18-500 Design Report - March 17, 2021

Page 1 of 11

Backpack Buddy

Authors: Joon Cha, Aaron Li, Janet Li: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Backpack Buddy is a backpack-based
smart inventory system meant for on-the-go students.
Based on which tagged items are packed inside a bag
or backpack, it utilizes Bluetooth Low Energy tags
(similar to Tile) on items for active asset-tracking in a
backpack. Unlike existing technologies, which only fo-
cus on tracking of individual items, Backpack Buddy’s
web application allows users to manage collections of
items in relation to their schedules.

Index Terms—Asset-tracking, Bluetooth Low En-
ergy, Image recognition, Raspberry Pi Zero, RSSI,
Smart inventory, Web application

1 INTRODUCTION

One of the most common struggles students face is try-
ing to keep track of their items between all the classes,
meetings, sports practices, or other events they may have.
Students can lose things like their wallets, keys, water bot-
tles, and even skateboards (as can be seen in the Facebook
group "CMU Lost and Found”). It’s clear that there needs
to be a better way for students to keep track of their items
with their busy schedules.

Existing solutions involve social groups like ”CMU Lost
and Found” — however, this relies on the kindness of
strangers, the luck that your missing items are found, and
the fact that students are only notified retrospectively after
their item has been lost — and the Tile application, where
tags are attached to each item and are tracked individu-
ally. However, this often entails a large burden on the user
and isn’t manageable for large collections of items. Our
project, Backpack Buddy, offers a better asset-tracking so-
lution by focusing on where these items are stored to be
moved around: the backpacks and bags of students.

Backpack Buddy is a smart inventory system that in-
volves three components: (1) BLE tags on items to-be-
tracked (the same technology that Tile uses in their tags),
(2) A backpack-based scanner which keeps track of which
tagged items are inside the backpack, and (3) A mobile-
accessible web application which allows users to manage
their items in relation to their schedules. This application
will also have an image recognition component to stream-
line the item registration process.

For each of these components, we have specific design
requirements. The BLE tags should be easy to attach and
unobtrusive, no larger than 40 x 40 x 10mm. The scanner
should have a less than 1 second delay for tag detection
per tag and be able to accurately detect 10 items within
a 0.5-meter range (£ 10cm) with 100% accuracy and last
18 hours without recharge while fully operating. For the
phone application, the interface delay between when an

item is added/removed to the backpack should be less than
3 seconds per item, and the item recognition built into the
application should have at least 60% accuracy (i.e. out of
the three names suggestion, the correct name should be one
of the options at least 60% of the time).

2 DESIGN REQUIREMENTS

We've planned tests for each of the requirements that
our system must meet. For the tag communication and de-
tection, we require that the scanner should have less than a
1 second delay for tag detection and be able to accurately
detect 10 items within a 0.5-meter range (£ 10cm) with
100% accuracy and last 18 hours without recharge while
fully operating. We will test the latency for tag detection
by placing a tagged item into the backpack and noting when
the scanner is able to receive its signal. We’ll plan to tag
10 items within a 0.5-meter range (+ 10cm). More strictly,
we’ll place these 10 items within the backpack itself and test
whether the item list from the scanner displays all 10 ID’s
of the tags correctly. This is a significant requirement, as it
lies at the core of our project’s goal and interference from
BLE tags may prove to be a significant problem (as further
discussed in the ”Risk Management” section). To test the
battery life of the backpack device, we plan on changing
the item list, either by adding or removing a tagged item
from the backpack, every 30 minutes to avoid low power
consumption and checking whether the system is still func-
tional after 18 hours.

The item recognition component will suggest three
names for each item based on the three highest ranked
options from the model. Our 60% accuracy requirement
entails that one out of the three suggested names is the
correct one. We'll test this requirement thoroughly with a
curated dataset of 21 common items a student would carry
and see whether the model is able to correctly identify each
image within its top 3 highest suggestions.

To test the interface delay requirement (less than 3 sec-
onds) from an item change in our system, we’ll be calculat-
ing both the delay between when an item is added /removed
and the detection by the scanner as well as the delay be-
tween when the scanner reports the new item list and when
our interface will update. The total interface delay will be
the sum of these delays.

We will also need our interface application to manage
scheduling up to 25 weekly events. We chose this require-
ment of 25 weekly events since that’s about the average
number of events a student might attend per week. Events
will be stored in a database on the AWS server. These
events can either be manually created by the user or im-
ported from Google Calendar, depending on what the user

18-500 Design Report - March 17, 2021

Page 2 of 11

decides. Each event requires a subset of tagged items to be
assigned to that event. This can either be done manually
or through schedule learning.

Schedule learning is a feature that collects data about
which tagged items are inside the backpack at what times.
Using the user’s schedule of events, it automatically handles
the item assignment process (i.e. assigns items to events).
To avoid prolonged testing (e.g. it’s unfeasible to collect
2 weeks of data each time we’d like to test this feature),
we’ll be creating synthetic data for two parts: a fake col-
lection of data for which tagged items are placed inside the
backpack at specific times and days of the week, and the
”correct” schedule of a user that will be used to determine
how accurate our schedule learning is.

Once our project has met these requirements, we’ve ex-
plicitly planned in our schedule to make time for usability
testing. We’ll be testing whether our entire system is usable
from a recruited group of users and follow a think-aloud
protocol as well as a retrospective survey on the usability
of our system.

3 ARCHITECTURE OVERVIEW

There are three main modules to our project: the BLE
tags and the scanner, the web application to manage items
and events, and the image recognition for item registration.

The BLE tags will transmit their UUID information
via Bluetooth to the scanner, which will be an RPi Zero
attached to a backpack or bag. The RPi Zero will use a
distance-pruning algorithm (which we will write ourselves)
to determine which UUID’s are coming from tagged items
within our 0.5-meter (& 10cm) range, simulating whether
or not an item is actually inside the backpack. Once the list
of items within the backpack is determined, this list will be
communicated to our web application using Bluetooth.

Our Web Application will receive the list of UUID’s
from the RPi Zero and use it to create the checklist in-
terface where users are able to track which items are cur-
rently inside their backpack. This list of UUID’s also helps
feed information about which items are missing for a spec-
ified event. As shown by our entity-relationship diagram
(see Figure 2), every user has multiple events and multiple
tags, and each event contains a subset of all tagged items.
This means that multiple or no items are associated to each
event that the user has, as shown by the intersection table
”Eventltems”. These events can either be created manually
or imported as empty events from the user’s Google Cal-
endar and automatically populated with items from the
schedule learning feature.

Bluetooth

AWS Server

SQLite Database

o Event storage

e ltem catalog

e ltem Recognition
Processing

Internet

Item
iBeacon
Tag
& Bluetooth
Backpack
Raspberry Fi
Zero v
Bluetooth
Module -+
Ty
BlueZ
Stack
ltem 1D + Pruned
RSSI Item 1D

list

Distance
Pruning

SV Power T

oo

Sleepy Pi
RTC Controller

1 2V Power

Battery

Smartphone &

Web app

* [tem checking

» Event scheduling

* Google Calendar
syncing

s |tem Registration

* Schedule leaming

Item
Image

Camera

Hardware

[Software

New Existing

Figure 1: Overall System Block Diagram

User

UserlD: int
Name: varchar(255)
HomeAddr: varchar(255)

Bold = primary key
ltalics = foreign key

—<] = one-to-many

——<] Item

ltemID: int
Name: varchar(120)
ImagePath: varchar(50)

A

Eventltems

EventlD: int
ItemiD: int

Figure 2: Entity-relationship diagram

18-500 Design Report - March 17, 2021

Page 3 of 11

Smartphone
Web App
[tem ID list
from RPi 0
via Web L 4
Bluetooth API
User B
Interface
—-
Item image
Camera

Hardware

{ Software }

Existing
Missing items list
AWS Server
ltem Internet)
Checking | _ SQLite Database
Event list
Event New events Event e
. > table
Scheduling
-
Iltem catalog
e ltem
Registration New items table
T J
+ ltem name
Item
Recognition
Processing
Learned
Schedule events
Learning
Google
T calendar G |
events list cogle
Calendar API

Figure 3: Software Block Diagram

18-500 Design Report - March 17, 2021

Page 4 of 11

To learn the user’s schedule, the schedule learning fea-
ture collects data about which tagged items are inside the
backpack at what times. By correlating these times with
events from the user’s Google Calendar, the schedule learn-
ing system can determine which items are most often lo-
cated in the backpack during each event. After obtaining
two week’s worth of data, the schedule learning system au-
tomatically assigns items to the events based on appearance
frequency. The system continues to refine the item lists as
the user attends more events. This automatic assignment
of items saves the user the burden of having to assign items
to events manually.

Our image recognition will be built into the web appli-
cation during the onboarding process when users are first
registering their tagged items. Using a phone camera, the
user will take a picture of the item with a physical tag. Fig-
ure 4 describes the image recognition and classification pro-
cess using Python. A Convolution Neural Network (CNN)
model, which is trained with scraped images from a search
engine, will identify each image. These scraped images are
augmented by image processing techniques to increase the
size of the training data. Through the CNN model, the
classification of the input image is given. The three highest
ranked classifications will become the top three suggestions
for the item name.

Top 3
Image of Item Classification
of an Image
Python
Y
Scrapin
Ima?geg Ir::ggemg:;g CNN Classification
Per ltem DSP (image Model of Images
from Search (Identification)
Processing)
Engine

Figure 4: Overall Image Recognition Block Diagram

4 DESIGN TRADE STUDIES

4.1 Controller Comparison

We chose to use a Raspberry Pi Zero W for Backpack
Buddy rather than other alternatives, such as an Arduino
or an FPGA. This was because writing a Bluetooth commu-
nication protocol program for either the Arduino or FPGA
was infeasible for our project. On the other hand, the Rasp-
berry Pi Zero W runs on the Linux-based Raspbian oper-
ating system. We can use the built-in BlueZ Bluetooth pro-
tocol stack for Linux to handle Bluetooth communications,
including scanning for tags and connecting to the user’s
smartphone. We chose the Raspberry Pi Zero W over other
Raspberry Pi models for its small form factor, low power
consumption, and built-in WiFi/Bluetooth antenna.

4.2 BLE vs. RFID

Once our team decided to build a smart-inventory sys-
tem, we had to compare existing asset-tracking technolo-
gies. Two of the most important considerations we made
were budget constraints and integration with other compo-
nents of our system, such as the web application. As shown
in Figure 5, BLE best fits our needs in terms of budget
and integration, particularly for smartphone compatibility
[8]. Although RFID tags are quite cheap, their reader costs
far overextend beyond our allotted budget (1 would cost
anywhere from $800-$1600, which much overextends our
allotted budget). Individual BLE tags are more expensive
than RFID tags, and also have a limited battery life (2-5
years), however the tags can be read with any common
Bluetooth scanner, and BLE technology is already very
commonly used in many asset-tracking commodities such
as Tile. With its simple integration, smartphone compati-
bility, and budget-friendly reader cost, BLE is the correct
asset-tracking technology for our project.

Response Identification Identification + Positioning

+ Sensor
Frequency Range

3-5m per reader 5—50 m per reader

Reader Range 1-51t. 20 ft.
Reader Cost $1500 - $2000 $510-570
Tag Cost $0.10 $20
Enabled Sensor No Yes
Memory Storage No Yes
Integration Difficult Easy
Smartphone Compatibility No Yes
Battery Life Really Long 2-5Years

Figure 5: BLE vs. RFID

4.3 BLE Distance Analysis

To determine which items are located within our back-
pack, we are using a distance-based gating algorithm. The
approximate distance of each item to the Raspberry Pi is
calculated from the received signal strength indicator value
associated with the item’s Bluetooth signal. To do the con-
version from power level in decibels of milliwatts (dBm) to
meters, we are using a formula published by David Young
in a blog post about contact tracing for COVID-19:[11]

pP—sS

d = 10Ton (1)
In this equation, d represents the distance in meters, p is
the measured power at 1 meter distance in dBm, s is the
received signal strength in dBm, and n is a calibration con-
stant which represents how quickly the signal decays in air.
The constant p can be experimentally determined by aver-
aging the signal strengths of multiple beacons at 1 meter
distance from the Bluetooth sensor. The constant n can

18-500 Design Report - March 17, 2021

Page 5 of 11

then be determined by measuring the signal strength at
varying distances from 0.5m to 2m in 10cm increments,
and fitting the curve using least-squares.

Bluetooth distance estimates are not accurate enough to
provide centimeter-level precision, and the precision wors-
ens as the distance between the beacon and Bluetooth sen-
sor increases. For our purposes, we do not need precise dis-
tances, and the distance between the beacon and Bluetooth
sensor (the Raspberry Pi Zero) is short (less than 1 meter)
for the beacons whose distance we care about. Therefore,
Bluetooth distance estimation is suitable for our applica-
tion and eliminates the need to use triangulation or other
localization techniques to determine which items are in the
backpack.

4.4 Web App vs. Native Phone App

In both our proposal presentation and design review
presentation, we planned on developing a phone app for
Android phones in Kotlin using Android Studio. We chose
to develop specifically for Android devices for ease of test-
ing, as all three team members use Android phones. We
chose Kotlin over Java for its coroutines, code safety, and
other features that would be advantageous to our project.

However, we quickly ran into issues with Android Stu-
dio. Our two main concerns were the clunkiness of collab-
oration on Android Studio as well as the numerous errors
with Gradle, Android Studio’s builder.

Since our main focus is building our MVP as quickly
in preparation for the interim demo, we decided that the
best course of action would be switching to developing our
interface application as a web application. Not only does
this streamline collaboration between our team members,
it also offers more accessibility from more platforms instead
of Android phones.

4.5 Integrated Device

Our system incorporates a web app loaded on the user’s
phone to display the items present inside of the back-
pack. Another potential approach was to have an integrated
LCD panel in the backpack which would display the items
present, rather than a web app. The panel would have a
set of arrow and control buttons next to it to enable navi-
gation and configuration of the system. However, this inte-
grated system would have a number of disadvantages versus
a smartphone-based app.

First, the usability of our system would be reduced with
an integrated system. With a smartphone app, the user can
easily pull their phone out and quickly view what items are
in their backpack. Additionally, users are more accommo-
dated to navigating and using smartphone apps, versus a
novel integrated system where the user would have to learn
how to use the arrow keys to navigate the options on the
LCD panel. Although touchscreen LCD panels are avail-
able, they are more expensive than non-touchscreen LCD
panels, and often have worse touch detection than common
smartphones. Since most users already own a touchscreen

in the form of their smartphone, it was more sensible for
our system to integrate into the smartphone rather than
have its own dedicated touchscreen LCD panel. Moreover,
it would be difficult to design an integrated system that
would allow the user to interact with the system while
wearing the backpack. Such a design would require hav-
ing the LCD panel and controls on a separate arm that
would extend from behind the user (where the backpack
is) to the front. Having a smartphone-based app means the
user can simply look at their smartphone while wearing the
backpack and still have view and control of the system.

Second, the smartphone app enables more features than
an integrated system. The smartphone app allows the user
to schedule events and register new items which are tasks
that would be difficult to do with an integrated system.
Additionally, most smartphones have built-in cameras, so a
smartphone app allows the user to take images of new items
for the registration process. To implement this functionality
on an integrated system, we would have to include a camera
in the backpack, which would likely be lower quality than a
smartphone camera and increase cost. Smartphones usually
have cellular data, meaning that the app will have constant
access to the cloud server where the events and items are
stored. Although an integrated system could have WiFi ac-
cess, the integrated system’s internet access would be cut as
soon as the user left their home WiFi network, rendering
the system unable to communicate with the cloud server
while the user is travelling.

Given these factors, we decided to use a smartphone-
based web app as the user interface for our system, rather
than having a system fully integrated into the backpack.

4.6 Image Recognition Model

For the image recognition algorithm, a suitable machine
learning model needs to be trained. Among various ma-
chine learning models, including Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), Logistic Regression,
we chose to use a Convolutional Neural Network (CNN) to
accomplish our image classification.

CNN’s are the best choice for image classification for
two main reasons. First, whereas other machine learning
models first require a separate step of feature engineer-
ing before the model can be trained, CNN’s automati-
cally extract features from the image datasets and therefore
do not require feature engineering. Using the learned fea-
tures, CNN’s use multiple layers extract the feature weights
through downsampling and convolution.[9] Finally, the last
prediction layer uses the feature weights to output the clas-
sification result of the image.

The second reason the CNN model is superior to other
models is that CNN’s are scalable for large datasets. In or-
der to produce an accurate classifier, the model needs to be
trained on a large number of labeled student items. Nor-
mally, the large number of images leads to more parameters
in a neural network, which makes the training of the model
exponentially more computationally heavy. However, the
multiple convolution filters present in the convolution lay-

18-500 Design Report - March 17, 2021

Page 6 of 11

ers of a CNN effectively reduce the dimensions of each the
image, reducing computational load. Even though the im-
age dimensions are reduced, the images still retain the in-
formation from the original image, resulting in efficient but
accurate image classification.[9]

4.7 Image Recognition Datasets

To train the CNN model for the image classifier, the
dataset of images needs to be generated. In machine learn-
ing, we need to increase the size of the training data to
achieve higher accuracy. One option of choosing an image
dataset is to use a pre-existing dataset such as ImageNet.
ImageNet is used for various CNN research papers and is an
appropriate dataset for the image classification task. How-
ever, since we only need to identify 21 common items that
students would carry in their backpacks, a dataset con-
taining a variety of images will decrease the classification
accuracy for the item recognition. Therefore, we decided to
scrape the images of student items from the search engine,
DuckDuckGo, using an Image Dataset Tool (IDT) image
scraper library.

There are several reasons that the IDT library is supe-
rior to other software libraries. First, the library is designed
around creating datasets specifically for training machine
learning models such as the CNN model for image classifi-
cation. IDT supports separation of training data and test
data, which prevents the model from training on test im-
ages and potentially skewing the test results.[5] Second, the
library supports standardization of the images, as images
from search engine results are of different sizes and aspect
ratios. Using the IDT library, images can also be down-
scaled and compressed for more efficient storage on our
AWS server while we are training the CNN model. Finally,
the library allows for multiple searches with different key-
words. For example, when searching images for a reusable
water bottle, a user will search it by typing different key-
words such as “water bottle,” “reusable water bottle,” or
“plastic bottle” for the same results. The IDT library en-
ables the user to put multiple keywords so that the user can
collect various images to better train the machine learning
model.

5 SYSTEM DESCRIPTION

The hardware portion of our system consists of three
parts: 10 iBeacon tags attached to individual items, a
backpack-mounted Raspberry Pi Zero W with a recharge-
able battery and power controller, and the user’s smart-
phone. The control flow for our system starts with the
iBeacons. Each iBeacon tag broadcasts its UUID over Blue-
tooth every 1000ms. Then, the Raspberry Pi scans for tag
UUID’s and determines which tags are close enough to be
considered inside the backpack based on the received signal
strength of each broadcast. The Raspberry Pi then trans-
mits the list of UUID’s of the tags inside the backpack to
the user’s smartphone via a Bluetooth connection. Finally,

The user’s smartphone handles events, item information,
and notifying the user when they are missing items.

5.1 iBeacon Tags

The iBeacons used by our system are the H1 Beacons
from Moko Technology Ltd.[4] These beacons are based on
the NORDIC nRF52 chipset and have adjustable transmis-
sion power and broadcast intervals. For our project, the H1
Beacons will be set to transmit at the lowest power level
(-12 dBm) and longest interval (1000ms) available. This
provides the maximum possible battery life for the bea-
cons, which is approximately 15 months as specified by the
datasheet. The dimensions of the H1 Beacons are 32.5 x
32.55 x Tmm with a weight of 7.8g. This is small enough
and light enough to be securely attached to most user items.
The beacons also feature a keyring hole, which allows the
beacon to be attached via a keyring to an item if the user
so desires. The beacons also have flat backs, and can be
attached via double-sided adhesive tape to items for which
a keyring is not suitable.

5.2 Raspberry Pi Power Management

To reduce power consumption and conserve battery
life, our system uses a Sleepy Pi 2 from Spell Foundry
to shutdown and wake the Raspberry Pi at predetermined
times.[3] The Sleepy Pi 2 has an onboard Real-Time Clock
(RTC) which enables it to track the current time even while
the Raspberry Pi is powered off. The Sleepy Pi 2 also fea-
tures a user button, which can be used to manually wake
the Raspberry Pi if needed. For our system, the smartphone
app actively tracks gaps between events, and it transmits
a shutdown signal and wakeup time via Bluetooth to the
Raspberry Pi for sufficiently long gaps. The Raspberry Pi
sends the wakeup time to the Sleepy Pi 2 via 12C before
shutting down, and the Sleepy Pi 2 wakes the Raspberry Pi
once the wakeup time arrives. Should the user need to use
the system while the Raspberry Pi is asleep, the user can
press the user button on the Sleepy Pi 2 to manually wake
the Raspberry Pi before its wakeup time. The Raspberry
Pi and Sleepy Pi 2 combined system will be powered by
an Aukey 10000mAh portable USB LiPo power bank. The
user will be responsible for plugging in the power bank to
charge every night so that the power bank will have full
charge the next day.

5.3 Raspberry Pi Software

The Raspberry Pi Zero in our system is running the
Raspbian Lite operating system. This OS only has a
command-line interface instead of a graphical desktop, to
reduce the computational load on the Raspberry Pi. At
startup, the Raspberry Pi runs a Python script which con-
tinuously scans for Bluetooth beacons. The script utilizes
the bluepy package created by Ian Harvey to control the
Linux BlueZ Bluetooth protocol stack from Python.[7] The
script is based off of a similar project done by Github user

18-500 Design Report - March 17, 2021

Page 7 of 11

nullhart, who created a proximity-based light switch using
Bluetooth.[1] The distance to the beacons is determined
by converting the received signal strength indicator (RSST)
value into a distance using Equation 1 found in section 4.3.
The constant n in the equation is set beforehand via cali-
bration tests done with power level measurements of mul-
tiple tags at a set one meter distance. After excluding all
beacons whose distance is determined to be greater than
0.5m, the script then sends a list of beacon UUID’s to the
user’s smartphone over Bluetooth. To facilitate this connec-
tion, the Raspberry Pi continuously broadcasts itself over
Bluetooth until a pairing request is made. The Raspberry
Pi accepts the pairing request, and subsequently sends the
item UUID list to the paired device every 1000ms while it
is awake.

5.4 Smartphone Web App

Our web application will be built using the Django
framework. We’ll be using the Web Bluetooth API [10],
which allows us to communicate with other Bluetooth de-
vices via JavaScript, to receive the list of UUID’s of items
currently inside the backpack from the RPi Zero. This API
retains the full Bluetooth functionality of a native phone
app, including requesting and connecting to nearby BLE
devices, reading/writing Bluetooth characteristics & de-
scriptors, and receiving GATT notifications when devices
get disconnected. The web application will use this list of
UUID’s to create the checklist interface, where users can
track which items are currently inside the backpack.

The web application will also manage events and dis-
play them on a calendar-like interface. By design of our
system, users will have multiple events in their schedule,
where each event contains a subset of items from the entire
list of tagged items (i.e. each event can have multiple or no
items associated with it). Users have the option to manu-
ally create new events through the web app or to import
empty events from their Google Calendar (using the Google
Calendar API). In addition to managing events, the web
application provides a separate interface for users to regis-
ter their items. The user is asked to take an image of each
new item. This image is then sent to the image recognition
algorithm, which suggests a name for the item to the user.
The user can choose to either accept the suggested name
or manually override the name. Once the items and events
are created, the user can choose to either assign items to
events manually, or have the schedule learning feature au-
tomatically assign the items to events. All events, items,
and assignments of items to events are then stored on the
AWS server database for the web application to retrieve
later.

5.5 Schedule Learning

The schedule learning feature monitors which tagged
items are present inside the backpack at specific times and
days of the week. After two weeks of monitoring, the fea-
ture will produce an initial automatic assignment of items

to events. These assignments will continue to be refined af-
ter this two week period as more data is collected. The au-
tomatic assignment of events reduces user burden by elim-
inating the initial registration and manual assignment of
items to events. Users can also customize here when they’d
like to begin receiving notifications for each event in their
schedule (e.g. ” Please notify me if 'm missing any items for
"Soccer Practice’ starting from 1 hour before the event”).

5.6 Image Recognition

Our image recognition will be primarily developed using
Python. We chose Python because it is the most commonly
used language in machine learning development and can be
easily integrated with the web application, also written in
Python. Within Python, the CNN model will be built us-
ing the Tensorflow library. The overall CNN model will be
trained on an AWS server.

The CNN model is trained using a dataset of images
from the search engine DuckDuckGo scraped with an Im-
age Dataset Tool (IDT) library. Through the IDT library,
images of the 21 identified student items are collected. 250
images per item are collected for the training data and 150
different images per item are collected for the test data. The
images used for the test dataset are scraped and saved in
different directories for testing purposes. Then the training
data images are augmented with image processing tech-
niques such as image distortions and mirroring to create
up to 1000 images per item (from 250) using Python and
MATLAB. This image augmentation is performed to create
multiple variants of a single image. This also accounts for
the user taking distorted or slanted photos of items during
registration. The training image is then resized to 256x256
pixels and the CNN model classifies the image into one of
21 classes of items. The model will output the top 3 highest
matching classifications and communicate these to the web
application. The user can select the correct classification re-
sult or manually input the information if the classification
results are inaccurate.

6 PROJECT MANAGEMENT

6.1 Schedule

Our schedule (see Figures 7 and 8 in Appendix A)
has remained largely the same since the beginning of the
proposal presentation. However, we have now included
”schedule learning” as a major subsystem of our project
on the schedule with relevant subtasks. This change was
made following the proposal presentation from a suggestion
from Professor Kim, our advisor. Schedule learning involves
learning, over a period of time, what items the user brings
at what times. However, this component will not remain a
focus of our project until after the interim demo in Week
11. Additionally, we have 2 weeks of slack time built into
the beginning and end of our schedule.

From this week (Week 7) of the design report onwards,

18-500 Design Report - March 17, 2021

Page 8 of 11

we’ll be largely focusing on completing our MVP before
the interim demo in Week 11. We plan to have finished the
most pivotal component of our project, the communication
between the tag scanner and the phone app, between Weeks
9 and 10 so that integration between each of our respective
modules (phone app, item recognition, hardware) can hap-
pen. Once we finish integrating our parts of the project,
we’ll follow with implementing the schedule learning feat-
uer as well as rigorous testing and debugging of our system.
At the very end, we’ll be spending considerable time on our
final presentation and report.

6.2 Team Member Responsibilities

We’ve divided up each team member’s primary respon-
sibilities based on the separate modules of our project as
well as the ECE area strengths of each member. Aaron will
be responsible for the tags and Bluetooth scanner, Janet
will focus on developing the phone application, and Joon
will implement the item recognition component. All three
members will work on the schedule learning feature. For
each team member’s secondary tasks, Janet and Aaron will
work together on the communication between the Blue-
tooth scanner and the phone application, and Janet and
Joon will work together on the integration of the item
recognition component into the phone application.

6.3 Budget

Item Source Quantity Who Total
Raspberry Pi System

Raspberry Pi Zero WH Adafruit 1 Aaron §19.88
SanDisk 16GB MicroSD card Amazon 1 Aaron $6.16
Mini HDMI to HDMI cable Amazon 1 Aaron $6.32
Sleepy Pi2 PiShop.us 1 Aaron $58.90
Power

Anker Portable Charger 10000mAh Amazon 1 Aaron $19.07
One-Port USB Wall Charger Amazon 1 Aaron $9.00
USB C charging cable Amazon 1 Aaron $4.12
USB Micro B charging cable Amazon 1 Aaron $5.56
Bluetooth

Bluetooth Low Energy Beacon Alibaba 20 Aaron $192.00
Double sided tape Amazon 1 Aaron $7.41
Assorted Split Key Rings Amazon 10 Aaron $15.58
Tile tracker tag Amazon 1 Aaron 526.49
Feasycom iBeacon tag Amazon 1 Aaron $16.95
AWS

AWS credits AWS 3 Al $0.00
Total $344.00
Budget $600.00
Amount Leftover $256.00

Figure 6: Bill of Materials

The bill of materials for our project can be found in
Figure 6. The items are separated by which component of
the system they are for. The green and red items are part
of the backpack system, with green being supporting com-
ponents for the Raspberry Pi Zero and red being power-

related items. The blue items are the Bluetooth-related
items for tracking and mounting to individual items. Fi-
nally, the yellow item is the AWS credits which we are
using for our AWS server database. We mostly chose parts
supplied by Amazon, which reduced shipping costs as Ama-
zon Prime has free shipping. We also elected to purchase
a Tile Bluetooth tracker tag to compare the performance
of our system with that of a similar existing product. We
only purchased one copy of each of the hardware items,
since Aaron was the only team member responsible for the
hardware of our project. For software, we requested AWS
credits for all three team members as we are all contribut-
ing to the software portion of the project.

6.4 Risk Management

We knew that our team had to be vigilant when it came
to communication and risk management plans, especially
as the three of us are located in three different time zones
(US Eastern Time, US Central Time, and Korean Stan-
dard Time). Because our system is implemented in three
distinct modules, we also knew that many issues could ap-
pear during integration, and this is why we have set aside
time specifically dedicated to integration tasks.

One of the largest risk areas of concern in our project
is the ability to accurately determine which items are in
the backpack. With a gating algorithm based on a single
distance to a single Bluetooth sensor (the Raspberry Pi
Zero), the shape of the included volume is approximately a
sphere centered on the sensor. We believe that, by placing
the Raspberry Pi at the center of the backpack, the spher-
ical shape will be close enough to the backpack’s shape to
determine which items are in the backpack. However, if the
single-distance-based gating algorithm is unable to exclude
items that are near the backpack but not inside the back-
pack, our risk mitigation plan is to utilize a trilateration ap-
proach using a total of 4 Bluetooth sensors spaced around
the backpack to obtain a 3D location for the item. The tri-
lateration approach and algorithm is discussed in Pu, Pu,
and Lee’s ”Indoor Location Tracking using Received Signal
Strength Indicator” paper.[6] We will use the trilateration
approach as opposed to the triangulation approach, as it is
easier for our system to determine the distances between
each of the 4 sensors than to determine the angles between
them.

Another risk element was the issue of using Android
Studio to build our phone application. After discussing
amongst ourselves as well as with our TA, we decided to
switch to building a mobile-accessible web application after
the design review presentation for multiple reasons. First,
the group collaboration for the development process would
be much more streamlined compared to development in An-
droid Studio, as Visual Studio Code (which we would user
for web application development) has better Git integra-
tion than Android Studio. Second, a web application offers
greater accessibility to different platforms such as iOS than
an app designed only for Android. Additionally, 2 out of 3 of
our team members already have prior experience with web

18-500 Design Report - March 17, 2021

Page 9 of 11

application development, as opposed to Kotlin which none
of us have experience with. We also did extensive research
and found the Web Bluetooth API, which will allow us to
communicate with Bluetooth devices over JavaScript, so
our system would still maintain the same Bluetooth func-
tionality. Finally, should we find that we need a component
of native functionality which is missing from this web ap-
plication, we can use the WebView|[2] functionality to build
any necessary native features in Android Studio port them
deliver to our web application.

7 RELATED WORK

There are currently several other existing asset-tracking
products which help users keep track of their items. One
popular existing technology in this space is Tile, a small
Bluetooth-based tracking tags that allows the user to lo-
cate the missing items so long as they are attached to a tag.
Backpack Buddy and Tile share some common features.
For instance, both require physical tags to be attached to
the items to track the items, and both use Bluetooth Low
Energy (BLE) technology to communicate with the tags.
Both products also utilize the smartphone app to interface
with the user. However, while Backpack Buddy and Tile
share some similarities, Backpack Buddy differs from Tile
in two major ways. First, Backpack Buddy allows students
to manage collections of items in relation to their sched-
ule, whereas Tile only tracks and locates individual items.
Second, Backpack Buddy has reduced user burden with re-
gards to item registration. Backpack Buddy uses computer
vision to automatically determine item names, saving the
user effort when naming items. Backpack Buddy also learns
the user’s schedule, such as what items a student might
carry in the backpack when and where, saving the user
from needing to manually assign items to events.

One CMU ECE Capstone project from the Spring 2020
semester called Sous-Chef also shares similarities to Back-
pack Buddy. Sous-Chef is a smart pantry storage unit that
keeps a list of groceries currently inside a pantry. Sous-
Chef is similar to Backpack Buddy in that it registers a
food item to a database using computer vision and image
processing of barcodes on food products. Sous-Chef also
provides a streamlined user experience by displaying the
list of food items on a web application. However, Sous-
Chef has a different use case than Backpack Buddy, as it
is intended for tracking of food items in a pantry, whereas
Backpack Buddy is designed for tracking schoolwork- or
extracurricular-activity-related items in a backpack.

8 SUMMARY

With their busy schedules and plethora of items to
track, students often lose or forget important items for their
events. A smart inventory system is therefore extremely
valuable for managing tracking items, saving students from
the burden of having to remember items and the anguish

from forgetting them. Backpack Buddy not only informs
students what items are inside their backpack, but also
suggests what items to bring according to the students’
schedules and notifies them of their missing items before
each event. We intend improve the lives and mental well-
being of students with our easy to use inventory system.

So far, we have learned a lot about teamwork and com-
munication through working on Backpack Buddy. We know
each of our teammate’s strengths and weaknesses, and have
divided our tasks and planned our schedule accordingly.
Because we have been following our planned schedule, we
are confident that Backpack Buddy will be completed on
schedule with full functionality.

References

[1] Bluetooth Prozimity Light. https://github. com/
nullhart/bluetooth-proximity. Mar. 2016.

[2] Building web apps in WebView. https : / /
developer.android.com/guide/webapps/webview.
Mar. 2021.

[3] Getting the Sleepy Pi to shutdown the Raspberry Pi.
https://spellfoundry.com/docs/getting-the-
sleepy - pi- to- shutdown - the - raspberry-pi/.

May 2020.

[4] H! Beacon Datasheet. http / / doc
mokotechnology . com/ index . php ? s = /page / 28.
Dec. 2020.

[5] IDT - Image Dataset Tool. https://pypi.org/
project/idt/.

[6] Chuan Chin Pu, Chuan-Hsian Pu, and Hoon-Jae Lee.
“Indoor Location Tracking Using Received Signal
Strength Indicator”. In: Emerging Communications
for Wireless Sensor Networks (Feb. 2011).

[7] Python interface to Bluetooth LE on Linuz. https:
//github.com/IanHarvey/bluepy. Dec. 2020.

[8] RFID vs BLE: How Are They Different in Terms
of Asset Tracking? https://wuw.assetinfinity.
com / blog / rfid - vs - ble - how - are - they -
different-in-terms-of -asset-tracking. Mar.
2021.

[9] Farhana Sultana, Abu Sufian, and Paramartha
Dutta. “Advancements in Image Classifications us-
ing Convolutional Neural Network”. In: 2018 Fourth
International Conference on Research in Compu-

tational Intelligence and Communication Networks
(ICRCICN) (May 2019).

[10] Web Bluetooth API Documentation. https : / /
webbluetoothcg . github . io / web - bluetooth /
#introduction. July 2020.

[11] David G. Young. How Far Can You Go? http://

www .davidgyoungtech.com/2020/05/15/how-far-
can-you-go. May 2020.

https://github.com/nullhart/bluetooth-proximity
https://github.com/nullhart/bluetooth-proximity
https://developer.android.com/guide/webapps/webview
https://developer.android.com/guide/webapps/webview
https://spellfoundry.com/docs/getting-the-sleepy-pi-to-shutdown-the-raspberry-pi/
https://spellfoundry.com/docs/getting-the-sleepy-pi-to-shutdown-the-raspberry-pi/
http://doc.mokotechnology.com/index.php?s=/page/28
http://doc.mokotechnology.com/index.php?s=/page/28
https://pypi.org/project/idt/
https://pypi.org/project/idt/
https://github.com/IanHarvey/bluepy
https://github.com/IanHarvey/bluepy
https://www.assetinfinity.com/blog/rfid-vs-ble-how-are-they-different-in-terms-of-asset-tracking
https://www.assetinfinity.com/blog/rfid-vs-ble-how-are-they-different-in-terms-of-asset-tracking
https://www.assetinfinity.com/blog/rfid-vs-ble-how-are-they-different-in-terms-of-asset-tracking
https://webbluetoothcg.github.io/web-bluetooth/#introduction
https://webbluetoothcg.github.io/web-bluetooth/#introduction
https://webbluetoothcg.github.io/web-bluetooth/#introduction
http://www.davidgyoungtech.com/2020/05/15/how-far-can-you-go
http://www.davidgyoungtech.com/2020/05/15/how-far-can-you-go
http://www.davidgyoungtech.com/2020/05/15/how-far-can-you-go

Page 10 of 11

18-500 Design Report - March 17, 2021

Backpack Buddy Timeline

Total Slack: 2 weeks

Week 3: 2/14 ‘Week 4:2/21 ‘Week 5:2/28 Week 6: 3/7 Week 7: 3/14 ‘Week 8:3/21

PERCENT Week 2:2/7
coMPLETE IS8

TASK NAME TEAM MEMBER

Abstract

Proposal Presentation All

Design Review i All

S — a T T T
Product Filming & Video Editing Aaron 0%

Final i All 0%

Final Report 0%

Design user flow diagram for phone app All

Wireframe Ul's Janet

Set up datsbase Janet

Event creation/assignment Janet

Tagged item checklist Janet & Aaron 0%
Missing item notifications Janet &Aaron 0%
Deletion of items Janet 0%
Integrate with camera registration Joon & Janet 0%

All

Purchase tags

Design system All
Communication with tags Aaron
Add battery to RPi Zero Aaron

Communication with phone Janet & Aaron

Research existing item recognition work

Determine items to be recognized All

Design process Joon

Learn alzorithm to recognize items Joon

Research CNN models for the item recognition Joon

Collect student item image and augment images ~ Joon 0%

Implement the CNN madel 0%

Communicate with database 0%
Testing (and debugging)

Tag detection testing Aaron 0%

Interface display delay testing Janet & Aaron 0%

Event testing Janet 0%

Scanner battery testing. Aaron 0%

tem ition testing Joon 0%

Usability testing. Janet 0%
Scheduleleaming

Collect sample item data All 0%

Test event occurrences against collected data All 0%

Formally assign items to events All 0%

Slack Time All 0% I

Figure 7: Gantt Chart First Half

Page 11 of 11

18-500 Design Report - March 17, 2021

Week 9: 3/28 Week 10: 4/4 Week 11: 4/11 Week 12: 4/18 Week 13: 4/25 Week 14:5/2 Week 15:5/9

Figure 8: Gantt Chart Second Half

	INTRODUCTION
	DESIGN REQUIREMENTS
	ARCHITECTURE OVERVIEW
	DESIGN TRADE STUDIES
	Controller Comparison
	BLE vs. RFID
	BLE Distance Analysis
	Web App vs. Native Phone App
	Integrated Device
	Image Recognition Model
	Image Recognition Datasets

	SYSTEM DESCRIPTION
	iBeacon Tags
	Raspberry Pi Power Management
	Raspberry Pi Software
	Smartphone Web App
	Schedule Learning
	Image Recognition

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget
	Risk Management

	RELATED WORK
	SUMMARY

