
18-500 Final Report- May 14, 2021 Page 1 of 14

B9: Hawkeye
Authors: Alvin Shek, Siddesh Nageswaran, Vedant Parekh

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—We created a drone capable of tracking
a target in real time as they move across the ground.
The drone has a camera that streams its live video feed
to a display.

Index Terms–computer vision, state estimation,
motion planning, color filtering, kalman filter

1 INTRODUCTION

Over the last few years, drones have become increas-
ingly popular for both recreational and professional videog-
raphy. Vloggers can take breathtaking aerial shots of
their escapades through mountains and fjords. And during
search-and-rescue missions, rescuers can use drone footage
to identify victims and monitor their own surroundings to
call for backup if needed. Yet, despite the numerous use-
cases, one bottleneck stands in the way when it comes to
capturing drone footage: manual control. Maneuvering a
drone takes skill and concentration. For vloggers, this can
be an inconvenience while for mission critical operations,
this can prove to be a fatal distraction. Moreover, any task
involving user control always has the potential for user er-
ror. Thus, the goal of Hawkeye is to be an autonomous
drone videographer that prioritizes video quality and track-
ing accuracy. Since users are putting full faith into Hawk-
eye’s tracking algorithm, the most critical requirements are
to update the user position frequently and ensure that the
user is centered to the frame at all times. Hawkeye aims
to:

• Capture video of a target to identify a target’s current
position and future motion path

• Use this data for motion planning to follow the tar-
get. The target center should be within the frame for
90% of all frames and the drone should maintain rea-
sonable stability (defined in the next section) across
90% of all 30 frame windows

• Stream video of the target to a display

This takes all the hassle out of the user’s hands and en-
ables them to focus on the task at hand. The drone will
automatically shoot footage and users can either monitor
the feed in real-time or select their best frames afterwards.

There are other drones that have recently arrived in the
market which also aim to provide autonomous tracking of
a target, such as the Skydio 2 and DJI Mavic Air 2 [1].
However, these drones have a few shortcomings.

1. Price. These drones go for around $800 - $1,400 and
come with incredibly sophisticated 45MP+ cameras.

Hawkeye uses a simple 8MP camera and relatively in-
expensive compute to make drone videography cheap
and accessible to all.

2. User Convenience. The competitors rely on a
smartphone app to control the drone’s tracking,
which goes against our hands-free, minimally intru-
sive philosophy by forcing the user to live on their
phone rather than in the moment. On the other hand,
our design is controlled entirely by two simple and in-
tuitive switches.

2 DESIGN REQUIREMENTS

Target Detection uses computer vision to predict first
whether or not a target is present at all and second the cen-
ter pixel location of the target a given image. Our entire
target tracking and motion planning stacks depend on this
initial detection, so this requirement is to guarantee its ac-
curacy. We define performance in terms of false positive
(FP) and false negative (FN) rates. Specifically:

FN =
Detections

Negatives

FP =
No detections

Positives

where Negatives are images with no target present, and
Positives are images with targets. We aimed to satisfy a
2% false positive rate and 10% false negative rate. The
reason we prioritized a lower false positive rate is because
while the drone can rely on its previous motion plan in the
case where the target is not detected for a frame, its path
estimates get completely thrown off when a random point
is misidentified as the target.

For our second target detection requirement, we define
performance in terms of mean distance between predicted
and true target pixel position:

1

N

√
(x̂i − xi)2 + (ŷi − yi)2

where the true position (xi, yi) for the ith image was hand-
labeled by us. To test this, the drone was flown manually
with remote control, allowing us to test computer vision
independently of motion planning.

From our tests, targets often represent only around a
15 x 30 pixel rectangle from our altitude. We define error
with respect to this rectangle’s hypotenuse of 33.5 pixels.
We expected to correctly identify the target’s center pixel
within 50% of the hypotenuse, which is 16.75 pixels.

18-500 Final Report- May 14, 2021 Page 2 of 14

Target Tracking involves both target detection and
the drone’s motion planning. Performance here is simply
measured by the percentage of frames where the target is
located in the frame. We aimed for the target to be present
in 90% of all frames across three testing conditions: walk-
ing target, running target and mixed motion.

Drone Stability also involves both target detection
and the drone’s motion planning. The key is for drone to
remain at fixed positions as long as possible so as to reduce
camera jitter. We define stability by taking the standard
deviation of the target’s x and y pixel position across 30
frame windows. The window is deemed stable if:

std(x) ≤ frame width

6
AND std(y) ≤ frame height

6

Where frame width is 426 pixels and frame height is
240 pixels. We aimed for 90% of all 30 frame windows to
be deemed stable. Once again, this is across three testing
conditions: walking target, running target and mixed mo-
tion.

Communication Bandwidth will have hard limits
since we have offloaded our computation to a ground com-
puter. Our transmitted data must not exceed our Realtek
RTL8188CUS-GR wifi module’s limit of 300 Megabits per
second at either 2.4 or 5GHz frequency [11]. Our Pixhawk
flight controller expects control commands to stream in at
a minimum of 2Hz, so the latency between successive flight
commands cannot exceed 0.5 seconds for a given timestep.
This means we need a bare minimum processing FPS of 2
FPS, but we aimed for an FPS of 5.

Power Consumption and Flight Time Our require-
ment for flight time is 10 minutes as a lower bound, and we
picked a 5100 mAH battery to achieve this. We calculate
projected power consumption and overall flight time based
on the following information:

• Motors 4 motors consuming 170W to lift 1kg
(Model: AC 2830, 850 kV) [5]

• Mass 1282g for bare drone and battery and 300g for
sensors and compute [5]

• Battery 5100 mAH battery at 11.1V

Assuming we can only use 80% of the battery for safety
reasons, we calculate the following [3]:

Amp draw =
170W

1kg
∗ 1282 + 300g

1000g/kg
∗ 1

11.1V

= 24.23A

Flight time =
capacity

Amp draw

=
.8 ∗ 5100mAH

24.23 ∗ 1000mAH
∗ 60 min

H
= 10.10 min

Our flight time estimate is a lower bound since the com-
pute and sensors will most likely not weigh 300g, and the
170Wkg assumes constant ascent (not hovering).

2.1 Scope

In order to meet these requirements within the time
period, these are the simplifying assumptions we made:

• The target will be wearing a red shirt

• The drone will operate in open field without obstacles

• There will be WiFi access in test environment

• Daytime conditions with minimal wind

• The drone will be limited to tracking one person

• Flight height no more than 30 feet

3 ARCHITECTURE OVERVIEW

Our system, which is shown in Fig. 1, is broken into
three groups:

1. Drone Compute

2. User Compute

3. Display Device

The drone compute contains all the hardware that will
be on the drone to help navigate it. The RaspiCamV2 on
the drone collects a live video feed and sends it to an RPi
4 through the MIPI Camera Serial Interface 2. The RPi
then sends the video it receives to the Jetson TX1 (over
WiFi using ROS) for processing.

The TX1 uses the video as input for its algorithms to
keep track of the position of the target, predict their future
path, and create a motion plan for the drone. Based on
this, the TX1 returns the flight position commands back to
the RPi over WiFi using ROS. The RPi receives these po-
sition commands and can forward it to the flight controller
of the drone via serial. The flight controller can then use
these to guide the drone to the correct position. We do the
bulk of the processing on the ground rather than on the
drone in order to reduce power consumption on the drone
and maximize flight time.

The video that the TX1 receives is sent to a display
via HDMI for the user to view. We have also hooked up
switches to the TX1 for user input that which are processed
through GPIO interface. The display and the switches
are powered by the TX1 while the TX1 is powered by a
rechargeable LiPo battery while the drone is powered by
a 5100 mAH rechargeable battery. A high-level descrip-
tion of the division of computation between the important
subsystems is as follows:

18-500 Final Report- May 14, 2021 Page 3 of 14

Figure 1: System Block Diagram

Figure 2: Drone Compute

3.1 RPi

Used as a middleman between the drone flight con-
troller, camera and the TX1. Forwards updates in position
from the flight controller to the TX1, new image frames
from the camera to the TX1 and updated motion plans
from the TX1 back to the drone flight controller.

Figure 3: Raspberry Pi Location

3.2 Iris Drone Flight Controller

Takes high-level position/velocity/orientation motion
planning waypoints that have been computed by the TX1
and forwarded through the RPi. Uses these to determine
the speed of the motors required to achieve the desired
path.

Figure 4: Flight Controller Location

3.3 Jetson TX1

Used for video processing and processing user inputs via
the switches. The TX1 use OpenCV library to process the
captured video from the camera for the computer vision
algorithm, and then feed the output of this into state esti-
mation and motion planning algorithms. The implementa-
tion of the algorithms run on the TX1 will be discussed in
detail in the System Description section.

Figure 5: Jetson TX1 and Switches

18-500 Final Report- May 14, 2021 Page 4 of 14

4 SYSTEM DESCRIPTION

Now that we have gone over the high-level design of our
solution, we will go through the specifics on how each of
the components work and interact:

4.1 Onboard Compute

The drone itself has three broad categories of compute:
flight controller, sensors, and RPi. The flight controller is
a Pixhawk that uses the PX4 API with ROS to broadcast
state of the drone and listen to motion commands. The
Pixhawk can take a variety of control commands, from high
level position (x, y, z) in local or global space to low level
desired orientation in roll, pitch, and yaw. The Pixhawk
has built-in PD controllers that control speed of the motors,
and we only need to provide high level motion commands.

The Pixhawk already is built with several sensors for
drone odometry: gyroscope, accelerometer, magnetometer
(compass), and barometer. It also contains a GPS that
provides global localization within 1-2 meters. We also
have a downward-facing Lidar Lite V3 rangefinder that pro-
vides accurate height estimate as well as an optical flow
PX4Flow camera that points downwards. All of these sen-
sors are fused together within the Pixhawk’s internal Ex-
tended Kalman Filter.

Connected to the Pixhawk via UART, the RPi listens
to these drone state estimates and forwards it down to the
ground TX1. The RPi also records video from a RaspiCam
V2 and stream down the frames to the TX1 via ROS WiFi.
The TX1 simultaneously publishes motion commands to
the RPi, which forwards these to the Pixhawk flight con-
troller.

4.2 On-User Compute

The on-user compute is performed entirely on the Jet-
son TX1, which interfaces with the wearable display using
HDMI and the switches via GPIO. The control flow for the
TX1’s operation is shown in Fig. 7 where light blue boxes
are switch inputs and red boxes are steps we only execute
in simulation (more on this in section 4.4). Here is a la-
belling of the switches we use, along with a description of
the steps from Fig. 7:

Figure 6: Purpose of Switches

1. When the launch switch is turned on, the TX1 ini-
tializes ROS and sends a ”launch” event to the RPi
via ROS signalling it to launch communications with
the flight controller. The RPi then tells he flight con-
troller to take off.

2. When the camera switch is turned on, the TX1 sends
a ”cam start” event to the RPi. The RPi starts
streaming image frames to the TX1, they go through
our image processing stack, and the resulting motion
plans are sent back to the flight controller.

3. When the camera switch is turned off, the TX1 sends
a ”cam stop” event to the RPi. The RPi closes the
camera and tells the flight controller to land.

Figure 7: Software Control Flow

18-500 Final Report- May 14, 2021 Page 5 of 14

In the next subsections, we will elaborate further on the
computer vision and state estimation.

4.2.1 Target Detection

The computer vision algorithm to detect the target
reads frames captured by the camera, extracts the pixel
location of the target, and projects these into 3D world
space. To accomplish this, the captured frames go through
the following stages:

1. RGB Color Thresholding

The image read from the camera is an RGB im-
age. In our scope, we mentioned we are tracking a
target wearing a red colored shirt. Thus, the first
step is to perform color thresholding on the RGB im-
age to narrow down the red channel of the image.
We predetermine the ranges for each of the 3 chan-
nels, blue(B), green(G), red(R) by manually adjust-
ing them such that only the red pixels of the shirt
would pass through. At first, we tried using HSV
color space, but during testing, we realized it was
too dependent on the lighting conditions. However,
the RGB filter worked well in bright and dull lighting
conditions.

2. Noise Filter

The color thresholding by itself still allows some noisy
pixels to pass through that are not the color of the
shirt, which leads to the algorithm not detecting the
target. To remove those, the frame is eroded using
OpenCV which shrinks each group of pixels. This
removes the noisy pixels that were getting past the
color thresholding and affecting the detection of the
target.

3. Object Detection

Once the noise is removed, the OpenCV findContours
function is used to detect the red shirt. Then, the mo-
ments function is used to find the center of the object
detected. This gives us the detected target position
in pixel coordinates.

4. 2D to 3D Conversion The 2D pixel representing
the center of the target needs to be converted into 3D
world position since this enables the drone to plan
its own motion in 3D. We apply a classical techni-
cal known as back-projection, which has several key
steps. First, a 2D pixel can be mapped to 3D space
with respect to the camera light sensor using the cam-
era’s intrinsic matrix:

K =

fx s x0

0 fy y0
0 0 1

Xsensor = K−1[px, py, 1]

where (px, py) is the 2D pixel and K can be generated
using chessboard image calibration.

Second, this 3D sensor position needs to be trans-
formed into 3D world position in the following order:

• Image → Camera

• Camera → Drone

• Drone → World

Each of the steps above can be represented as an
affine transformation composed of rotation R and
translation T:

M3x4 = R3x3[I3x3|T3x1]
~Xi = M3x4[~Xj 1]

where ~Xi is the newly transformed 3D position. Steps
1 and 2 have static transforms that we defined using
Solidworks and a custom-designed CAD model:

Figure 8: Custom Solidworks Model with distance
measuring

The last step of transformation is dynamic, and is
computed using the drone’s own position and orien-
tation estimate, which is calculated by the drone’s
flight controller.

Now that we have the estimated 3D position of the
pixel, we can calculate a vector from the drone’s cam-
era center to this pixel:

~r = Xpixel −Xcamera

where Xpixel is our final 3D pixel coordinate in world
space and Xcamera is the position of the camera in
world space.

Using this vector, we can project this vector onto the
ground plane, and the point of intersection provides
us the 3D estimate of the target’s position.

We make a key assumption: the target is standing on
flat ground represented by a plane z = 0. To avoid
making this assumption, we could use deep learning
techniques to predict the normal vector of surfaces,
but our assumptions works well for our test environ-
ment. Overall, our predicted 3D target position will
serve as an input to the state estimator.

18-500 Final Report- May 14, 2021 Page 6 of 14

4.2.2 State Estimation

State estimation is used to keep track of a model of
the target’s state at all time, enabling us to predict future
motion. We model target state in terms of the following
variables:

• (x, y, z) positions

• (x, y, z) velocities

• (x, y, z) accelerations

• estimated covariance between these parameters

Notice how given these positions, velocities and accelera-
tions, we can already predict future motion using kinemat-
ics equations. Of course our model may not necessarily
remain accurate to the target’s actual state and we need
to constantly update it using the results of our target de-
tection. We use an algorithm called Kalman Filtering in
order to do this. Observe Fig. 8:

Figure 8: Kalman Filtering

Our new state is a probabilistic ”best guess” based on
the previous state and the newly detected 3D position of
the target. Ideally, the two inputs to the filter agree. How-
ever, when they disagree, it’s up to the filter to balance
between the two, smooth out any noise in the detected
positions, and come up with a model that most closely
matches the target’s actual motion.

The inner workings of the filter consist of the following
state transition matrices:

• F: Models how the user’s state deterministically tran-
sitions from one period to the next. It assumes the
user does not change acceleration and takes in ∆t as
a parameter.

• Q: Models random fluctuations in user state (due to
user changing acceleration). Takes in assumed std.
dev. in user accceleration as a parameter.

• H: Models how target detection results relate to
user’s current state, Ideally, the detected (x, y, z)
position of the target matches the (x, y, z) position
modeled in our current state.

• R: Models random fluctuations in target detection
data (noisy observations). Takes in assumed std. dev.
in observed user position as a parameter.

Using these matrices, the Kalman Filter probabilistically
determines the most likely future state (x̂′k) and covariance
in future state (P ′k) given the user’s current state (x̂′k−1),

current covariance in state (P ′k−1) and current (x, y, z)
position outputted by target detection (~zk). Here are the
equations for doing so [4]:

x̂k = Fx̂′k−1

Pk = FP ′k−1F
T + Q

K’ = HPkHT (HPkHT + R)−1

x̂′k = x̂k + K’(~zk −Hx̂k)

P ′k = Pk −K’HPk

4.2.3 Motion Planning

Motion Planning is composed of three key steps:

1. Drone Dynamics Model We first need to define a
model of the drone’s state and how control inputs af-
fect this state. We represent the drone’s state as sim-
ple 2D position [x, y] with an assumed fixed height of
8m. We define control input as horizontal velocity :[

x
y

]
=

[
x
y

]
+

[
vx
vy

]
dt

This means that we cannot rotate the drone to face a
target, but must move horizontally. While these as-
sumptions indeed limit our control of the drone, this
behavior fits our use-case. These simple dynamics
also allow our computation to meet the required rate
specified by the drone’s flight controller.

2. Define Desired Behavior Next, we need to de-
fine some behavior for the drone. We firstly want
the drone to keep the camera focused on the target,
meaning the target should stay in the center of the
image. This objective can be represented as a maxi-
mization of the dot-product between two vectors:

maxv1
C1 = (v1 · v2)

where v1 is the fixed vector from the camera center
to the center pixel on the image plane and v2 is the
dynamic vector from the drone’s camera to the 3D
target position, obtained from the target detection
pipeline.

Second, we optimize for smooth, stable video footage,
and this can be achieved by minimizing the motion
of the drone represented in terms of velocity control
input:

minv ||v||22

where v = [vx, vy] is the velocity control input. We
optimize these two objectives over a time horizon of
1 second with a stepsize of dt = 0.1 seconds. We use
the predicted target trajectory inside this optimiza-
tion. We have tuned weights for the above two costs
to achieve desired behavior.

18-500 Final Report- May 14, 2021 Page 7 of 14

3. Solve for Behavior Now that we have defined our
formulation, we can solve this using an optimization
package. In our case, we use the Scipy Optimization
package. We use a Model Predictive Control formu-
lation to optimize over multiple timesteps, but only
execute the first step of this plan. Every iteration,
we generate an entire trajectory, but execute only
the first step. This ensures our motion is not only
optimal, but is reactive to position drift and exter-
nal disturbances like wind due to the feedback loop
planning.

4.3 Switches and Passives

Figure 9: Switch Circuitry

As mentioned above, switches are used to interact with
the drone. They are assembled on a breadboard and pow-
ered by 3.3V GPIO (pin 1 on the J21 header on the TX1).
Fig. 9 shows a simple circuit to connect a switch to the
TX1. The switches are connected to J21 header pins 15
and 18 on the TX1 which all have a pull down network that
completes the circuit when the switches are pressed. We are
able detect changes in the switch state through interrupt-
based I/O, as the TX1 receives an interrupt on both the
rising/falling edges. This is less wasteful to the CPU than
polling-based I/O since user inputs are infrequent.

4.4 Simulation-Only Processes

From Figure 7, you may notice that some boxes are
highlighted in red, which we briefly mentioned were steps
conducted in simulation only. This is because the more we
tested our drone’s flight controller, we noticed errors in its
internal local position estimates:

Figure 9: Errors in Local Position

Unfortunately, these errors did not seem to be system-
atic and differed from test to test seemingly at random. Be-
cause of these local position errors, the drone acted chaot-
ically when we forwarded flight position commands to the
flight controller. For example, sending a signal to hold posi-
tion would cause it to circle wildly rather than hold position
(possibly due to drift in position estimates).

These errors are most likely due to our flight controller
being an older model. Our model only contains 1 MB
flash memory, which is technically not enough to contain
the entire firmware. Thus, when building and flashing the
firmware, we were forced to experiment with removing cer-
tain ”non-essential” sensor drivers, possibly affecting the
positional estimates.

For these reasons, we determined that while we would
demonstrate the calculation of motion plans in real-time,
we would not be sending these motion plans back to the
drone to follow due to safety concerns. Instead, full auton-
omy would be tested on a Software in the Loop simulated
drone with the same interface as the actual drone. The
same code that is used to forward commands to our actual
drone can be used to forward commands to this simulated
drone.

18-500 Final Report- May 14, 2021 Page 8 of 14

5 DESIGN TRADE STUDIES

5.1 On-Drone vs. On-User Compute

Originally, rather than have a Jetson TX1 located on
the user and a RPi on the drone to interface with periph-
erals, we intended to just have a single Jetson Nano lo-
cated on the drone that performed all the necessary soft-
ware tasks. We figured that any extra compute on the
user would be cumbersome and hoped to perform as much
computation as possible on the drone itself. However, look-
ing into the issue further, we realized that for our use-cases,
most users would be carrying a backpack anyways and that
performing computation on the drone severely limited us.
The main points are:

1. Power Consumption

Powering the Jetson Nano using the same battery as
the drone would severely eat into the drones runtime
given that the battery is only 5100 mAH. Consider-
ing that the drone by itself only runs for about 20-30
minutes on a single charge this would put us in dan-
ger of missing our flight time requirement. Not to
mention that the additional weight of a Jetson Nano
would force the drone to use up even more power to
stay in flight. We would be forced to invest in a big-
ger battery, which once again would weigh the drone
down even further.

2. Performance

Moving compute to the drone forces us to use a Jet-
son Nano rather than a TX1 (for size/weight reasons).
However, a Nano contains only 128 GPU cores while
the TX1 contains 256. For basic color filtering / blob
detection this may be okay, but since we wanted to
meet our FPS requirement and have the flexibility of
using more sophisticated approaches should we need
to, the TX1 was a much safer approach. Here is a ta-
ble [2] which benchmarks the Nano vs. TX1 for the
same image processing task:

Figure 10: Benchmarks for Nano vs. TX1

Of course, there also some benefits to handling compute on
the drone rather than the user. Streaming the video down
from the drone to the user over WiFi creates additional la-
tency. Because of this, once the Jetson receives a frame, the
user may have already moved slightly. However, given that
we are able to compute new motion plans around 3 times
per second (as shown in the following Testing section), we
felt this would not be significant.

5.2 Image Compression

Our image capture pipeline is composed of two steps:
image capture and image conversion into a ROS format
that can be streamed. Since this includes conversion, we de-
cided to compare image capture throughput between com-
pressed and uncompressed image formats. While image
compression requires extra computation, time can be saved
from image conversion. We noticed the following results,
computed over a video of two minutes, or 360 frames:

Image Capture FPS
Uncompressed 2.91
Compressed 2.94

Table 1: Image Capture FPS Comparison

Looking above, notice how image compression actually
increases the throughput of our image capture, and this
is likely due to greater time savings in the image conver-
sion step. Though not mentioned, image compression also
increases image streaming FPS, but since image capture is
the bottleneck of our system (see Testing for more details),
we analyze this specifically.

However, even though image compression slightly in-
creases FPS, we deemed the increase from 2.91 to 2.94 to
be negligible when compared to the loss in quality from
compression.

5.3 Motion Planning Control Cost

For our next study, we examined the effect of motion
planning cost function weights on behavior of the drone.
Our motion planning is a balance between optimal target
tracking (keeping target in the center of image) and video
smoothness. The latter is achieved using a control cost that
discourages excessive drone motion, we compare tracking
and stability performance while varying the weight of this
control cost.

Ours (1x) High (10x) Low(0.1x)
Tracking 97% 47% 84.58%
Stability 93.75% 100% 43.75%

Table 2: Comparing original, high, and low control cost
weights in stability and tracking performance

The above results were computed in simulation. Notice
above how a high control cost leads to perfect stability of
100%, but poor tracking of 47%. Low control cost has the
opposite effect. Also notice how a low control cost does
not achieve 100% tracking as we might expect. Due to the
low control cost, the drone often changes position violently,

18-500 Final Report- May 14, 2021 Page 9 of 14

causing sharp changes in roll and pitch that cause the cam-
era to lose sight of the target for a few frames. Overall, we
can see that optimal performance is achieved by balancing
control cost and viewpoint cost.

6 TESTING AND VALIDATION

6.1 Target Detection

To test target detection, we manually flew the drone
and had a target wearing a red shirt walk in a variety of
different motions. We flew the drone in a variety of angles
to capture frames where the target was large in the frame,
small in the frame, centered to the frame, and on the edges
of the frame. Across a sample size of 157 frames, we cal-
culated the following results:

FP Rate FN Rate Avg. Pixel Err.
Actual 0% 14.78% 11.87
Desired 2% 10% 16.75

Table 3: Target Detection Results

We had no false positives and our average pixel error
was well within what we specified. Our false negative rate
was slightly higher than desired, but this is because we op-
timized our target detection to provide no false positives.
As mentioned in the requirements section, lowering false
positives is critical because a couple outlier points could
permanently throw off our Kalman Filter and lead to bo-
gus state estimation. However, false negatives are less of
an issue because in the case we miss a frame, we can just
fall back on our currently modeled state of the target from
the state estimator.

6.2 Tracking and Stability

To test drone stability and tracking, we ran our code
in simulation in order to track a simulated target. The
simulated target followed one of three behaviors:

1. Walking- Slower movement and limited turning,
probabilistically transitions between stopped and
walking

2. Running- 2x speed movement and more frequent
turning, probabilistically transitions between running
and walking

3. Mixed Probabilistic transitions between stopped,
walking and running states

Here are the results:

Tracking Stability
Walking 100% 100%
Running 88% 100%
Mixed 97% 93.75%
Desired 90% 90%

Table 4: Drone Tracking and Stability Results

For the most part, we easily met our desired metrics
across these conditions. Intuitively, it makes sense that the
slowest target (purely walking) would be easiest to track
while the fastest target (purely running) would be harder
to track since it’s harder to keep up with.

Stability wise, it makes sense that mixed would perform
worse than walking and running. In an environment with-
out wind, what stability really measures is the smoothness
of our motion plans. Smoother plans achieve higher sta-
bility whereas ones involving drastic changes in velocity
that jerk the drone around achieve lower stability. Since a
mixed target is constantly shifting movement speeds, the
motion plans are less smooth since they keep adjusting to
the changes in speed. Thus, stability is lower.

As mentioned in the previous section, we also did a
trade-off study by comparing motion planners with higher
and lower control costs. This was done for the mixed move-
ment condition. Here are the results once again:

Ours (1x) High (10x) Low(0.1x)
Tracking 97% 47% 84.58%
Stability 93.75% 100% 43.75%

Table 5: Comparing original, high, and low control cost
weights in stability and tracking performance

Again, it makes sense that penalizing movement speed
causes tracking inaccuracies (can’t keep up) but increases
stability (slower movement = smoother movement). How-
ever, allowing the drone to move as fast as it wants causes
awful stability from the jerky motion and actually gives
medicore tracking. As mentioned before, this is because
when the drone moves fast, it rolls/pitches, causing the
camera to lose the target. Our control cost optimized for
both tracking and stability.

6.3 Communication Bandwidth

To measure this, we found the average latency/FPS of
every component of our image processing pipeline. We then
took the FPS of the bottleneck as the overall FPS of the
system:

Operation Latency (s) FPS
Image Capture 0.344 2.91

Image Streaming 0.25 4
Target Detection 3.38e-4 2,959
State Estimation 6.50e-4 1,538
Motion Planning 0.0135 74.07

Overall 0.344 2.91
Desired 5

Minimum Req. 2
Table 6: Latency Across Image Processing

We met the bare minimum requirement of 2 FPS in
order for the flight controller to be operational. However,
we still fell short of our desired 5 FPS. The main bottleneck
was the time it took to capture a single frame rather than
any of our code. This time is dependent on the camera

18-500 Final Report- May 14, 2021 Page 10 of 14

itself. Since at this stage we were already on our third cam-
era due to the previous ones malfunctioning, we decided to
stick to this one since it still met the minimum requirement.

One idea we had to increase FPS was compression. We
tried this before we realized that the image capture was the
bottleneck. Using compression, we get:

Image Capture FPS
Uncompressed 2.91
Compressed 2.94

Image Streaming FPS
Uncompressed 4
Compressed 6.67

Table 7: Compression FPS Comparison

Image streaming is greatly improved, but this is irrele-
vant since it isn’t the bottleneck. Counter-intuitively, im-
age capture is also improved. This is because the image
capture phase also includes a conversion of the image to
a ROS image format. This is able to be done faster on a
compressed image. That being said, the benefits are still
negligible and not worth the loss of image quality.

6.4 Flight Time

Across multiple tests our drone was able to operate for
around 12 minutes under a single battery charge.

7 PROJECT MANAGEMENT

7.1 Schedule

Our schedule (Fig. 11 in the Appendix) was composed
of four phases: design, pre-integration, integration,
and performance testing. In design, we proposed vari-
ous methods for building the system with various contin-
gency plans in case certain ideas fail. We researched and
purchased materials that would suite our requirements, and
verified that already-owned materials would meet our re-
quirements. In pre-integration, we implemented and de-
bugged various subsystems independently of one another.
For instance, target detection was implemented and tested
using a fixed camera without involving the drone. Other
tasks included target state estimation and prediction, drone
motion planning in simulation, and the hardware commu-
nication protocol for the wearable display. After this phase
integration involved combining all these independent sub-
systems together to produce a functional product. After
this, performance testing involved us testing the system
as a whole and recording performance through our various
test metrics.

7.2 Team Member Responsibilities

Vedant Parekh worked on target detection in an im-
age as well as the hardware communication protocols and

circuitry for the wearable device.

Siddesh Nageswaran worked on target state estima-
tion and prediction as well as the CAD design for mounting
all the compute and sensors onto the drone.

Alvin Shek worked on inferring 3D motion of the tar-
get from its 2D motion and the 2D image as well as gener-
ating drone trajectories from this information.

7.3 Risk Management

Here are the contingency plans we came up with for
certain failure cases:

1. Noisy Target Detection During actual flight, tar-
get detection could have been noisy and unreliable
if the image quality was too poor or the drone was
too unstable. While drone acceleration and jerk are
be minimized in trajectory optimization, if detection
still wasn’t effective, we planned to buy a shirt with
higher contrast. In addition, we thought we could
switch to other detection methods: April Tags [9] or
CNN-based models that can be trained with domain
randomization to be robust. However, we didn’t run
into any issues with target detection.

2. Noisy Target State Prediction Target state pre-
diction becomes noisy if the target detection is too
noisy. In this case, we could bias more towards the
historical model of target motion rather than frame
by frame data if the incoming observations are too
noisy. We can even set a threshold to throw away
observations if they seem unrealistic. If the tar-
get suddenly ”jumps” a large distance in pixel space
that would translate to unrealistic motion in the real
world, we can ignore this observation. We ended up
employing all these techniques

3. Lost Sight of Target The drone continues to use the
predicted trajectory of the target for a short amount
of time, even if the target becomes occluded by some
trees or obstacles. If the target is unseen for a pro-
longed duration, the drone immediately flies back to
home or land, and the user receives a warning mes-
sage on the display.

4. Wifi Issues As mentioned in the scope, we assume a
strong WiFi signal in the environment (on-campus).
If the WiFi connection ends up unstable during flight
and motion commands do not stream at the minimum
2Hz, the drone automatically lands.

5. Unable to Safely Fly Drone In the case that we
were not able to safely fly the drone autonomously, we
planned to do as much as we can in real-time (calcu-
late all the motion plans without sending them back
to the drone), and then demonstrate the rest of the
autonomy in simulation. We ended up having to use
this approach.

18-500 Final Report- May 14, 2021 Page 11 of 14

7.4 Budget

The bill of materials is shown in Fig. 12 of the Ap-
pendix. Any components that we ordered through our
$600 available budget are highlighted in yellow with their
prices stated. For any components that were reused, we
still stated their market price (although this does not count
against our budget).

8 ETHICS

Some of the ethical issues involved in our project in-
clude when the drone is in the air tracking and recording,
the surrounding people in the frame may not consent to
being in the video. This may either be done maliciously or
unintentionally (inadvertently filming someone else in the
background while filming yourself). The way we can try
and mitigate this is to use facial recognition to recognize
the user and blur out all other faces. If someone else wants
to be included, the user can have control to unblur their face
upon which the person who wants to be included needs to
make eye contact with the camera and shake his/her head
up and and down (to signify a yes). The same way we
can use facial recognition to ensure the user does not spy
on other people by making sure the user is always in the
frame.

Some other issues with our project may be running into
things like transmission lines or crashing into other things
like traffic signals, etc. We need to make sure our autonomy
is safe and does not interfere with the outside environment.
One way to mitigate this is to incorporate object avoidance
algorithms to make sure we avoid these objects while flying.

Another ethical issue could be that the product could
be used by the government to keep tabs of people outside
of legal jurisdiction. This product is not intended for this
purpose so we would not be selling it to the government,
but again, we could add an extra precaution by ensuring
the user is in the frame at all times, making it very hard
for the government or anybody else to spy on people.

An additional issue could be two people wearing the
same colored shirt (since we track a specific color), so the
drone could get confused as to who to follow and record the
wrong person who may not want to be recorded. Again, the
way we could solve this is before going into flight, capture
the face of the user and then use facial recognition while in
flight to ensure that the right person is being tracked.

None of these edge cases adversely affect a specific group
of people, but rather anyone could be a victim of these is-
sues if they are not carefully addressed and mitigated.

9 RELATED WORK

[8] provided us inspiration for our motion planning by
introducing the idea of maximizing the dot-product be-
tween the camera’s center view vector and the camera to
3D target vector. Their drone dynamics model is nonlin-
ear along with their objective function, which is why they

use a proprietary optimization solver known as FORCES
PRO. We initally tried using this solver with a more com-
plex 7D system for the drone, but found poor performance
and switched to our current simple 2D system.

The open-source Instructables project, [7] provided us
a useful reference for the necessary steps to take to con-
nect our Raspberry Pi to the drone’s flight controller. This
project only focuses on this communication aspect and
demonstrates successful offboard control, but does not im-
plement any autonomy.

[10] describes a drone that hones in on red balloons and
pops them like targets. While the general idea of detecting
a red-colored target is similar to our project, they do not
perform any 2D to 3D state estimation or solve for optimal
viewpoints. We do not want our drone to simply chase af-
ter the target’s own position, but rather want the drone to
only keep the target in the center of the video.

We drew inspiration from CMU’s own Computer Vision
course, 16385, to implement 2D to 3D position estimation.
Specifically, we referenced lecture 11 of the Spring 2017
course [6], which describes the image backprojection pro-
cess that we use. We applied this theoretical algorithm to
our physical drone using Solidworks to estiamte the fixed
transform from camera to drone as well as the dynamic
transform that depends on drone pose.

Lastly, our original plan was to actually use Deep Learn-
ing to estimate the ground plane’s normal vector. [12]
specifically uses a CNN to aggregate pixels in a 2D image
into surfaces, each with a normal vector. This is similar to
common depth estimation networks that predict disparity
maps from 2D image, but instead predicts plane normals
using an RGBD dataset. Rather than use this, however,
we realized in our test environment that the ground is es-
sentially flat and can be assumed to have a normal vector
pointing straight up to the sky.

10 SUMMARY

10.1 Lessons Learned

The first big lesson we learned was to really think about
all that could go wrong with our project: to understand
the worst case and see given the resources if we could
avoid the worst case. For us, we never thought through
the worst case, which in hindsight is something we really
should have thought of while choosing this project: the
Pittsburgh weather. To test our drone, we had to fly it.
Unfortunately since the budget was low, we could not af-
ford a high quality drone. Thus, our drone was extremely
sensitive to wind conditions. Additionally, our drone was
not waterproof, so the days it rained (and it rains a lot
in Pittsburgh), we could not test our drone. Further, our
drone required GPS for navigation, which inhibited us from
testing the drone in the few large indoor places.Therefore,
the only way we could test our system was on sunny days
with low wind speed, which were only a handful of days
during the whole semester. The way we combatted that

18-500 Final Report- May 14, 2021 Page 12 of 14

was to try to do as much as we could in simulation (testing
our object detection, state estimator, and motion planning
in simulation). However, simulation is an ideal world and
it usually never translates in the real world, so we missed
out on the feedback we could have gotten by testing our
drone in the real world multiple times. The times we did
test it, we learned so much of what was going wrong that if
we had more chances to do those tests, it would have been
really helpful.

Another lesson we learned was that in the final 3 weeks,
we realized a key limitation with our older flight controller
model. Given a limited flash memory size of 1MB, we could
only flash the default firmware binaries onto the flight con-
troller. These default binaries do not include the firmware
for two of our sensors, an optical flow camera and a single
point Lidar for height estimation. Normally, this can be
resolved by simply specifying the desired firmware pack-
ages in an XML-type file and building custom firmware.
However, given our 1MB flash limit, we could not include
our two sensors, and as a result, our drone only had on-
board IMU and GPS for pose estimation, leading to the
large noise in position estimation. We most likely would
have been able to fly the drone if we had these two addi-
tional sensors since pose estimation error would drastically
reduce. Overall, we learned that remaining too stubborn
to buy new parts can waste time and even lead to an in-
complete project as in our case.

We learned another valuable lesson while implementing
our motion planning. We initially designed a more com-
plicated planner that had to optimize for full 3D position
and yaw angle. While this allows for more fine-tuned con-
trol of the drone’s motion, this also significantly increases
runtime in the planning computation and optimization.
Solving over a horizon of 10 timesteps took upwards of
12 seconds, much too slow for our needs. We eventually
stuck with our final, simplified 2D state model in x and y
only. While this prevents us from controlling the drone’s
height and orientation, this resulted in much faster motion
planning and overall faster reaction times to the target’s
motions. Overall, these simplifying assumptions also still
work well for our use-case, and in fact seem to lead to
more stable video naturally. The valuable lesson here is to
always start simple and only add complexity where nec-
essary. Research papers often criticize every assumption
and seek the most general solution, but it’s important to
recognize that assumptions aren’t evil and may even be
necessary. The key is to determine which assumptions are
fine for a specific application.

10.2 Future Work

For future work, we would like to first and foremost buy
a new flight controller, enable our new sensors, and run our
autonomy on the physical drone. Second, we would like to
explore other interesting flight modes for the drone. Cur-

rently, the drone only optimizes to keep the target in the
center of the video. This doesn’t allow for much diversity in
footage when compared to the possible panoramic sweeps
that professional videographers perform. A cool extension
would be to let users wave their arms in a sweeping mo-
tion to direct the motion of the drone, so the drone not
only keeps the target in its camera’s view, but also follows
a specific path that can view the target from different an-
gles.

18-500 Final Report- May 14, 2021 Page 13 of 14

Glossary

API Application Programming Interface. 4

CAD Computer-Aided Design. 5

CNN Convolutional Neural Network. 11

CPU Central Processing Unit. 7

FN False Negatives. 1, 9

FP False Positives. 1, 9

FPS Frames per Second. 2, 8–10

GHz Gigahertz. 2

GPIO General Purpose Input/Output. 2, 4, 7

GPS Global Positioning System. 4

GPU Graphics Processing Unit. 8

HDMI High Definition Multimedia Interface. 4

HSV Hue, Saturation, Value (image representation). 5

I/O Input/Output. 7

J21 An array of GPIO pins on the Jetson. 7

kV Kilovolts. 2

LiPo Lithium Polymer. 2

mAH Milliamp-hours. 2, 8

MIPI Mobile Industry Processor Interface. 2

PD Proportional, Derivative (feedback control). 4

PX4 Type of flight controller firmware. 4

RGB Red, Green, Blue (image representation). 5

RGBD Red, Green, Blue, Depth (image representation).
11

ROS Robot Operating System. 2, 4, 8, 10

RPi Raspberry Pi. 2–4, 8

TX1 Nvidia Jetson TX1. 2–4, 7, 8

UART Universal Asynchronous Receiver-Transmitter. 4

Wkg Watt-kilograms. 2

References

[1] 12 Best Follow Me Drones And Follow You Technol-
ogy Reviewed. 2020. url: https://www.dronezon.
com/drone-reviews/best-follow-me-gps-mode-

drone-technology-reviewed/.

[2] Benchmarks for Jetson Nano, TX1, TX2 and AGX
Xavier. 2019. url: https : / / fastcompression .

medium.com/benchmarks-for-jetson-nano-tx1-

tx2-and-agx-xavier-6c3b7105421d.

[3] Drone Flight Time Calculator. 2018. url: https://
www.omnicalculator.com/other/drone-flight-

time.

[4] How a Kalman Filter Works, in pictures. 2015. url:
https : / / www . bzarg . com / p / how - a - kalman -

filter-works-in-pictures/.

[5] Iris - The Ready to Fly UAV Quadcopter. url: http:
//www.arducopter.co.uk/iris-quadcopter-uav.

html.

[6] Kris Kitani. url: http://www.cs.cmu.edu/~16385/
s17/.

[7] Artyom Maxim. Control a Pixhawk Drone Using
ROS and Grasshopper. url: https : / / www .

instructables.com/Control-a-Pixhawk-Drone-

Using-ROS-and-Grasshopper/.

[8] Tobias Nägeli et al. “Real-Time Motion Plan-
ning for Aerial Videography With Dynamic Ob-
stacle Avoidance and Viewpoint Optimization”. In:
IEEE Robotics and Automation Letters 2.3 (2017),
pp. 1696–1703. doi: 10.1109/LRA.2017.2665693.

[9] E. Olson. “AprilTag: A robust and flexible visual fidu-
cial system”. In: 2011 IEEE International Conference
on Robotics and Automation. 2011, pp. 3400–3407.
doi: 10.1109/ICRA.2011.5979561.

[10] Randy. Red Balloon Finder. url: https : / /

diydrones.com/profiles/blogs/red- balloon-

finder.

[11] USB Stick - WiFi Realtek 8188 (rtl8188cus). 2015.
url: http://domoticx.com/usb- stick- wifi-

realtek-8188-rtl8188cus/.

[12] Fengting Yang and Zihan Zhou. “Recovering 3D
Planes from a Single Image viaConvolutional Neu-
ral Networks”. In: IEEE Robotics and Automation
Letters (2018).

18-500 Final Report- May 14, 2021 Page 14 of 14

11 APPENDIX

Figure 11: Final Gantt Chart

18-500 Final Report- May 14, 2021 Page 15 of 14

Figure 12: Bill of Materials

