

Design Review Presentation

Vedant Parekh, Siddesh Nageswaran, Alvin Shek Advisors: Professor Savvides, Rashmi Anil

Introduction and Motivation

- What is Hawkeye?
 - a. An automatic drone tracking system with live aerial footage
 - b. Shoots aerial video that does not require human control, eliminating human error
- Use Cases:
 - a. Useful for recreational filming, rescue missions etc.
 - b. Imagine shooting exciting videos of sports events (your Turkey Bowl game), or having a hands-free vlogging experience!

Project Scope

- We will operate under the assumptions:
 - The drone will operate in open field without obstacles
 - There will be WiFi access in test environment
 - There will be little to no wind
 - The drone will operate during daytime
 - The drone will be limited to tracking one person
 - The target being tracked may be amongst 3 other people, but not more
 - Flight height no more than 20 feet

Solution Approach - Hardware

- Drone Compute
 - IRIS 3D+ Drone
 - Arducam IMX477 MINI Camera for RPi
 - 20' x 30' field of view at 20' elevation
 - o RPi 3
 - Interfaces between camera / drone / TX1
 - 5100 mAh Battery
 - Powers drone by itself for 20 30 minutes
 - 5V Buck Converter (to power RPi)
- User Compute
 - Jetson TX1
 - 256 GPU cores allows relatively complex CV compute within 15 fps time requirement
 - 3S LiPo Battery
 - 11.1V (within 5 19V operating range of TX1)
- Wearable Display
 - Adafruit HDMI 5" Display
 - 4.8" x 3"
 - Buttons and Passives

Solution Approach – Software

- Target Tracking (done on Jetson TX1)
 - Detect target with CV: HSV color filter + blob detection
 - Estimate velocity vector of target
- Drone flight control (done on Jetson TX1)
 - Need to compute desired yaw and x, y and z positions relative to current drone position
- Communication between board and drone (handled on RPi)
 - Need to communicate the yaw and coordinates to the drone's flight controller and send the streamed video to the Jetson

System Specification

Implementation Plan

Testing: Target Detection

• Measurements:

• Standard deviation in distance between true and predicted target position

• Test scenarios:

• 5 different colored shirts, bright and shaded locations

• Test setup:

- Target wears a specific colored shirt
- Stationary camera on a high platform to record video for 1 minute

• Test evaluation:

- Hand-label the center of target for each video frame in post-processing
- Run target detection algorithm on each video frame to output predicted target position in pixel coordinates
- Measure standard deviation across entire video

Testing: Drone Stability and Tracking

• Measurements:

 Standard deviation in distance between target center and center of frame across 30 frame windows

• Test scenarios:

- Stationary, forward motion, sideways motion, free-motion
- Single color

• Test setup:

- Simulation: Use a colored cube as target with nominal lighting conditions
- Real world: Target wears specific colored shirt and follows specific motion

Test evaluation:

- Drone runs target detection and motion planning to follow target
- Record video, split into windows of 30 frames
- Hand-label target position at each frame, calculate measurements

Risk Mitigation

- Unable to detect target
 - More defined trackers (switch to brighter object)
 - Reduce height of drone
- Target identified but unable to track accurately
 - Modify target state estimation -> bias more towards pre-existing model of target motion rather than frame by frame data
 - Thresholding to discard sudden "jumps" in target position
 - Better camera
- WiFi drop
 - Land drone when WiFi stops working
 - Explore bluetooth
- Worst case
 - Drop out

Division of Labor

• Alvin:

- Drone motion planning
- Flight controller interface

• Vedant:

- Target identification
- Hardware communication protocols
- Design circuitry for wearable
- Siddesh:
 - Target state prediction / estimation
 - Designing the housing for the TX1, display and drone

Updated Schedule

		Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14		1	Legend:
1 Phase 1: Design															/edant
1.1 Make overall block diagram		8		· · · · · · · · · · · · · · · · · · ·											Alvin
1.2 Choose/finalize components															Siddesh
1.3 Set-Up Jetson TX1															Together
1.4 Order components													100		
1.5 Familiarize ourselves with dron	e API and simulator														
1.6 Familiarize ourselves with Jets	on TX1 API														
1.7 Familiarize ourselves with wea	rable display communication protocol														
1.8 Design Presentation															
1.9 Design Report															
2 Phase 2: Pre-integration															
2.1 Implement color filtering and bl	ob detection	1		_		1									
2.2 Test detection on static images															
2.3 From target data across multip	le frames, calculate velocity vector			1											
2.4 Use calculated velocity along w	ith a model for target movement to accurately predict future movements						1								
2.5 Test detection on live video (lor	ng distance with smaller target since blob detection parameters need to be tune	ed)													
2.6 Successfully send sample moti	on commands to drone in simulation, then on physical drone														
2.7 Design a general motion plann	ing stack; design to easily integrate with target tracking														
2.8 Test and debug the motion plan	nning stack														
2.9 Implement communication betw	veen camera and RPi Zero, film sample video														
2.10 Implement video streaming over	er Wifi between RPi and TX1					-									
2.11 Implement hardware protocol (ex. UART, I2C) to interface between TX1 and display														
3 Phase 3: Integration							-								
3.1 Map target's motion in video to	desired motion of drone	1													
3.2 Design circuitry for the wearabl	e device (ex. display, buttons, power supply etc.)														
3.3 Hook up buttons to the TX1 an	d configure them to send start and stop instruction to RPi														
3.4 Integrate RPi start stop signals	received from nano with the drone flight controller														
3.5 Design safety fallback behavior	r and validate on simulation and on drone														
3.6 Integrate the flight parameter d	ata generated by TX1 with the flight controller														
3.7 Create housing for Jetson TX1	and display so that they can easily be worn by the user														
3.8 Create chassis to house RPi and	nd camera onto the drone and verify camera angle														
4 Phase 4: Performance testing	0														
4.1 Verify that video streaming per	forms with a stationary target														
4.2 Verify drone can continuously t	rack target during flight w/o streaming video II														
4.3 Verify that drone can match spe	eed of target that is varying between speedsll														
4.4 Verify live video from drone car	h be seen on wearable display for a moving targetil														
4.5 Iterate and repeat tests II															
4.6 Slack		1													
5 Final Report															
5.1 Record demo video II															
5.2 Edit video II															
5.3 Final presentation II															

