
18-500 Final Project Report: 05/14/2021 

 

1 

 

Abstract 

As haptic technology is becoming more and more desired, 

research on interactive appliances has advanced 

tremendously. Smart mirrors are one such appliance that 

add ease and functionality to a user’s daily routine. 

However, smart mirrors on the market right now such as 

Amazon’s patented blended reality mirror and 

Lululemon’s workout mirror are not easily accessible or 

affordable to users. Other smart mirrors on the market are 

expensive and require advanced setup. Ours is a smart 

mirror system capable of allowing users to try on tops by 

utilizing a computer vision torso and clothing detection 

algorithm that offers an affordable and accessible user 

experience. 

 

Index Terms — Adaptive Content Generating and 

Preserving Network (ACGPN), Arducam, clothing detection, 

key point jsons, Jetson Xavier NX, OpenPose, torso detection, 

two-way mirror 

I. INTRODUCTION 

With the invention of amazon and e-commerce, more and 

more people are purchasing things online. Especially with the 

COVID-19 pandemic, our only option to buy clothes is online 

because it is unsafe to shop in stores. However, one of the major 

pain points of shopping online is the fact that we aren’t able to 

try clothes on before purchasing. Many stores are final sale or 

just have really inconvenient return policies, so we end up 

spending money on clothes we may never wear. This is why we 

came up with a smart mirror. The smart mirror is designed to 

allow users to try on tops from home. Using a torso recognition 

algorithm, we will be mapping clothes from online stores or the 

users own closet onto the user’s body with about an 56% 

precision and 4.5 second average latency to give the users a try 

on effect in as close to real time as possible. 

There are many different smart mirror options available on 

the market. We drew a lot of inspiration from the workout 

mirrors that many workout companies have been releasing. In 

particular, we looked at MIRROR from Lululemon. Although 

the technology is extremely innovative and covers a great use 

case, the mirror is very expensive and doesn’t solve the problem 

that we were looking to provide a solution for. We decided to 

also create a mirror, but we wanted our mirror to be cheaper and 

also help users shop from home. 

II. DESIGN REQUIREMENTS 

As we hope to provide real time feedback to the user to give 

a true “try on” experience, it will be necessary to process images 

from the camera in real time. Thus, low processing time is a 

major objective for this project. Real time image processing is 

expensive, so we set a goal of 3.5 second overall latency 

between initial clothing projection as 4 seconds is the accepted 

time it takes before the average human being recognizes lag.  

To cut scope, we are only performing torso recognition. Our 

minimum viable product includes the superimposition of a user 

provided image onto the image of the user. To measure the 

precision of our matching algorithm, we compare the key points 

generated from the algorithm to the recognized key points on 

models actually wearing the clothing. We count less than a 2-

centimeter difference as a match. We expect 50% precision (or 

50% fixed point matches) with superimposition and 80% 

precision with image warping. In regard to the off-the-shelf 

libraries we used for clothing and torso detection, we view these 

algorithms as all or nothing and expect 100% precision for both 

clothing and torso detection. This will be facilitated through 

providing an outline for the user to stand to limit user 

movement.  

We require our image feed to be as close to life as possible. 

This is because we want what the camera sees to line up with 

what the user sees in the two-way mirror. We had originally 

planned to calibrate the images directly from the Arducam to 

make this as close to life as possible by adjusting the frame rate 

if needed. However, we found that calibrating the image 

directly from the input or the Arducam itself was cumbersome. 

Thus, we decided to calibrate the image to the mirror after 

running image processing and gathering the relative position of 

the shirt to the user. This gave us more room to use python 

image processing libraries on the backend and made it much 

easier to resize and adjust the image if necessary. It also allowed 

for saving the image as different image file types as well as 

merging the image with the background, all necessary parts to 

our final display. 

 

Smart Mirror 

Author: Devon Barry, Christina Di, Judy Min: Electrical and Computer Engineering, Carnegie Mellon 

University 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

 

 

 

 
 

 

 
 

 

 

 

(a) 

 

 

Fig. 1. System picture. (a) hardware block diagram (b) diagram 

of entire mirror system. 

 

(b) 

A.   Hardware Block Diagram 

    As shown in (1)(a), our hardware architecture is relatively 

simple. The main aspects are input, processing, and display. 

We take the camera feed input of five frames per second via a 

camera and the user control input via a keyboard and mouse. 

The data from these inputs are sent to our processor, the Jetson 

Xavier NX, then the results are displayed on our monitor 

which sits behind a sheet of two-way acrylic mirror. All 

hardware parts will be mounted within a frame as can be seen 

in figure (1)(b).  

    The camera we are using is the Arducam MINI. The 

processor we are using is the Jetson Xavier NX, which is an 

embedded system-on-module from NVIDIA. The display 

monitor we are using is a 32” HDTV from Westinghouse. 

    We connect the Jetson Xavier NX processor directly to the    

Arducam Mini Camera via the MIPI CSI camera connector 

port. As our MVP, we will have a keyboard and mouse 

connected to the Jetson Xavier NX via USB. The display 

monitor will connect to the Jetson Xavier NX via HDMI. 
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Fig. 2. Software Block Diagram  

 

B.   Software Block Diagram 

As seen in (2) our software architecture begins from the 

selected clothing image and image feed. A live image feed from 

the Arducam uploads five images per second to the Jetson 

Xavier NX. These images will be run through a pose detection 

module where OpenPose will perform torso recognition on the 

user. Then, the user selected clothing image goes through the 

clothing detection module, which also runs OpenPose on the 

clothing image. Both modules generate OpenPose key point 

jsons according to the 25 key point map.  

The jsons from these two modules will then be run through a 

matching module where we will calculate the best positioning 

to place the clothing on the user’s image.  This is done through 

calculating the ratio of the center key point with respect to the 

image’s original size and calibrated through resizing based on 

the display size. The matched image is saved to the Jetson 

Xavier NX and will go through an output processing module 

where we will calibrate the positioning of the display image to 

the mirror and optimally warp the clothing to the user before 

being sent back to the monitor where the output image is 

displayed.  
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Fig. 3. User Interface Mockup 

C.   User Interface 

We wanted to create a simple and user-friendly interface. 

Ideally, the images shown would have been scraped from a 

clothing website and background subtracted. As this was not in 

scope of our project, we opted for four preselected images that 

we know work with OpenPose and create usable key point 

jsons. The exact design of the user interface can be seen in 

Figure 3. 

IV. DESIGN TRADE STUDIES 

A. Hardware Tradeoffs 

    For hardware, we had a couple tradeoffs. For processing, we 

were initially contemplating using a Raspberry Pi for our 

project. The Raspberry Pi would have been sufficient for a 

simpler application, but since we are running a larger workload 

we needed a more powerful processor. This is why we turned 

to the Jetsons. We initially considered a Jetson Nano for its 

price point. However, in comparing the Xavier NX to the Jetson 

Nano, the Xavier NX is far faster – anywhere from two to seven 

times faster, depending on the application. The Jetson Xavier 

NX also comes with HDMI, USB and camera connectors, 

allowing us to connect to all of our other hardware parts in a 

simple manner. This makes the Xavier NX an obvious choice 

for our project. 

    For our camera input, we initially considered using two 

stereo Arducam cameras. These would have provided us with 

stereo depth input. We thought that this might help us with 

calibrating the image for the clothing mapping. However, upon 

further investigation we noted that the depth sensing provided 

by the Arducam stereo cameras did not offer depth resolution 

that would help us significantly with our project. We decided to 

go with the singular Arducam MINI camera for its size and its 

compatibility with the Jetson Xavier NX. 

 

B. Software Tradeoffs 

There really is only one feasible open-source choice for off-

the-shelf torso and body detection, which is OpenPose 

framework developed in the CMU Perceptual Computing Lab. 

This library includes detection of the entire body including 

facial and finger detection. We were concerned that this 

unnecessary functionality for our use case may cause a runtime 

problem, so we were planning on subtracting that functionality 

for our purposes. Otherwise, the library is still quite heavy 

weight and is extremely slow on a laptop. After transferring 

OpenPose and running the image processing on the Jetson 

Xavier, the latency OpenPose did produce did not prove to be a 

priority to fix. 

In terms of clothing detection, there are a number of classifier 

options all based on the DeepFashion2 [3] clothing dataset. We 

had originally selected DeepMark since it is the most accurate 

and lightweight package. Based on initial runtime testing, we 

switched completely to OpenPose. OpenPose is not meant for 

clothing detection, but still may work if uploaded images are 

well lit. This way, the key point generation from the clothing 

detection module will then match completely to the torso 

recognition module for easy matching and warping. However, 

going this route meant we had to compromise on our 100% 

requirement for precise clothing detection. This is a major 

tradeoff that would have introduced a new error flow to the 

design, but we solved the problem of having to implement this 

flow by using preselected images. It would have been helpful 

to use a true clothing detection algorithm such as DeepMark to  

test our matching algorithm’s effectiveness in terms of how 

well it fits to the body.  

To cut scope and runtime, we also cut out the user uploaded 

image functionality. This way, we did not have to run a 

background subtraction algorithm on user images. This would 

have also introduced a new error flow that was out of scope. 

 

C. User Interface Tradeoffs 

As for the user interface, we had a couple of options that we 

were deciding between. At first, we wanted to make a touch 

screen smart mirror so the user could choose which tops to try 

on by directly touching the mirror. However, to make the screen 

touch screen, we would have needed an IR Frame. After adding 

the Xavier NX into our budget, we realized that we didn’t have 

enough money left to purchase an IR Frame. In addition to this, 
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we realized that having the user walk up to the mirror to choose 

the top then walk back to try on the top would be a very 

awkward interaction, so we decided it would be better to use an 

external hardware as the controller for the mirror. We are going 

to use an external computer to create an interface which will 

send images of tops to the mirror directly. 

In addition to the IR Frame, we were also considering 

purchasing a glass two-way mirror instead of an acrylic mirror. 

Although the acrylic mirror is a lot cheaper than the glass 

mirror, when we read the reviews, some people noted that there 

was a slight bend in the acrylic mirror which could give us 

issues with calibrating the screen and the mirror. However, we 

ultimately decided to stay with the acrylic mirror because with 

the Xavier NX, we would only have enough budget for one 

glass mirror. In the event that the glass mirror breaks or has any 

issues, we would have no way to purchase another. In addition 

to this, it won’t affect our minimal viable product too much if 

the mirror is slightly bent. After doing a cost benefit analysis 

we ultimately bought the acrylic mirror. 

 

V. SYSTEM DESCRIPTION 

A. Hardware 

Processer 

We chose NVIDIA’s Jetson Xavier NX as our processor. 

As mentioned before, we chose this for its processing 

power, price range, and compact size. The Xavier NX is a 

machine learning platform and is designed for applications 

like ours which need greater AI processing power. The 

GPU in the Xavier NX is a NVIDIA Volta with 384 CUDA 

cores and 48 Tensor Cores. The CPU is a 6-core NVIDIA 

Carmel ARM v8 CPU with 6MB L2 cache and a 4MB L3. 

The Xavier NX comes equipped with 8GB of RAM.  

 

Camera  

We decided to use the Arducam MINI for its compatibility 

with the Jetson Xavier NX. The MINI uses the IMX477 

camera module which is natively supported by Jetson. 

Because of this, we are able to use the camera with existing 

online open source code that uses the native camera 

commands such as nvgstcapture, nvarguscamer, or the 

nvargus API. The frame rate of the Arducam MINI is 

1920x1080 @ 60fps and 4032x3040 @ 30fps. We used the 

be using the 30fps frame rate since this would be the most 

optimal choice considering the resolution of our monitor and 

our goal of minimizing end to end lag time for image 

processing. 

 

Display  
The monitor we are using is the 32” Westinghouse HDTV. 

This is a fairly standard LED TV with a 1920x1080 

resolution. We chose the 32” size based on our requirements 

of torso detection. We would have liked to get a monitor that 

is truer to the size of a full length mirror, but it would have 

been far over budget. Therefore, the 32” is large enough to 

capture the user’s torso. The depth of this monitor without 

the stand is 3.2” which makes it well suited for our purpose 

of acting as a mirror monitor.  

B. Software 

OpenPose 

OpenPose is the first open-source real-time multi-person 

system to jointly detect human body, hand, facial, and foot 

key points on single images [1]. We utilize OpenPose only for 

torso recognition and do not need unnecessary functionality 

such as facial, finger, foot, and lower-body detection. As 

shown in (4) OpenPose generates 25 key point json which we 

will use to map torso to clothing with a focus on point 1, the 

center point.  

 
 

Fig. 4. Open Pose 25 Key Point Map 

DeepMark [2] 

DeepMark is a one-shot clothing detection algorithm that has 

state of the art accuracy of 0.723 mAP for bounding box 

detection task and 0.532 mAP for landmark detection task on 

the DeepFashion2 Challenge dataset. It runs optimally on 

low power devices but has very detailed and unnecessary 
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classification of key points, which we would’ve had to match 

to key points from OpenPose torso detection. This made it a 

suboptimal choice for clothing detection algorithm. We had 

originally wanted to work with this software for clothing 

detection, but it actually made matching unintuitive. We still 

discuss its tradeoffs in the tradeoffs section.  

 

Warping – ACGPN model 

For our experimental clothes warping model, we 

experimented with using the novel visual try-on network, 

namely Adaptive Content Generating and Preserving 

Network or ACGPN for short [4]. We were curious about 

how we could use deep learning to warp the images of the 

clothes onto our users, making our mirror a more realistic try-

on experience. ACGPN allowed us to incorporate this into 

our design. It is comprised of three modules: the semantic 

generation module, the clothes warping module, and the 

content fusion module (seen in figure below). The semantic 

layout generation module utilizes semantic segmentation of 

the reference image to progressively predict the desired 

semantic layout after try-on. We used the Self Correction for 

Human Parsing model trained on the LIP dataset [5] to 

generate a segmentation mask for this layer. The Arducam 

camera unfortunately did not provide great results for our 

segmentation masks, since the exposure was often times too 

low and the model was unable to detect a human form. In 

very bright lighting, however, it was more effective. Second, 

the clothes warping module warps the clothing images 

according to the generated layout. The last inpainting module 

integrates all the information for our final output.  

 

After the user selects a shirt for the superposition and the 

camera capture the photo input, the image of the user goes 

into the clothes warping model pipeline. The image is 

cropped and resized, then fed through the segmentation 

model to create a segmentation map, and Open Pose to create 

a key-points file. The model uses this image, segmentation 

map, pose data, and clothing image to reconstruct a virtual 

try-on effect. The images are saved to a folder for the user to 

browse at any point. 

 

We experimented with training the model ourselves using 

our own data but the results were not as satisfactory as the 

pertained model. For our implementation on the mirror, we 

used the pertained model to inference our images. While the 

warping model is too cumbersome for a full try-on effect, the 

user is able to keep a library of small preview images of what 

the clothes would look like warped to their body. 

 

Matching Algorithm 

This is a self-implemented module in which we will match 

the key points generated from the torso detection in 

OpenPose to the key points generated from our clothing 

detection algorithm. The robustness of this algorithm 

depends upon which clothing detection algorithm we end up 

using. If we use OpenPose to detect clothing, this will make 

the final positioning of the clothing much easier to isolate and 

match. If we end up using DeepMark, it will be much easier 

to perform background subtraction, but fixed point 

positioning will be more difficult. We will use a combination 

of the two and run the OpenPose algorithm over the 

background-subtracted clothing image to facilitate matching.  

C. User Interface 

Keyboard and Mouse 

The user will use a keyboard and mouse for remote control 

over the smart mirror.  

 

Monitor 

A 32-inch monitor will be used to display the processed 

clothing image. This will need to be matched to the user 

position, which will be tracked. Excessive user movement 

will be mitigated with a provided outline to suggest a user 

pose.  

Fig. 5. ACGPN model flow 
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VI. TESTING AND VALIDATION 

All tests were performed on a data set of 2032 models images 

with 4 clothing images. Sample size = 2032*4 = 8,128 trials 

A. Latency 

Purpose and Requirement  

We had originally set a goal for end-to-end image 

processing of 3.5 seconds latency.  

 

Methodology 

As OpenPose reports how long a process took, we use this 

in conjunction with a time decorator in our image 

processing python script to measure end-to-end latency for 

all trials. We take an average of these times to come up with 

a metric of 4.5 second average latency. 

 

Results 

After migrating OpenPose to the Jetson SDK, we found that 

our end-to-end average latency for image processing 

without any optimization on our part was 4.5 seconds, 1 

second longer than our projected goal. We found this an 

acceptable base latency and determined it was not a priority 

to shave this one second off of the latency with optimization 

when our time could be better spent improving the matching 

algorithm. 

 

B. OpenPose Detection Precision 

    Purpose and Requirement 
Our system relies heavily on OpenPose performance. 

Complete OpenPose torso detection is absolutely necessary 

for even the most basic complete user experience. Thus, we 

require OpenPose to complete torso detection on our five 

frames per second without failure. OpenPose can handle if 

parts of the body are missing. However, our matching script 

assumes that the key points json generated by OpenPose is 

populated. We assume well-lit conditions where the torso is 

completely seen.  

 

Methodology 

We ran OpenPose on all 2032 of our model images and used 

a python script to examine the outputted key point jsons. If 

the key point jsons were populated as expected, then we 

count this as a success.  

 

Results 

The results of testing showed that OpenPose was able to 

recognize and generate a keypoint json for all 2032 model 

images used. We describe this outcome as 100% precision 

for OpenPose recognition.  

 

C. Clothing and Torso Matching Algorithm Precision 

    Purpose and Requirement 

Finally, we looked at the precision of our matching algorithm 

itself. We chose to use a semi-manual heuristic to provide 

more focus on the usability of our project. We want users to 

experience as much of a try-on effect as we can provide. We 

chose this mode of testing to measure how often we can 

provide this experience.  

 

Methodology 

Our matching algorithm was run on the OpenPose key point 

jsons generated from the 2032 images and the 4 clothing 

images from the UI. From here we manually select 

“passable” images. The criteria for passable images are as 

follows: 

- Center point alignment: how well the center points of 

the model and shirt are aligned 

- Percentage of body shown: we want a low percentage of 

the body showing outside of the shirt where it wouldn’t 

be normally 

We found that neck alignment is usually a good indication of 

our criteria. From these criteria, we were able to select 

passable and impassable images. We calculate precision 

from the number of passable images over the total number of 

images. Some example output images are shown in Figure 6. 

 

 

Fig. 6. Sample output images from our testing script. Passable 

images are boxed in green. Unpassable images are boxed in red. 

Results 

We averaged the precision of the 4 kinds of shirts we use on 

our mirror to come up with our overall metric of 57%  

precision. We can make a couple observations from these 

tests, notably that models that were angled away from the  
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Fig. 7. Summary of Testing Metrics 

camera, had unconventional poses such as this one where the 

arms don’t maintain a neutral position, or models that were 

sitting down consistently did not produce passable images. 

It’s also important to note that we assume well-lit conditions 

where the model’s torso is mostly seen. A graph of the 4 

kinds of shirts we use on our mirror and how they performed 

is shown in Figure 8. 

 

 

Fig. 8. Graph of matching algorithm precisions respective to 

shirt type.  

VII. PROJECT MANAGEMENT 

A. Schedule 

We divided our schedule into 4 phases. Phase one is the 

proposal phase. We allocated approximately three weeks for 

market research to develop the proposal for our smart mirror. 

The next phase is the design phase. We allocated three weeks 

to research the different technologies we want to use and also 

design the hardware and the system. The third phase is the 

implementation phase. During this phase, we spent 4 weeks 

implementing the torso recognition, clothes recognition, 

assembling the hardware, as well as creating the user interface. 

Then we moved onto the integration phase. We spent around 3 

weeks integrating the different algorithms as well as integrating 

the software with the hardware. Lastly, the fifth phase was 

testing and demonstration. We spent the last three weeks testing  

 

 

to ensure that our algorithms are accurate as well as preparing 

the mirror for the demonstration. 

 

B. Team Member Responsibilities 

As In general, we will be working on many of the features 

together. However, Christina has taken a course on computer 

vision, so she will be focusing on the torso detection algorithm. 

Devon will be focusing on the clothes detection algorithm. Judy 

will be working on the user interface as well as assisting 

Christina and Devon on the various algorithms. We will all be 

working together on assembling the hardware as well as 

integration. 

 

C. Budget 

The budget is shown in Appendix B. We are borrowing the 

Jetson Xavier NX from Carnegie Mellon University, so the 

$399 will be taken out of our budget. 

 

D. Risk Management 

Our earliest risk posed was the cost of our design. We 

researched cost effective options as much as possible, but we 

still ended up a little bit over budget due to the expensive Jetson 

Xavier. Luckily after discussion with the ECE department, we 

can return the Jetson Xavier and keep this out of our cost, so 

now we have a lot of spare budget to use. We plan to keep it as 

a reserve for spare parts.  

We’re also concerned with the Jetson SDK compatibility 

with the software components, but there’s pretty little 

documentation and we’ll need to test it once it arrives. First 

priority on the software side is testing how the outputs of 

OpenPose and DeepMark correlate and we’re in the process of 

doing that. We want to limit user movement as much as possible 

to facilitate successful torso and clothing detection so we’ll 

have an outline for where the user stands. 

Background subtraction stands as an issue currently for user 

uploaded images. We will need to isolate the actual clothing 

from the image so we can superimpose the image onto the user. 
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A true clothing detection algorithm will need to be used for this 

reason.  

Monitor and mirror calibration is another risk. Because we 

want a live feed and live feedback, it’s necessary that our 

camera sees what the user sees, so we’ll facilitate this by 

adjusting frame rate of the Arducam if needed.  

VIII.  ETHICAL ISSUES 

     There are ethical issues that pertain to every type of product. 

For the smart mirror, a possible edge case for operation is that 

the user may be handicapped which could potentially result in 

a poor matching. If the user was missing a limb, during the 

warping process, the mirror may run into issues warping the 

sleeves to fit the user. However, the general matching of the 

shirt to the body would still be fairly accurate. OpenPose lists 

out the key points on the body that it detects. Any points that 

OpenPose can’t detect are automatically set to 0, so OpenPose 

won’t crash if it can’t find something. In addition to this, the 

only point that we use for our matching is the center point. As 

long as the center point is detected, the user will still be able to 

try on the clothes. 

 

    Privacy has been a big area of concern for many of the smart 

mirrors on the market. The fact that there is a camera embedded 

into a mirror could lead to leaking of private images if the 

camera were hacked. However, the way our algorithm works, 

at one time we are taking and storing 5 images of the user to 

send to OpenPose for analysis and the matching. As soon as one 

analysis is done, the images are replaced with 5 new images. As 

soon as the user exits the mirror, those 5 images are 

immediately deleted making their private images safe from 

hacking. The only possible edge case is if someone hacked the 

mirror to send the images to a cloud or another database. Since 

the mirror doesn’t need the internet to operate, this protects the 

mirror from many potential threats. If the WIFI were 

compromised, the mirror would be safe from any type of 

hacking. The only way to hack the mirror, the hacker would 

need physical access to the mirror. 

 

IX. RELATED WORK 

    There are many clothing detection algorithms trained on the 

DeepFashion2 dataset [3], but not many warping algorithms 

we could find other than the ACGPN model which we have 

utilized in this project. This is a relatively new area of research 

being explored for AR/VR applications as well.  

X. SUMMARY 

A. Future work 

    If given more time, there are a couple of areas in which we 

could improve the smart mirror. First of all, ideally, we would 

like to allow the user to input clothes directly from online 

retailers instead of choosing from our pre-selected options. We 

needed some more time to find an image background 

subtraction algorithm. If a user inputted an image that they 

would like to use, we would have to get rid of any background 

or any people wearing the shirt so when we display the 

matching, only the shirt would show. 

    In addition to this, we would also want to expand the mirror 

to include bottoms in addition to tops. We had a limited budget, 

so we could only buy a screen big enough to showcase the torso 

of the person, but given more time and a larger budget, we 

would be able to do matching on the full body. This would 

allow the user to try on full outfits and even dresses and 

jumpsuits. 

    Lastly, we would do improvements on top of what we have 

now. We would be able to create a better and more user-friendly 

user interface. We would also improve the algorithm to fit in 

the 3.5 second latency goal we had originally set. We would 

also spend some more time training the model to improve it 

even further so the clothes would warp even better onto the 

user’s body. 

B. Lessons Learned 

    This was a great chance to dive headfirst into a project that 

we were all passionate about whilst using the skills we’ve 

garnered through our careers at CMU. While there were many 

technical challenges along the way, we were adaptable to 

change and were able to pull together a cohesive project that 

we are all proud of. Our team dynamic was effective and 

seamless, and it was really wonderful to work on such a 

supportive and consistent team.  
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