
18-500 Design Review Report- March 17, 2021 Page 1 of 9

B9: Hawkeye
Authors: Alvin Shek, Siddesh Nageswaran, Vedant Parekh

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A drone capable of tracking a target
in real time as they move across the ground as well as
streaming a live video feed of them to a wearable device.

Index Terms–computer vision, flight control, recon-
naissance, state estimation, tracking

1 INTRODUCTION

Over the last few years, drones have become increas-
ingly popular for both recreational and professional videog-
raphy. Vloggers can take breathtaking aerial shots of
their escapades through mountains and fjords. And during
search-and-rescue missions, rescuers can use drone footage
to identify victims and monitor their own surroundings to
call for backup if needed. Yet, despite the numerous use-
cases, one bottleneck stands in the way when it comes to
capturing drone footage: manual control. Maneuvering a
drone takes skill and concentration. For vloggers, this can
be an inconvenience while for mission critical operations,
this can prove to be a fatal distraction. Moreover, any task
involving user control always has the potential for user er-
ror. Thus, the goal of Hawkeye is to be an autonomous
drone videographer that prioritizes video quality and track-
ing accuracy. Since users are putting full faith into Hawk-
eye’s tracking algorithm, the most critical requirements are
to update the user position frequently and ensure that the
user is centered to the frame at all times. Hawkeye will:

• Capture video of a target and sample it at 15 fps to
identify the target’s position.

• Use these positions for motion planning to follow the
target. The target should always remain within a
central bounding box 1

3 the width and height of the
frame.

• Stream 15 fps, 480p+ video of the target to a wear-
able display.

This takes all the hassle out of the user’s hands and enables
them to focus on the task at hand. Viewing the live footage
and seeing their surroundings is as simple as the flick of a
wrist.

There are other drones that have recently arrived in the
market which also aim to provide autonomous tracking of
a target, such as the Skydio 2 and DJI Mavic Air 2 [1].
However, a few of the shortcomings of these drones is that
they are expensive and rely on a smartphone app. The live
video feed gets streamed to the user’s smartphone, and the
user has to navigate through the app to control the drone’s

tracking. This goes against the philosophy of hands-free
convenience by forcing the user to carry a smartphone with
them at all times, constantly pull it out to watch the live
feed and have to deal with a small screen. Our wearable
display and simple button interface aims to provide maxi-
mum convenience and minimal interference to the user.

2 DESIGN REQUIREMENTS

Target Detection uses computer vision to predict the
center pixel location of the target a given image. Our entire
target tracking and motion planning stacks depend on this
initial detection, so we need a requirement to guarantee its
accuracy. We will measure performance as the standard
deviation in distance σd1 between true and predicted po-
sition, where true position will be hand-labeled by us. We
will test using 5 different colored shirts in various lighting
conditions to determine the best color to use.
During the actual test, the target will wear a specific shirt
and move around at various speeds as a camera records
video for one minute. The drone has no involvement in
this, allowing us to test computer vision independently. Af-
ter collecting the data, we will hand-label the target’s po-
sition in every video frame, run our target detection code,
and measure overall standard deviation. Our requirement
is the following:

2 ∗ σd1 ≤ 1

5
W

where W denotes camera width. If we divide the image
into a 5 x 5 grid, we expect the target to lie in one of
these rectangles when the drone is flying at 20 feet high.
Thus, we expect the predicted target location to lie within
one of these squares centered around the target with 95%
confidence.

Figure 1: Example target with 5x5 grid overlay. The red
bounding box centered around the target has a length of

1
5 of the camera width.

18-500 Design Review Report- March 17, 2021 Page 2 of 9

Drone Stability and Target Tracking involves both
target detection and the drone’s motion planning. Perfor-
mance will be measured as standard deviation in distance
σd2 between the target’s position and the center of the
image, averaged across 30 frames. Intuitively, the drone
should try to keep the video footage centered on target as
the drone follows the moving target. Since this is testing
the drone’s ability to keep up with the target, the target
will move differently in four tests: stationary, straight for-
wards, sideways, and then randomly.
Since this test involves motion planning, we will first test
in the Gazebo drone simulator by having the drone follow a
colored cube in bright lighting conditions. We do not want
to crash the drone with newly written code.
At the very end, we will test the full system in the real
world as a human target moves around. To evaluate per-
formance, we again will hand-label the target’s position on
each image frame, split the video into groups of 30 frames,
and measure standard deviation across each group.
Our requirement is defined as follows:

2 ∗ σd2 ≤ 1

3
W

where W is width of the image. We define success if the
target can lie in the ”center region” of the image 95% of
the time (hence two standard deviations), which can be
visualized as the center of a 3x3 grid on the image:

Figure 2: Example target with 3x3 grid overlay. The
drone should always try to keep the target within the

center rectangle.

Quality of Captured Video will be 720p, giving a
(1280 x 720) image. This is a use-case requirement, where
the user should have high quality video saved.

Communication Bandwidth will have hard lim-
its since we have offloaded our computation to a ground
computer. Our Pixhawk flight controller expects control
commands to stream in at a minimum of 2Hz, so our com-
bined computation and communication latency must not
exceed 0.5 seconds for a given timestep. Our transmitted
data must not exceed our Realtek RTL8188CUS-GR wifi
module’s limit of 300 Megabits per second at either 2.4 or
5 GHz frequency [9].

Quality of Streamed Video This requirement is still
undefined, but is limited by the bandwidth of our wifi mod-
ule, which mentioned above is 300 Megabits per second.
We will try to maximize this video stream to improve the
accuracy of our target tracking, which depends on high
enough image quality. This means we need to optimize
data efficiency of other communication and drone controls.

Power Consumption and Flight Time Our require-
ment for flight time is 10 minutes as a lower bound, and
we picked a 5100mAh battery to achieve this. We calculate
projected power consumption and overall flight time based
on the following information:

• Motors 4 motors consuming 170W to lift 1kg
(Model: AC 2830, 850 kV) [7]

• Mass 1282g for bare drone and battery and 300g for
sensors and compute [7]

• Battery 5100mAH battery at 11.1V

Assuming we can only use 80% of the battery for safety
reasons, we calculate the following [5]:

Amp draw =
170W

1kg
∗ 1282 + 300g

1000g/kg
∗ 1

11.1V

= 24.23A

Flight time =
capacity

Amp draw

=
.8 ∗ 5100mAH

24.23 ∗ 1000mAH
∗ 60 min

H
= 10.10 min

Our flight time estimate is a lower bound since the com-
pute and sensors will most likely not weigh 300g, and the
170Wkg assumes constant ascent (not hovering).

Data Storage Capacity High quality video will be
stored on an external flash drive during flight. Given our
captured video requirement of 720p, or 1280 x 720 sized
RGB images and a frame rate of 30fps, a typical flight of
10 minutes would require the following data:

GB

flight
=

sec

flight
∗ frames

sec
∗ pixels

frame
∗ Bytes

pixel
∗ GB

Bytes

=
15 ∗ 60

1
∗ 30

1
∗ 1280 ∗ 720

1
∗ 3

1
∗ 1

109

= 50

Where each pixel has 3 color channels for RGB, each rang-
ing from 0 to 255 in value (1 Byte). In this case, we will
need at least a 64GB card for video storage.

2.1 Scope

In order to meet these requirements within the time
period, these are the simplifying assumptions we made:

• The target will be wearing a red CMU sweatshirt

• The drone will operate in open field without obstacles

18-500 Design Review Report- March 17, 2021 Page 3 of 9

• There will be WiFi access in test environment

• Daytime conditions with minimal wind

• The drone will be limited to tracking one person

• The target being tracked may be amongst 3 other
people (not surrounded by a mob)

• Flight height no more than 20 feet

3 ARCHITECTURE OVERVIEW

Our system, which is shown in Fig. 3, is broken into
three groups:

1. Drone compute

2. User compute

3. Wearable device

The drone compute contains all the hardware that will
be on the drone to help navigate it. The camera on the
drone will collect a live video feed and send it to an RPi
through the MIPI Camera Serial Interface 2. The RPi will
send the video it receives to the Jetson TX1 (referred as
“TX1” from hereon), over WiFi using ROS, for processing.

The TX1 will use the video as input for the computer
vision algorithm it runs to keep track of the position of
the target and a state estimation algorithm which uses the
target’s position to predict the future path. Based on this,
the TX1 will return the flight position commands back to
the RPi over WiFi using ROS. The RPi will receive these
position commands and forward it to the flight controller
of the drone via USB. The flight controller will then be
responsible to fly the drone to the correct position.

The video that the TX1 receives is sent to a 5” display
via HDMI for the user to view. There are also buttons
placed near the display for the user to interact with, which
are processed by the TX1 through GPIO interface. The dis-
play and the buttons are powered by the TX1. The TX1
is powered by a rechargeable LiPo battery while the drone
is powered by a 5100 mAh rechargeable battery. A high-
level description of the division of computation between the
important subsystems is as follows:

3.1 Jetson TX1

Used for video processing and processing user inputs via
the buttons. The TX1 will use OpenCV library to process
the captured video from the camera for the computer vision
algorithm, and then feed the output of this into the state
estimation algorithm. The implementation of the computer
vision and state estimation algorithm will be discussed in
detail in the System Description section.

3.2 RPi

Used as a middleman between the drone flight con-
troller, camera and the TX1. Forwards updates in position
from the flight controller to the TX1, new image frames
from the camera to the TX1 and updated motion plans
from the TX1 back to the drone flight controller.

3.3 Iris Drone Flight Controller

Takes high-level position/velocity/orientation motion
planning waypoints that have been forwarded to it via the
RPi and determines the speed of the motors required to
achieve the desired path.

Figure 3: System block diagram

18-500 Design Review Report- March 17, 2021 Page 4 of 9

4 DESIGN TRADE STUDIES

4.1 On-Drone vs. On-User Compute

Originally, rather than have a Jetson TX1 located
within the user’s backpack and a RPi on the drone to in-
terface with peripherals, we intended to just have a single
Jetson Nano located on the drone that performed all the
necessary software tasks. We figured that any extra com-
pute on the user would be cumbersome and hoped to per-
form as much computation as possible on the drone itself.
However, looking into the issue further, we realized that
for our use-cases, most users would be carrying a backpack
anyways and that performing computation on the drone
severely limited us. The main points are:

1. Power Consumption

Powering the Jetson Nano using the same battery as
the drone would severely eat into the drones runtime
given that the battery is only 5100 mAH. Consider-
ing that the drone by itself only runs for about 20-30
minutes on a single charge this would put us in dan-
ger of missing our flight time requirement. Not to
mention that the additional weight of a Jetson Nano
would force the drone to use up even more power to
stay in flight. We would be forced to invest in a big-
ger battery, which once again would weigh the drone
down even further.

2. Peformance

Moving compute to the drone forces us to use a Jet-
son Nano rather than a TX1 (for size/weight reasons).
However, a Nano contains only 128 GPU cores while
the TX1 contains 256. For basic color filtering / blob
detection this may be okay, but if we want to meet 15
fps requirement and have the flexibility of using more
sophisticated approaches should we need to, the TX1
is a much safer approach. Here is a table [2] which
benchmarks the Nano vs. TX1 for the same image
processing task:

Figure 4: Benchmarks for Nano vs. TX1

Of course, there also some benefits to handling compute
on the drone rather than the user. Streaming the video
down from the drone to the user over WiFi creates addi-
tional latency. Because of this, once the Jetson receives a
frame, the user may have already moved slightly. However,
given that we are sampling 15 times per second, we felt this
would not be significant.

4.2 Wearable vs. Streaming to Computer

Originally, we intended to stream the live video feed to
a computer. We thought this would be more convenient for
us to implement since we would not need to buy anything
extra or deal with hardware peripherals.

In the end, though, a small “wearable” display was de-
cided to be used to show the streamed video from the drone
rather than streaming the video to a computer. This is be-
cause in mission critical or vlogging applications, it is not
user friendly to walk and hold a computer to be able to see
the video from the drone. Further, for these applications
having both hands available to perform other tasks than
holding a computer is extremely important. Therefore, a
5” display will be strapped onto the user’s arm, which will
show the live video.

4.3 CV vs. Bluetooth Triangulation

As opposed to using computer vision to detect the tar-
get, we initially thought that we could use put a Blue-
tooth transmitter onto the target and position Bluetooth
receivers around the environment to triangulate position.
However, we decided against this for the following reasons:

1. Target Detection

Bluetooth triangulation yields a very rough location
estimate when the target is not limited to a 2-5 meter
bubble. Current implementations on the market have
2 meter error even at distances as close as 6 meters
[3]. The method is inherently noisy because any time
the line of sight is blocked or the signal gets reflected
off some surface, the estimate will be off. Since we do
not want to restrict the user to a 2-5 meter space, we
chose against using this method to track the user.

2. Prior Knowledge

Between the three of us, we have little expertise in sig-
nals. In addition, our advisor is Professor Savvides,
who’s area of expertise is computer vision. Thus, we
thought the computer vision approach would be more
appropriate.

4.4 Buttons vs. Touch Screen

Buttons will be used to interact with the drone rather
than a touchscreen display. This is because touchscreen dis-
plays are unreliable with the TX1, so buttons were decided
on instead.

18-500 Design Review Report- March 17, 2021 Page 5 of 9

5 SYSTEM DESCRIPTION

Now that we have gone over the high-level design of our
solution, here are the specifics on how each of the compo-
nents will work and interact:

5.1 Onboard Compute

The drone itself has three broad categories of compute:
flight controller, sensors, and RPi. The flight controller is
a Pixhawk that uses the PX4 API with ROS to broadcast
state of the drone and listen to motion commands. The
Pixhawk can take a variety of control commands, from high
level position (x, y, z) in local or global space to low level
desired orientation in roll, pitch, and yaw. The Pixhawk
has built-in PD controllers that control speed of the motors,
and we only need to provide high level motion commands.

The Pixhawk already is built with several sensors for
drone odometry: gyroscope, accelerometer, magnetometer
(compass), and barometer. It also contains a GPS that
provides global localization within 1-2 meters. We also al-
ready own a downward-facing Lidar Lite V3 rangefinder
that provides accurate height estimate as well as an optical
flow PX4Flow camera that points downwards. All of these
sensors are fused together within the Pixhawk’s internal
Extended Kalman Filter.

Connected to the Pixhawk via UART, the RPi listens
to these drone state estimates and forwards it down to the
ground TX1. The RPi will also record video from an Ar-
ducam IMX477 MINI, store the 720p version on a flash
drive, and stream down a lower quality video to the TX1
via ROS wifi. The TX1 will simultaneously publish mo-
tion commands to the RPi, which will forward these to the
Pixhawk flight controller.

5.2 On-User Compute

The on-user compute is performed entirely on the Jet-
son TX1, which interfaces with the wearable display using
HDMI and the buttons via GPIO. The control flow for the
TX1’s main() function is shown in Fig. 5. When the TX1
receives a start signal over GPIO, it will initialize ROS and
send a ”start” command to the RPi via ROS signalling the
drone to rise to cruising altitude. Once this is performed,
the TX1 launches three threads:

1. Target Detection

This thread listens for new frames being sent from
the RPi. Once a new frame arrives, it first sends it
through the CV component to detect the (x, y) of the
target as pixel coordinates and then adds this obser-
vation to the state estimator.

2. Drone Management

This thread listens for updated drone state being sent
from the RPi. It adds this drone state to the state es-
timator, then requests an updated motion plan from
the state estimator, which is sent back to the RPi.

3. Stop Detection

This thread waits for either a stop signal over GPIO
or a ”stop” command sent down from the RPi (in
case the drone has determined it has to land). In the
case of the former, the TX1 sends a ”stop” command
to the RPi, kills all threads and exits. In the case of
the latter, the TX1 displays an error message on the
display and continues.

In the next subsections, we will elaborate further on the
computer vision and state estimation.

Figure 5: TX1 Control Flow

18-500 Design Review Report- March 17, 2021 Page 6 of 9

5.2.1 Computer Vision

The computer vision algorithm to detect the target
reads frames captured by the camera and extracts the loca-
tion of the target. To accomplish this, the captured frames
go through the following stages:

1. RGB Color Thresholding

The image read from the camera is an RGB im-
age. In our scope, we mentioned we are tracking a
target wearing a red colored shirt. Thus, the first
step is to perform color thresholding on the RGB im-
age to narrow down the red channel of the image.
We predetermine the ranges for each of the 3 chan-
nels, blue(B), green(G), red(R) by manually adjust-
ing them such that only the red pixels of the shirt
would pass through. At first, we tried using HSV
color space, but during testing, we realized it was
too dependent on the lighting conditions. However,
the RGB filter worked well in bright and dull lighting
conditions.

2. Noise Filter

The color thresholding by itself still allows some noisy
pixels to pass through that are not the color of the
shirt, which leads to the algorithm not detecting the
target. To remove those, the frame is eroded using
OpenCV which shrinks each group of pixels. This
removes the noisy pixels that were getting past the
color thresholding and affecting the detection of the
target.

3. Object Detection

Once the noise is removed, the OpenCV findContours
function is used to detect the red shirt. Then, the
moments function is used to find the center of the
object detected. This becomes the (x,y) position of
the target which will serve as an input to the state
estimator.

5.2.2 State Estimation

For state estimation, we implemented our own Kalman
Filter algorithm that models the user’s state at all times in
terms of:

• x/y position

• x/y velocity

• x/y acceleration

• estimated covariance between these parameters

The filter takes in two types of data to update this model:

• Pixel coordinates of the user’s position each frame
(sent from the CV)

• Updates in the drone’s current state (sent from the
RPi)

It is assumed that these data may be sent asynchronously,
but will always be timestamped with an exact time that
they were sent. The filter also maintains the following state
transition matrices:

• F: Models how the user’s state deterministically tran-
sitions from one period to the next. It assumes the
user does not change acceleration and takes in ∆t as
a parameter.

• Q: Models random fluctuations in user state (due to
user changing acceleration). Takes in assumed std.
dev. in user accceleration as a parameter.

• H: Models how sensor data (the CV data and updates
in drone state) relate to user’s current state

• R: Models random fluctuations in sensor data (noisy
observations). Takes in assumed std. dev. in ob-
served user position as a parameter.

Using these matrices, the Kalman Filter probabilistically
determines the most likely future state (x̂′k) and covariance
in future state (P ′k) given the user’s current state (x̂′k−1),
current covariance in state (P ′k−1) and current sensor data
(~zk). Here are the equations for doing so [6]:

x̂k = Fx̂′k−1

Pk = FP ′k−1F
T + Q

K’ = HPkHT (HPkHT + R)−1

x̂′k = x̂k + K’(~zk − Hx̂k)

P ′k = Pk − K’HPk

5.3 Wearable Device

A 5” display will be used to show the streamed video
from the drone. The display has a 500mA current draw and
can be powered by micro USB. The TX1 has an HDMI port
and a micro USB that can supply the 500 mA current re-
quired by the display. Further, since this display has an
HDMI port, the video will be sent through HDMI for dis-
play. This display is ideal as it is small, so it can be some-
thing we can wear on our arm, and requires no custom
power management circuit as it can be powered through
USB. Since right now we are planning to place the TX1
in a backpack and display on the arm, it is important to
minimize the wiring between the two components.

18-500 Design Review Report- March 17, 2021 Page 7 of 9

Figure 6: Button circuitry

Buttons will be used to interact with the drone. They
will be assembled in a through hole package and will be
placed near the display. We plan to have 4 buttons, one
to start the drone flight, one to stop the drone flight, and
two miscellaneous in case added functions are needed. The
buttons will be powered by 3.3V GPIO (pin 1 on the J21
header on the TX1). Fig. 6 shows a simple circuitry to
connect the stop button to the TX1. The same will be
followed for the other three buttons.The buttons will be
connected to J21 header pins 13, 16, 32, 33 on TX1 which
all have a pull down network that will complete the circuit
when the buttons are pressed.

6 PROJECT MANAGEMENT

6.1 Schedule

Our schedule (Fig. 7 in the Appendix) is composed of
four phases: design, pre-integration, integration, and
performance testing. Upon writing this report, we are
nearing the end of our design phase. In design, we proposed
various methods for building the system with various con-
tingency plans in case certain ideas fail. We researched and
purchased materials that would suite our requirements, and
verified that already-owned materials would meet our re-
quirements.

Our current step is pre-integration, which involves im-
plementing and debugging various subsystems indepen-
dently of one another. For instance, target detection can
be implemented and tested using a fixed camera without
involving the drone. Other tasks include target state es-
timation and prediction, drone motion planning in simu-
lation, and the hardware communication protocol for the
wearable display. After this three-week phase, integration
involves combining all these independent subsystems to-
gether to produce a functional product. After this, perfor-
mance testing will involve testing the system as a whole and
recording performance through our various test metrics.

6.2 Team Member Responsibilities

Vedant Parekh will work on target detection in an
image as well as the hardware communication protocols
and circuitry for the wearable device.

Siddesh Nageswaran will work on target state esti-
mation and prediction as well as design the housing for the
TX1, display and drone’s external hardware.

Alvin Shek will work on inferring 3D motion of the
target from its 2D motion and the 2D image as well as
generating drone trajectories from this information.

6.3 Risk Management

We have contingency plans in case our initial design
doesn’t meet our requirements.

1. Noisy Target detection During actual flight, tar-
get detection may be too noisy and unreliable if the
image quality is too poor or the drone is too unsta-
ble. Drone acceleration and jerk will be minimized in
trajectory optimization. If detection still isn’t effec-
tive, we may buy a shirt with higher contrast, or even
switch to other detection methods: April Tags [8] or
CNN-based models that can be trained with domain
randomization to be robust. We can also reduce the
height of the drone’s flight so the target is larger in
the image.

2. Noisy Target state prediction Target state pre-
diction may be too noisy if the target detection is
noisy. We can bias more towards the historical model
of target motion rather than frame by frame data if
the incoming observations are too noisy. We can even
set a threshold to throw away observations if they
seem unrealistic. If the target suddenly ”jumps” a
large distance in pixel space that would translate to
unrealistic motion in the real world, we can ignore
this observation.

3. Lost Sight of Target The drone will continue to
use the predicted trajectory of the target for a short
amount of time, even if the target becomes occluded
by some trees or obstacles. If the target is unseen
for a prolonged duration, the drone will immediately
fly back to home or land, and the user will receive a
warning message on the display.

4. Wifi Issues As mentioned in the scope, we assume
a strong wifi signal in the environment (on-campus).
If the wifi connection ends up unstable during flight
and motion commands do not stream at the mini-
mum 2Hz, the drone will automatically land. If wifi
issues persist, we can switch to bluetooth or radar as
alternatives.

18-500 Design Review Report- March 17, 2021 Page 8 of 9

6.4 Budget

The bill of materials is shown in Fig. 8 of the Appendix.
Any components that we plan to order through our $600
available budget are highlighted in yellow with their prices
stated. For any components that are reused, we still stated
their market price (although this does not count against
our budget).

6.5 AWS Credit Usage

We would need use the AWS credits for experiment-
ing with various deep learning approaches in the following
tasks, the latter two which are post-MVP:

• 2D to 3D target motion Possibly predicting 3D
plane equations from 2D image and projecting tar-
get’s 2D position onto the 3D ground plane. [10]

• Advanced Target Detection Possibly extend sys-
tem to detect different targets with the tap of a but-
ton without needing them to wear a brightly colored
shirt. [4]

• Hand Gesture Controls Human target uses arm
gestures/motions to command drone to perform var-
ious sweeping camera motions.

References

[1] 12 Best Follow Me Drones And Follow You Technol-
ogy Reviewed. 2020. url: https://www.dronezon.
com/drone-reviews/best-follow-me-gps-mode-

drone-technology-reviewed/.

[2] Benchmarks for Jetson Nano, TX1, TX2 and AGX
Xavier. 2019. url: https : / / fastcompression .

medium.com/benchmarks-for-jetson-nano-tx1-

tx2-and-agx-xavier-6c3b7105421d.

[3] BLE Beacons for Indoor positioning – Beacon limi-
tations. url: https://locatify.com/blog/ble-
beacons-no-bull-beacon-review/.

[4] Michael Breitenstein et al. “Online Multi-Person
Tracking-by-Detection from a Single, Uncalibrated
Camera.” In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 33 (Sept. 2011), pp. 1820–
1833. doi: 10.1109/TPAMI.2010.232.

[5] Drone Flight Time Calculator. 2018. url: https://
www.omnicalculator.com/other/drone-flight-

time.

[6] How a Kalman Filter Works, in pictures. 2015. url:
https : / / www . bzarg . com / p / how - a - kalman -

filter-works-in-pictures/.

[7] Iris - The Ready to Fly UAV Quadcopter. url: http:
//www.arducopter.co.uk/iris-quadcopter-uav.

html.

[8] E. Olson. “AprilTag: A robust and flexible visual fidu-
cial system”. In: 2011 IEEE International Conference
on Robotics and Automation. 2011, pp. 3400–3407.
doi: 10.1109/ICRA.2011.5979561.

[9] USB Stick - WiFi Realtek 8188 (rtl8188cus). 2015.
url: http://domoticx.com/usb- stick- wifi-

realtek-8188-rtl8188cus/.

[10] F. Yang and Zihan Zhou. “Recovering 3D Planes from
a Single Image via Convolutional Neural Networks”.
In: ECCV. 2018.

18-500 Design Review Report- March 17, 2021 Page 9 of 9

Appendix

Figure 7: Gantt Chart Schedule

18-500 Design Review Report- March 17, 2021 Page 10 of 9

Figure 8: Bill of Materials

