
if the classification results are inaccurate.

6 TEST & VALIDATION

Following the tests described in the design require-
ments, we tested our final product to determine whether or
not it met our specifications. Each component was tested
separately, as none of the tests tested the entire system at
once. A summary of each of the requirements and whether
or not they were met can be found in Figure 11 in the ap-
pendix. Overall, our system met the requirements on the
software side, however the system fell behind in latency
and item accuracy on the hardware side. With more time,
our system could be improved with more sensors (Blue-
tooth adapters), a more powerful processor (Raspberry Pi
4 instead of Raspberry Pi Zero), and further development
of the distance pruning algorithm to use advanced tech-
niques. For example, one technique we wanted to utilize
was Kalman filtering, as demonstrated by Wouter Bulten
in his project which also attempted localization using RSSI
values.[5] However, we did not have the time to refine the
filter enough for it to perform better than simple averaging
of RSSI values.

6.1 Results for Image Recognition Module

Our requirement for the item recognition accuracy was
80%. We tested the accuracy of image recognition module
with 3150 test images. The test images were randomly col-
lected from the original pool of student item images, with
150 images collected for each of the 21 categories. The item
recognition accuracy was calculated by the following equa-
tion:

Accuracy(%) =
Number of correct label predictions

Total number of test images
× 100

Specifically, the number of correct label prediction was in-
cremented when the correct naming of an image was found
out of top 3 highest classifications. After running the pre-
diction of the CNN model and comparing those predic-
tions with the actual labels of the student item images,
we found that the CNN model achieved 88.08% accuracy,
which meets our item recognition accuracy requirement.

To clearly show the performance of the image classifica-
tion model and to provide a general overview of the classifi-
cation results for 3150 test dataset, the confusion matrix is
shown in Figure 7. The purpose of the confusion matrix is
to compare the true labels with the labels predicted by the
machine learning model. Therefore, the confusion matrix
provides a holistic view of how well the machine learning
classification model performs.
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Figure 7: Confusion Matrix

Figure 7 shows the normalized confusion matrix of our
CNN model, providing the percentage of the classification
of the items. The x-axis of the confusion matrix represents
the labels predicted by the CNN model, and the y-axis of
the matrix corresponds to the actual label of the test im-
ages. Therefore, the diagonal from the top left corner to
the bottom right corner represents the correct image clas-
sification percentages. From the heatmap on the right of
the confusion matrix, we see the model correctly classifies
21 student items as intended greater than 80% of the time.

After implementing the CNN model, we also optimized
the number of epochs to train the model to result in the
highest classification accuracy. Therefore, we utilized a val-
idation dataset separate from the test dataset to evaluate
the performance of a classification model and tune the hy-
perparameter (number of epochs to train the model). For
machine learning models, more epochs to train the model
correlates to higher classification accuracy and lower loss.
However, more epochs means the model can overfit to the
training dataset. In other words, as the training time in-
creases, the model learns more of the details of the outliers
and the noise in the training dataset, therefore resulting in
lower classification accuracy.

To find the number of epochs to train the model that
result in the highest classification accuracy, we trained the
CNN model for a total of 50 epochs, and monitored the
validation accuracy over the epochs.

Figure 8: Training and Validation Accuracy and Loss of
Image Recognition Model over 50 Epochs

From Figure 8, we see that the training and valida-
tion accuracies tend to increase as the number of training
epochs increases, and that the training and validation loss
decreases as the number of training epoch increases. How-
ever, we see that the validation accuracy converges and the
validation loss actually increases in the epoch range of 15-22
epochs. This means that the model starts to overfit in this
range, and the training needs to be stopped around 15-22
epochs. To further refine the number of epochs to train for,
we calculated the accuracy of the CNN model with the test
image dataset for each of the number of training epochs
from 15 to 22.
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Figure 9: Test Accuracy of Image Recognition Model for
15-22 Epochs

Figure 9 shows the test accuracy from 15 epochs to 22
epochs. From the table, we find that the test accuracy in-
creases from 15 to 18 epochs, with 18 epochs reaching the
maximum test accuracy. After 18 epochs, the test accuracy
starts to decrease. Therefore, we decided to train the model
for 18 epochs, which resulted in 88.08%, the maximum clas-
sification accuracy.

6.2 Results for Item Delay Testing

Our initial requirements for item delay of our system
involved two components:

1. <1 second delay between an action (i.e. adding or re-
moving a tagged item to the backpack) and detection
of the tag on the RPi Zero

2. <3 second delay between detection of a tagged item
on the RPi Zero and display of the item on the web
application interface

The first of these requirements will be discussed in another
subsection below. However, for the second of these require-
ments, we conducted 10 timed trials between when the RPi
Zero detected a tag and when the tagged item was displayed
on the web application’s interface and found that the aver-
age time for this delay was 0.684, significantly below the 3
seconds delay requirement we had initially set.

6.3 Results for Battery Testing of Back-
pack Device

We tested the system battery life for 5 trials over the
course of 7 days, recharging the battery to full in be-
tween each trial. For each trial, the system was mounted to
the backpack, to simulate the thermal environment that it

would be expected to run in. 10 tags were then placed in
the backpack with the system, to simulate the maximum
item load and to place the maximum amount of stress on
the system. The system was also connected via Bluetooth
to a desktop computer running the web application. The
system was then timed until it stopped reporting the item
list to the web application. Over the course of 5 trials, the
minimum time the system lasted for was 18 hours and 43
minutes, while the average was 19 hours and 42 minutes.
Thus, even under the most strenuous of conditions, the sys-
tem lasted for longer than our 18 hour requirement on bat-
tery.

6.4 Results for Distance Pruning Algo-
rithm Testing

We utilized 2 different tests for testing the accuracy of
the distance pruning algorithm, and 1 test to determine the
latency of the algorithm. The first test we conducted was
our inclusion/exclusion distance measurements. For this
test, for each trial, we turned the system on, and placed
the tag at a point 100cm from the center of the backpack.
We then left the tag for 10 seconds. We then moved the
tag closer by 5cm, and left the tag sit for another 10 sec-
onds. This process was repeated, bringing the tag closer to
the backpack, until the tag was detected by the system, and
remained detected for the full 10 second duration. This dis-
tance was recorded as the inclusion distance for the trial.
Then, the tag was moved away from the backpack in in-
crements of 5cm, waiting 10 seconds at each distance. The
distance at which the tag was no longer detected by the
system was then recorded as the exclusion distance. We
conducted a total of 20 trials (20 inclusion distances + 20
exclusion distances), and got an average inclusion distance
of 47cm with a standard deviation of 10.0cm, while the av-
erage exclusion distance was 61cm with standard deviation
8.0cm. Although these average inclusion and exclusion dis-
tances were close to our requirement range of 50±10cm, 4
of the 20 trials had inclusion distances which not within
range, and 7 of the 20 trials had exclusion distances not
within range. Thus, our system is not very consistent in
the distance at which items are included/excluded from the
item list. For our second test, we placed a tag inside the
backpack, and left the tag in the backpack for 10 minutes.
The system then logged every time the item list changed.
We then counted the number of times the tag was erro-
neously changed, meaning its status changed from being in
the item list to not being in the item list. We did not count
the subsequent change of status from not being in the item
list to being in the item list as part of the count of erroneous
status changes. We ran this test 5 times, placing the item
at the bottom, middle, top, and two sides of the backpack.
Over the 5 trials, we got an average of 1 erroneous status
change per 10 minutes, with the worst position being the
bottom of the backpack. Although we did not have an offi-
cial requirement for erroneous status changes, an average of
1 per 10 minutes is not ideal, but means our system is still
usable and only rarely leaves items out of the backpack.
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For the latency testing, each trial consisted of placing a
tag into the backpack, and timing how long it took for the
system to update the item list. The tag was then removed,
and the system was again timed for how long it took to
update the item list. For 20 trials, the average latency af-
ter placing the item into the backpack was 4.93 seconds,
while the average latency after removing the item was 6.04
seconds. This latency does not meet the 1 second require-
ment we set during the design report. Although the latency
is higher than we expected, and our original requirement
was not met, an average latency of about 5 seconds is still
responsive enough to be usable. Users will still be able to
have the web interface updated with the correct item list
in a reasonable amount of time, just not as short of a time
as to be unnoticeable.

6.5 Results for Web Application

Additionally, we also had requirements for our web ap-
plication, and while these are less quantitative and more
focused on the functionality working correctly, these re-
quirements are critical to our product and its use case.
Two requirements of our web application were that it be
able to handle up to at least 25 weekly events, and that no-
tifications sent to the web application would both appear
at the correct time and notify the user if they are miss-
ing any items in their backpack for the event. To test the
first requirement, we created 25 events in the web applica-
tion throughout one week, and each event was successfully
stored in the calendar. To test the second requirement, we
conducted 10 trials: 5 trials involved the user already hav-
ing all items necessary for an event in the backpack, and 5
trials involved the user missing one or more items in their
backpack for an event. On all 10 trials, the system cor-
rectly notified the user at the correct notification time for
the event and properly notified the user if they were missing
any items with the list of missing items.

7 PROJECT MANAGEMENT

7.1 Schedule

Our schedule (see Figures 7 and 8 in Appendix A) has
remained largely the same since the design report. However,
two changes to our schedule did occur:

1. Due to a lack of time, we did not end up implementing
Bluetooth persistence (creation of an Android thin
client + a WebView of our web application)

2. Also due to a lack of time, we decided not to imple-
ment the sleeping protocol for the RPi Zero. From
the user’s perspective, not implementing this proto-
col means that the user does not need to wait for the
system to ”wake-up” each time they want to use our
system. Because our backpack device’s battery life al-
ready lasts 18+ hours, this change does not affect the
user too much.

Additionally, we had 2 weeks of slack time built into
the beginning and end of our schedule, and we largely con-
sumed all of our slack time towards the end of our schedule
to catch up to implementing the necessary components.
This also meant that our system wasn’t as refined as it
could have been. For example, our image recognition mod-
ule that was incorporated into our web application accepted
image files from the user’s device rather than prompting
them to take a picture during the registration process. This
is simply because we ran out of time for development at
the end of our project schedule, as we were preparing for
end-of-project deliverables such as the final presentation,
poster, video, and final demo.

7.2 Team Member Responsibilities

We divided up each team member’s primary responsi-
bilities based on the separate modules of our project as
well as the ECE area strengths of each member. Aaron was
responsible for the tags and Bluetooth scanner, Janet de-
veloped the web application, and Joon implemented the im-
age recognition component. For each member’s secondary
responsibilities, Janet worked on the Schedule Learning fea-
ture (this feature was originally assigned to all members,
but Janet completed her necessary tasks on the web ap-
plication and so was available to work on this), Aaron
worked on deployment of the web application to AWS Elas-
tic Beanstalk, and all three members worked on integrating
the image recognition component into the web application.
Janet and Aaron also worked together on the communica-
tion between the Bluetooth scanner and the phone appli-
cation.
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7.3 Budget

Figure 10: Bill of Materials

The bill of materials for our project can be found in
Figure 10. The items are separated by which component of
the system they are for. The green and red items are part
of the backpack system, with green being supporting com-
ponents for the Raspberry Pi Zero and red being power-
related items. The blue items are the Bluetooth-related
items for tracking and mounting to individual items. Fi-
nally, the yellow item is the AWS credits which we are
using for our AWS server database. Since the Design Re-
port, we have also purchased a backpack, 4 USB Bluetooth
adapters, USB extension cables, and a USB hub. These
were purchased as a result of changes to our design. We
mostly chose parts supplied by Amazon, which reduced
shipping costs as Amazon Prime has free shipping. We also
elected to purchase a Tile Bluetooth tracker tag to compare
the performance of our system with that of a similar ex-
isting product. We only purchased one copy of each of the
hardware items, since Aaron was the only team member
responsible for the hardware of our project. For software,
we requested AWS credits for all three team members as we
are all contributing to the software portion of the project.

7.4 Risk Management

We knew that our team had to be vigilant when it came
to communication and risk management plans, especially
as the three of us are located in three different time zones
(US Eastern Time, US Pacific Time, and Korean Standard
Time). Because our system is implemented in three distinct
modules, we also knew that many issues could appear dur-
ing integration, and this is why we set aside time specifically
dedicated to integration tasks.

One of the largest risk areas of concern in our project
was the ability to accurately determine which items are in
the backpack. With a gating algorithm based on a single
distance to a single Bluetooth sensor (the Raspberry Pi
Zero), the shape of the included volume is approximately a
sphere centered on the sensor. We believed that, by placing
the Raspberry Pi at the center of the backpack, the spher-
ical shape will be close enough to the backpack’s shape to
determine which items are in the backpack. However, if the
single-distance-based gating algorithm is unable to exclude
items that are near the backpack but not inside the back-
pack, our risk mitigation plan was to utilize a trilateration
approach using a total of 4 Bluetooth sensors spaced around
the backpack to obtain a 3D location for the item. The tri-
lateration approach and algorithm is discussed in Pu, Pu,
and Lee’s ”Indoor Location Tracking using Received Signal
Strength Indicator” paper.[12] We will use the trilateration
approach as opposed to the triangulation approach, as it is
easier for our system to determine the distances between
each of the 4 sensors than to determine the angles between
them.

Another risk element was the issue of using Android
Studio to build our phone application. After discussing
amongst ourselves as well as with our TA, we decided to
switch to building a mobile-accessible web application after
the design review presentation for multiple reasons. First,
the group collaboration for the development process would
be much more streamlined compared to development in An-
droid Studio, as Visual Studio Code (which we would user
for web application development) has better Git integra-
tion than Android Studio. Second, a web application offers
greater accessibility to different platforms such as iOS than
an app designed only for Android. Additionally, 2 out of 3
of our team members already have prior experience with
web application development, as opposed to Kotlin which
none of us have experience with. We also did extensive re-
search and found the Web Bluetooth API, which will allow
us to communicate with Bluetooth devices over JavaScript,
so our system would still maintain the Bluetooth function-
ality. Finally, if we found that we needed a component of
native functionality that was missing from this web appli-
cation, we could use the WebView functionality to build
any necessary native features in Android Studio port them
deliver to our web application.[4]
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7.5 AWS Credit Usage

Our project would not have been possible without Ama-
zon Web Services. We used the AWS Elastic Beanstalk ser-
vice to host our Django-based web app, as it provided a
quick and simple way to get our project up and running.
We did encounter some roadblocks while setting up the
server, however the AWS documentation provided us with
the necessary solutions to solve our problems and get past
these roadblocks. We would like to thank AWS for provid-
ing us with free AWS credits. Although our usage ended up
falling within the free usage tier, and therefore no credits
were used, having the credits gave us the assurance that we
could still work on our project even if our usage exceeded
the free limits.

8 ETHICAL ISSUES

Possible ethical issues regarding our project include
data privacy of users, possible security vulnerabilities, and
lack of accessibility. For example, one possible edge case in-
volves a scenario where hackers might be able to steal data
from our app. Since our app collects data regarding what
events users might attend and what items they have in
their backpack, revealing this data would be a large breach
of privacy. Additionally, if our project became an actual
commercial product, one ethical issue (that’s become quite
common these days) is that we, the owners of the product,
could voluntarily sell this data to advertisers for marketing
purposes. For example, knowing the events a person might
attend or the items they frequently carry can give a large
advantage to online advertisers looking to target their ads
to each individual user.

The people that might be affected adversely by these
edge cases include any user of our product. Since our prod-
uct is targeted towards students, specifically college stu-
dents, they become a group that would be vulnerable to
data leaks or target advertising.

Possible approaches to mitigating potential foreseen ad-
verse impacts include improving the security of our web
application (for example, depending on tokens rather than
links for our forms), getting a real SSL certificate from a
certified authority, and including a user agreement for users
who sign up that we intend to collect data about the items
they have in their backpacks. This user agreement would
inform users about the fact that their item data is being
collected, and warn them about the potential dangers of
this data being released.

9 RELATED WORK

There are currently several other existing asset-tracking
products which help users keep track of their items. One
popular existing technology in this space is Tile, a small
Bluetooth-based tracking tags that allows the user to lo-
cate the missing items so long as they are attached to a tag.
Backpack Buddy and Tile share some common features.

For instance, both require physical tags to be attached to
the items to track the items, and both use Bluetooth Low
Energy (BLE) technology to communicate with the tags.
Both products also utilize the smartphone app to interface
with the user. However, while Backpack Buddy and Tile
share some similarities, Backpack Buddy differs from Tile
in two major ways. First, Backpack Buddy allows students
to manage collections of items in relation to their sched-
ule, whereas Tile only tracks and locates individual items.
Second, Backpack Buddy has reduced user burden with re-
gards to item registration. Backpack Buddy uses computer
vision to automatically determine item names, saving the
user effort when naming items. Backpack Buddy also learns
the user’s schedule, such as what items a student might
carry in the backpack when and where, saving the user
from needing to manually assign items to events.

Additionally, Apple recently released their new Apple
AirTags, which also utilize Bluetooth Low Energy to con-
nect to an app on your phone. However, AirTags are spe-
cialized in that they focus on tracking individual tagged
items (again, similar to Tile) using ultra-wideband tech-
nology and using Apple’s network of existing devices as
crowd-sourced beacons to ping each other and determine
the location of your tagged item.[2] Thus, AirTags also lack
the item collection management or scheduling capability
which Backpack Buddy has. AirTags do, however, have the
advantage that tags can be located virtually anywhere on
the globe, unlike Backpack Buddy, which only locates tags
in range of a backpack.

One CMU ECE Capstone project from the Spring 2020
semester called Sous-Chef also shares similarities to Back-
pack Buddy. Sous-Chef is a smart pantry storage unit that
keeps a list of groceries currently inside a pantry. Sous-
Chef is similar to Backpack Buddy in that it registers a
food item to a database using computer vision and image
processing of barcodes on food products. Sous-Chef also
provides a streamlined user experience by displaying the
list of food items on a web application. However, Sous-
Chef has a different use case than Backpack Buddy, as it
is intended for tracking of food items in a pantry, whereas
Backpack Buddy is designed for tracking schoolwork- or
extracurricular-activity-related items in a backpack.

10 SUMMARY

With their busy schedules and plethora of items to
track, students often lose or forget important items for their
events. A smart inventory system is therefore extremely
valuable for managing tracking items, saving students from
the burden of having to remember items and the anguish
from forgetting them. Backpack Buddy not only informs
students what items are inside their backpack, but also
suggests what items to bring according to the students’
schedules and notifies them of their missing items before
each event. We intend to improve the lives and mental well-
being of students with our easy to use inventory system.
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10.1 Lessons Learned

We have learned a lot about teamwork and communica-
tion through working on Backpack Buddy. We also learned
a lot about the value of planning ahead, as we found our
Gantt Chart to be one of the most important sources of or-
ganization and tracking for our project’s progress. Because
our teammates were all spread across the globe, develop-
ment was difficult, and we learned that detailed communi-
cation and frequent pushes to GitHub for version control
were important for effective teamwork.

Glossary of Acronyms

• API – Application Programming Interface

• BLE – Bluetooth Low Energy

• CNN – Convolutional Neural Network

• GATT – Generic Attributes Profile

• MAC – Media Access Control

• MVP – Minimum Viable Product

• RFID – Radio Frequency Identification

• RPi – Raspberry Pi

• SSL – Secure Sockets Layer

• UUID – Universally Unique Identifier
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Figure 11: System Requirements and Results
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Figure 12: Gantt Chart First Half
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Figure 13: Gantt Chart Second Half


	INTRODUCTION
	DESIGN REQUIREMENTS
	Hardware Requirements
	Machine Learning Requirements
	Web Interface Requirements

	ARCHITECTURE OVERVIEW
	DESIGN TRADE STUDIES
	Controller Comparison
	BLE vs. RFID
	BLE Distance Analysis
	Web App vs. Native Phone App
	Integrated Device
	Image Recognition Model
	Image Recognition Datasets

	SYSTEM DESCRIPTION
	iBeacon Tags
	Raspberry Pi
	Smartphone Web App
	Notifications
	Schedule Learning
	Image Recognition

	TEST & VALIDATION
	Results for Image Recognition Module
	Results for Item Delay Testing
	Results for Battery Testing of Backpack Device
	Results for Distance Pruning Algorithm Testing
	Results for Web Application

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget
	Risk Management
	AWS Credit Usage

	ETHICAL ISSUES
	RELATED WORK
	SUMMARY
	Lessons Learned


