
18-500 Final Project Report: 05/14/2021

1

Abstract

As haptic technology is becoming more and more desired,

research on interactive appliances has advanced

tremendously. Smart mirrors are one such appliance that

add ease and functionality to a user’s daily routine.

However, smart mirrors on the market right now such as

Amazon’s patented blended reality mirror and

Lululemon’s workout mirror are not easily accessible or

affordable to users. Other smart mirrors on the market are

expensive and require advanced setup. Ours is a smart

mirror system capable of allowing users to try on tops by

utilizing a computer vision torso and clothing detection

algorithm that offers an affordable and accessible user

experience.

Index Terms — Adaptive Content Generating and

Preserving Network (ACGPN), Arducam, clothing detection,

key point jsons, Jetson Xavier NX, OpenPose, torso detection,

two-way mirror

I. INTRODUCTION

With the invention of amazon and e-commerce, more and

more people are purchasing things online. Especially with the

COVID-19 pandemic, our only option to buy clothes is online

because it is unsafe to shop in stores. However, one of the major

pain points of shopping online is the fact that we aren’t able to

try clothes on before purchasing. Many stores are final sale or

just have really inconvenient return policies, so we end up

spending money on clothes we may never wear. This is why we

came up with a smart mirror. The smart mirror is designed to

allow users to try on tops from home. Using a torso recognition

algorithm, we will be mapping clothes from online stores or the

users own closet onto the user’s body with about an 56%

precision and 4.5 second average latency to give the users a try

on effect in as close to real time as possible.

There are many different smart mirror options available on

the market. We drew a lot of inspiration from the workout

mirrors that many workout companies have been releasing. In

particular, we looked at MIRROR from Lululemon. Although

the technology is extremely innovative and covers a great use

case, the mirror is very expensive and doesn’t solve the problem

that we were looking to provide a solution for. We decided to

also create a mirror, but we wanted our mirror to be cheaper and

also help users shop from home.

II. DESIGN REQUIREMENTS

As we hope to provide real time feedback to the user to give

a true “try on” experience, it will be necessary to process images

from the camera in real time. Thus, low processing time is a

major objective for this project. Real time image processing is

expensive, so we set a goal of 3.5 second overall latency

between initial clothing projection as 4 seconds is the accepted

time it takes before the average human being recognizes lag.

To cut scope, we are only performing torso recognition. Our

minimum viable product includes the superimposition of a user

provided image onto the image of the user. To measure the

precision of our matching algorithm, we compare the key points

generated from the algorithm to the recognized key points on

models actually wearing the clothing. We count less than a 2-

centimeter difference as a match. We expect 50% precision (or

50% fixed point matches) with superimposition and 80%

precision with image warping. In regard to the off-the-shelf

libraries we used for clothing and torso detection, we view these

algorithms as all or nothing and expect 100% precision for both

clothing and torso detection. This will be facilitated through

providing an outline for the user to stand to limit user

movement.

We require our image feed to be as close to life as possible.

This is because we want what the camera sees to line up with

what the user sees in the two-way mirror. We had originally

planned to calibrate the images directly from the Arducam to

make this as close to life as possible by adjusting the frame rate

if needed. However, we found that calibrating the image

directly from the input or the Arducam itself was cumbersome.

Thus, we decided to calibrate the image to the mirror after

running image processing and gathering the relative position of

the shirt to the user. This gave us more room to use python

image processing libraries on the backend and made it much

easier to resize and adjust the image if necessary. It also allowed

for saving the image as different image file types as well as

merging the image with the background, all necessary parts to

our final display.

Smart Mirror

Author: Devon Barry, Christina Di, Judy Min: Electrical and Computer Engineering, Carnegie Mellon

University

18-500 Final Project Report: 05/14/2021

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

(a)

Fig. 1. System picture. (a) hardware block diagram (b) diagram

of entire mirror system.

(b)

A. Hardware Block Diagram

 As shown in (1)(a), our hardware architecture is relatively

simple. The main aspects are input, processing, and display.

We take the camera feed input of five frames per second via a

camera and the user control input via a keyboard and mouse.

The data from these inputs are sent to our processor, the Jetson

Xavier NX, then the results are displayed on our monitor

which sits behind a sheet of two-way acrylic mirror. All

hardware parts will be mounted within a frame as can be seen

in figure (1)(b).

 The camera we are using is the Arducam MINI. The

processor we are using is the Jetson Xavier NX, which is an

embedded system-on-module from NVIDIA. The display

monitor we are using is a 32” HDTV from Westinghouse.

 We connect the Jetson Xavier NX processor directly to the

Arducam Mini Camera via the MIPI CSI camera connector

port. As our MVP, we will have a keyboard and mouse

connected to the Jetson Xavier NX via USB. The display

monitor will connect to the Jetson Xavier NX via HDMI.

18-500 Final Project Report: 05/14/2021

3

Fig. 2. Software Block Diagram

B. Software Block Diagram

As seen in (2) our software architecture begins from the

selected clothing image and image feed. A live image feed from

the Arducam uploads five images per second to the Jetson

Xavier NX. These images will be run through a pose detection

module where OpenPose will perform torso recognition on the

user. Then, the user selected clothing image goes through the

clothing detection module, which also runs OpenPose on the

clothing image. Both modules generate OpenPose key point

jsons according to the 25 key point map.

The jsons from these two modules will then be run through a

matching module where we will calculate the best positioning

to place the clothing on the user’s image. This is done through

calculating the ratio of the center key point with respect to the

image’s original size and calibrated through resizing based on

the display size. The matched image is saved to the Jetson

Xavier NX and will go through an output processing module

where we will calibrate the positioning of the display image to

the mirror and optimally warp the clothing to the user before

being sent back to the monitor where the output image is

displayed.

18-500 Final Project Report: 05/14/2021

4

Fig. 3. User Interface Mockup

C. User Interface

We wanted to create a simple and user-friendly interface.

Ideally, the images shown would have been scraped from a

clothing website and background subtracted. As this was not in

scope of our project, we opted for four preselected images that

we know work with OpenPose and create usable key point

jsons. The exact design of the user interface can be seen in

Figure 3.

IV. DESIGN TRADE STUDIES

A. Hardware Tradeoffs

 For hardware, we had a couple tradeoffs. For processing, we

were initially contemplating using a Raspberry Pi for our

project. The Raspberry Pi would have been sufficient for a

simpler application, but since we are running a larger workload

we needed a more powerful processor. This is why we turned

to the Jetsons. We initially considered a Jetson Nano for its

price point. However, in comparing the Xavier NX to the Jetson

Nano, the Xavier NX is far faster – anywhere from two to seven

times faster, depending on the application. The Jetson Xavier

NX also comes with HDMI, USB and camera connectors,

allowing us to connect to all of our other hardware parts in a

simple manner. This makes the Xavier NX an obvious choice

for our project.

 For our camera input, we initially considered using two

stereo Arducam cameras. These would have provided us with

stereo depth input. We thought that this might help us with

calibrating the image for the clothing mapping. However, upon

further investigation we noted that the depth sensing provided

by the Arducam stereo cameras did not offer depth resolution

that would help us significantly with our project. We decided to

go with the singular Arducam MINI camera for its size and its

compatibility with the Jetson Xavier NX.

B. Software Tradeoffs

There really is only one feasible open-source choice for off-

the-shelf torso and body detection, which is OpenPose

framework developed in the CMU Perceptual Computing Lab.

This library includes detection of the entire body including

facial and finger detection. We were concerned that this

unnecessary functionality for our use case may cause a runtime

problem, so we were planning on subtracting that functionality

for our purposes. Otherwise, the library is still quite heavy

weight and is extremely slow on a laptop. After transferring

OpenPose and running the image processing on the Jetson

Xavier, the latency OpenPose did produce did not prove to be a

priority to fix.

In terms of clothing detection, there are a number of classifier

options all based on the DeepFashion2 [3] clothing dataset. We

had originally selected DeepMark since it is the most accurate

and lightweight package. Based on initial runtime testing, we

switched completely to OpenPose. OpenPose is not meant for

clothing detection, but still may work if uploaded images are

well lit. This way, the key point generation from the clothing

detection module will then match completely to the torso

recognition module for easy matching and warping. However,

going this route meant we had to compromise on our 100%

requirement for precise clothing detection. This is a major

tradeoff that would have introduced a new error flow to the

design, but we solved the problem of having to implement this

flow by using preselected images. It would have been helpful

to use a true clothing detection algorithm such as DeepMark to

test our matching algorithm’s effectiveness in terms of how

well it fits to the body.

To cut scope and runtime, we also cut out the user uploaded

image functionality. This way, we did not have to run a

background subtraction algorithm on user images. This would

have also introduced a new error flow that was out of scope.

C. User Interface Tradeoffs

As for the user interface, we had a couple of options that we

were deciding between. At first, we wanted to make a touch

screen smart mirror so the user could choose which tops to try

on by directly touching the mirror. However, to make the screen

touch screen, we would have needed an IR Frame. After adding

the Xavier NX into our budget, we realized that we didn’t have

enough money left to purchase an IR Frame. In addition to this,

18-500 Final Project Report: 05/14/2021

5

we realized that having the user walk up to the mirror to choose

the top then walk back to try on the top would be a very

awkward interaction, so we decided it would be better to use an

external hardware as the controller for the mirror. We are going

to use an external computer to create an interface which will

send images of tops to the mirror directly.

In addition to the IR Frame, we were also considering

purchasing a glass two-way mirror instead of an acrylic mirror.

Although the acrylic mirror is a lot cheaper than the glass

mirror, when we read the reviews, some people noted that there

was a slight bend in the acrylic mirror which could give us

issues with calibrating the screen and the mirror. However, we

ultimately decided to stay with the acrylic mirror because with

the Xavier NX, we would only have enough budget for one

glass mirror. In the event that the glass mirror breaks or has any

issues, we would have no way to purchase another. In addition

to this, it won’t affect our minimal viable product too much if

the mirror is slightly bent. After doing a cost benefit analysis

we ultimately bought the acrylic mirror.

V. SYSTEM DESCRIPTION

A. Hardware

Processer

We chose NVIDIA’s Jetson Xavier NX as our processor.

As mentioned before, we chose this for its processing

power, price range, and compact size. The Xavier NX is a

machine learning platform and is designed for applications

like ours which need greater AI processing power. The

GPU in the Xavier NX is a NVIDIA Volta with 384 CUDA

cores and 48 Tensor Cores. The CPU is a 6-core NVIDIA

Carmel ARM v8 CPU with 6MB L2 cache and a 4MB L3.

The Xavier NX comes equipped with 8GB of RAM.

Camera

We decided to use the Arducam MINI for its compatibility

with the Jetson Xavier NX. The MINI uses the IMX477

camera module which is natively supported by Jetson.

Because of this, we are able to use the camera with existing

online open source code that uses the native camera

commands such as nvgstcapture, nvarguscamer, or the

nvargus API. The frame rate of the Arducam MINI is

1920x1080 @ 60fps and 4032x3040 @ 30fps. We used the

be using the 30fps frame rate since this would be the most

optimal choice considering the resolution of our monitor and

our goal of minimizing end to end lag time for image

processing.

Display
The monitor we are using is the 32” Westinghouse HDTV.

This is a fairly standard LED TV with a 1920x1080

resolution. We chose the 32” size based on our requirements

of torso detection. We would have liked to get a monitor that

is truer to the size of a full length mirror, but it would have

been far over budget. Therefore, the 32” is large enough to

capture the user’s torso. The depth of this monitor without

the stand is 3.2” which makes it well suited for our purpose

of acting as a mirror monitor.

B. Software

OpenPose

OpenPose is the first open-source real-time multi-person

system to jointly detect human body, hand, facial, and foot

key points on single images [1]. We utilize OpenPose only for

torso recognition and do not need unnecessary functionality

such as facial, finger, foot, and lower-body detection. As

shown in (4) OpenPose generates 25 key point json which we

will use to map torso to clothing with a focus on point 1, the

center point.

Fig. 4. Open Pose 25 Key Point Map

DeepMark [2]

DeepMark is a one-shot clothing detection algorithm that has

state of the art accuracy of 0.723 mAP for bounding box

detection task and 0.532 mAP for landmark detection task on

the DeepFashion2 Challenge dataset. It runs optimally on

low power devices but has very detailed and unnecessary

18-500 Final Project Report: 05/14/2021

6

classification of key points, which we would’ve had to match

to key points from OpenPose torso detection. This made it a

suboptimal choice for clothing detection algorithm. We had

originally wanted to work with this software for clothing

detection, but it actually made matching unintuitive. We still

discuss its tradeoffs in the tradeoffs section.

Warping – ACGPN model

For our experimental clothes warping model, we

experimented with using the novel visual try-on network,

namely Adaptive Content Generating and Preserving

Network or ACGPN for short [4]. We were curious about

how we could use deep learning to warp the images of the

clothes onto our users, making our mirror a more realistic try-

on experience. ACGPN allowed us to incorporate this into

our design. It is comprised of three modules: the semantic

generation module, the clothes warping module, and the

content fusion module (seen in figure below). The semantic

layout generation module utilizes semantic segmentation of

the reference image to progressively predict the desired

semantic layout after try-on. We used the Self Correction for

Human Parsing model trained on the LIP dataset [5] to

generate a segmentation mask for this layer. The Arducam

camera unfortunately did not provide great results for our

segmentation masks, since the exposure was often times too

low and the model was unable to detect a human form. In

very bright lighting, however, it was more effective. Second,

the clothes warping module warps the clothing images

according to the generated layout. The last inpainting module

integrates all the information for our final output.

After the user selects a shirt for the superposition and the

camera capture the photo input, the image of the user goes

into the clothes warping model pipeline. The image is

cropped and resized, then fed through the segmentation

model to create a segmentation map, and Open Pose to create

a key-points file. The model uses this image, segmentation

map, pose data, and clothing image to reconstruct a virtual

try-on effect. The images are saved to a folder for the user to

browse at any point.

We experimented with training the model ourselves using

our own data but the results were not as satisfactory as the

pertained model. For our implementation on the mirror, we

used the pertained model to inference our images. While the

warping model is too cumbersome for a full try-on effect, the

user is able to keep a library of small preview images of what

the clothes would look like warped to their body.

Matching Algorithm

This is a self-implemented module in which we will match

the key points generated from the torso detection in

OpenPose to the key points generated from our clothing

detection algorithm. The robustness of this algorithm

depends upon which clothing detection algorithm we end up

using. If we use OpenPose to detect clothing, this will make

the final positioning of the clothing much easier to isolate and

match. If we end up using DeepMark, it will be much easier

to perform background subtraction, but fixed point

positioning will be more difficult. We will use a combination

of the two and run the OpenPose algorithm over the

background-subtracted clothing image to facilitate matching.

C. User Interface

Keyboard and Mouse

The user will use a keyboard and mouse for remote control

over the smart mirror.

Monitor

A 32-inch monitor will be used to display the processed

clothing image. This will need to be matched to the user

position, which will be tracked. Excessive user movement

will be mitigated with a provided outline to suggest a user

pose.

Fig. 5. ACGPN model flow

18-500 Final Project Report: 05/14/2021

7

VI. TESTING AND VALIDATION

All tests were performed on a data set of 2032 models images

with 4 clothing images. Sample size = 2032*4 = 8,128 trials

A. Latency

Purpose and Requirement

We had originally set a goal for end-to-end image

processing of 3.5 seconds latency.

Methodology

As OpenPose reports how long a process took, we use this

in conjunction with a time decorator in our image

processing python script to measure end-to-end latency for

all trials. We take an average of these times to come up with

a metric of 4.5 second average latency.

Results

After migrating OpenPose to the Jetson SDK, we found that

our end-to-end average latency for image processing

without any optimization on our part was 4.5 seconds, 1

second longer than our projected goal. We found this an

acceptable base latency and determined it was not a priority

to shave this one second off of the latency with optimization

when our time could be better spent improving the matching

algorithm.

B. OpenPose Detection Precision

 Purpose and Requirement
Our system relies heavily on OpenPose performance.

Complete OpenPose torso detection is absolutely necessary

for even the most basic complete user experience. Thus, we

require OpenPose to complete torso detection on our five

frames per second without failure. OpenPose can handle if

parts of the body are missing. However, our matching script

assumes that the key points json generated by OpenPose is

populated. We assume well-lit conditions where the torso is

completely seen.

Methodology

We ran OpenPose on all 2032 of our model images and used

a python script to examine the outputted key point jsons. If

the key point jsons were populated as expected, then we

count this as a success.

Results

The results of testing showed that OpenPose was able to

recognize and generate a keypoint json for all 2032 model

images used. We describe this outcome as 100% precision

for OpenPose recognition.

C. Clothing and Torso Matching Algorithm Precision

 Purpose and Requirement

Finally, we looked at the precision of our matching algorithm

itself. We chose to use a semi-manual heuristic to provide

more focus on the usability of our project. We want users to

experience as much of a try-on effect as we can provide. We

chose this mode of testing to measure how often we can

provide this experience.

Methodology

Our matching algorithm was run on the OpenPose key point

jsons generated from the 2032 images and the 4 clothing

images from the UI. From here we manually select

“passable” images. The criteria for passable images are as

follows:

- Center point alignment: how well the center points of

the model and shirt are aligned

- Percentage of body shown: we want a low percentage of

the body showing outside of the shirt where it wouldn’t

be normally

We found that neck alignment is usually a good indication of

our criteria. From these criteria, we were able to select

passable and impassable images. We calculate precision

from the number of passable images over the total number of

images. Some example output images are shown in Figure 6.

Fig. 6. Sample output images from our testing script. Passable

images are boxed in green. Unpassable images are boxed in red.

Results

We averaged the precision of the 4 kinds of shirts we use on

our mirror to come up with our overall metric of 57%

precision. We can make a couple observations from these

tests, notably that models that were angled away from the

18-500 Final Project Report: 05/14/2021

8

Fig. 7. Summary of Testing Metrics

camera, had unconventional poses such as this one where the

arms don’t maintain a neutral position, or models that were

sitting down consistently did not produce passable images.

It’s also important to note that we assume well-lit conditions

where the model’s torso is mostly seen. A graph of the 4

kinds of shirts we use on our mirror and how they performed

is shown in Figure 8.

Fig. 8. Graph of matching algorithm precisions respective to

shirt type.

VII. PROJECT MANAGEMENT

A. Schedule

We divided our schedule into 4 phases. Phase one is the

proposal phase. We allocated approximately three weeks for

market research to develop the proposal for our smart mirror.

The next phase is the design phase. We allocated three weeks

to research the different technologies we want to use and also

design the hardware and the system. The third phase is the

implementation phase. During this phase, we spent 4 weeks

implementing the torso recognition, clothes recognition,

assembling the hardware, as well as creating the user interface.

Then we moved onto the integration phase. We spent around 3

weeks integrating the different algorithms as well as integrating

the software with the hardware. Lastly, the fifth phase was

testing and demonstration. We spent the last three weeks testing

to ensure that our algorithms are accurate as well as preparing

the mirror for the demonstration.

B. Team Member Responsibilities

As In general, we will be working on many of the features

together. However, Christina has taken a course on computer

vision, so she will be focusing on the torso detection algorithm.

Devon will be focusing on the clothes detection algorithm. Judy

will be working on the user interface as well as assisting

Christina and Devon on the various algorithms. We will all be

working together on assembling the hardware as well as

integration.

C. Budget

The budget is shown in Appendix B. We are borrowing the

Jetson Xavier NX from Carnegie Mellon University, so the

$399 will be taken out of our budget.

D. Risk Management

Our earliest risk posed was the cost of our design. We

researched cost effective options as much as possible, but we

still ended up a little bit over budget due to the expensive Jetson

Xavier. Luckily after discussion with the ECE department, we

can return the Jetson Xavier and keep this out of our cost, so

now we have a lot of spare budget to use. We plan to keep it as

a reserve for spare parts.

We’re also concerned with the Jetson SDK compatibility

with the software components, but there’s pretty little

documentation and we’ll need to test it once it arrives. First

priority on the software side is testing how the outputs of

OpenPose and DeepMark correlate and we’re in the process of

doing that. We want to limit user movement as much as possible

to facilitate successful torso and clothing detection so we’ll

have an outline for where the user stands.

Background subtraction stands as an issue currently for user

uploaded images. We will need to isolate the actual clothing

from the image so we can superimpose the image onto the user.

18-500 Final Project Report: 05/14/2021

9

A true clothing detection algorithm will need to be used for this

reason.

Monitor and mirror calibration is another risk. Because we

want a live feed and live feedback, it’s necessary that our

camera sees what the user sees, so we’ll facilitate this by

adjusting frame rate of the Arducam if needed.

VIII. ETHICAL ISSUES

 There are ethical issues that pertain to every type of product.

For the smart mirror, a possible edge case for operation is that

the user may be handicapped which could potentially result in

a poor matching. If the user was missing a limb, during the

warping process, the mirror may run into issues warping the

sleeves to fit the user. However, the general matching of the

shirt to the body would still be fairly accurate. OpenPose lists

out the key points on the body that it detects. Any points that

OpenPose can’t detect are automatically set to 0, so OpenPose

won’t crash if it can’t find something. In addition to this, the

only point that we use for our matching is the center point. As

long as the center point is detected, the user will still be able to

try on the clothes.

 Privacy has been a big area of concern for many of the smart

mirrors on the market. The fact that there is a camera embedded

into a mirror could lead to leaking of private images if the

camera were hacked. However, the way our algorithm works,

at one time we are taking and storing 5 images of the user to

send to OpenPose for analysis and the matching. As soon as one

analysis is done, the images are replaced with 5 new images. As

soon as the user exits the mirror, those 5 images are

immediately deleted making their private images safe from

hacking. The only possible edge case is if someone hacked the

mirror to send the images to a cloud or another database. Since

the mirror doesn’t need the internet to operate, this protects the

mirror from many potential threats. If the WIFI were

compromised, the mirror would be safe from any type of

hacking. The only way to hack the mirror, the hacker would

need physical access to the mirror.

IX. RELATED WORK

 There are many clothing detection algorithms trained on the

DeepFashion2 dataset [3], but not many warping algorithms

we could find other than the ACGPN model which we have

utilized in this project. This is a relatively new area of research

being explored for AR/VR applications as well.

X. SUMMARY

A. Future work

 If given more time, there are a couple of areas in which we

could improve the smart mirror. First of all, ideally, we would

like to allow the user to input clothes directly from online

retailers instead of choosing from our pre-selected options. We

needed some more time to find an image background

subtraction algorithm. If a user inputted an image that they

would like to use, we would have to get rid of any background

or any people wearing the shirt so when we display the

matching, only the shirt would show.

 In addition to this, we would also want to expand the mirror

to include bottoms in addition to tops. We had a limited budget,

so we could only buy a screen big enough to showcase the torso

of the person, but given more time and a larger budget, we

would be able to do matching on the full body. This would

allow the user to try on full outfits and even dresses and

jumpsuits.

 Lastly, we would do improvements on top of what we have

now. We would be able to create a better and more user-friendly

user interface. We would also improve the algorithm to fit in

the 3.5 second latency goal we had originally set. We would

also spend some more time training the model to improve it

even further so the clothes would warp even better onto the

user’s body.

B. Lessons Learned

 This was a great chance to dive headfirst into a project that

we were all passionate about whilst using the skills we’ve

garnered through our careers at CMU. While there were many

technical challenges along the way, we were adaptable to

change and were able to pull together a cohesive project that

we are all proud of. Our team dynamic was effective and

seamless, and it was really wonderful to work on such a

supportive and consistent team.

REFERENCES

[1] OpenPose Github, https://github.com/CMU-Perceptual-

Computing-Lab/openpose#installation

[2] DeepMark,

https://openaccess.thecvf.com/content_ICCVW_2019/pap

ers/CVFAD/Sidnev_DeepMark_One-

Shot_Clothing_Detection_ICCVW_2019_paper.pdf

[3] DeepFashion2,

https://github.com/switchablenorms/DeepFashion2

[4] Yang, H., Zhang, R., Guo, X., Liu, W., Zuo, W., & Luo,

P. (2020). Towards photo-realistic virtual try-on by

adaptively generating-preserving image content. In

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (pp. 7850-7859).

[5] Li, P., Xu, Y., Wei, Y., & Yang, Y. (2020). Self-

correction for human parsing. IEEE Transactions on

Pattern Analysis and Machine Intelligence.

[6] Rivers, Kelly. 112 Tkinter graphics template

http://www.krivers.net/15112-s18/notes/notes-animations-

part2.html

https://github.com/CMU-Perceptual-Computing-Lab/openpose#installation
https://github.com/CMU-Perceptual-Computing-Lab/openpose#installation
https://openaccess.thecvf.com/content_ICCVW_2019/papers/CVFAD/Sidnev_DeepMark_One-Shot_Clothing_Detection_ICCVW_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCVW_2019/papers/CVFAD/Sidnev_DeepMark_One-Shot_Clothing_Detection_ICCVW_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCVW_2019/papers/CVFAD/Sidnev_DeepMark_One-Shot_Clothing_Detection_ICCVW_2019_paper.pdf
https://github.com/switchablenorms/DeepFashion2

18-500 Final Project Report: 05/14/2021

10

Appendix A

18-500 Final Project Report: 05/14/2021

11

Appendix B

Appendix C

	I. Introduction
	II. Design Requirements
	III. Architecture and/or Principle of Operation
	(b)
	A. Hardware Block Diagram
	B. Software Block Diagram
	C. User Interface

	IV. DESIGN TRADE STUDIES
	A. Hardware Tradeoffs
	B. Software Tradeoffs
	C. User Interface Tradeoffs

	V. System Description
	A. Hardware
	B. Software
	C. User Interface

	VI. Testing and Validation
	A. Latency
	B. OpenPose Detection Precision
	C. Clothing and Torso Matching Algorithm Precision

	VII. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Budget
	D. Risk Management

	VIII. Ethical issues
	IX. Related Work
	X. Summary
	A. Future work
	B. Lessons Learned

	References

