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Abstract—CarMa is a driving assistant tool de-
signed to guide drivers to follow safe protocols. It
would primarily be used to help new and inexperi-
enced drivers get comfortable on the road. Our driving
assistant would simulate the role of a parent or driving
instructor in the front seat warning the driver about
distracted driving. We plan on having a camera pointed
at the driver and use computer vision to detect if the
driver is falling asleep. Our aim is to prevent drivers
from falling asleep at the wheel.
CarMa primarily focuses on ensuring the driver is fo-
cused on the road using computer vision to track the
driver’s face and movements. The domains used in this
project are Software along with signals and systems.
The driving scope is focused on residential roads and
our project requires there to be adequate day light on
the user’s face.

Index Terms—Driving assistant, Computer Vi-
sion, Facial Detection, Facial Landmarks, Eye tracker,
Mouth Tracker, Machine Learning, Embedded System

1 INTRODUCTION

Distracted driving is the cause of every 1 in 5 deaths
from vehicle related accidents [2]. It is a issue rampant
among young adults learning how to drive for the first time.
We believe it is critical that new drivers learn safe driving
habits as they begin driving. Our project CarMa is an au-
tomated driving assistant that takes real time video data
of the driver and alerts the driver when they are becoming
drowsy or looking away from the road for too long. While
driver monitoring is an explored field, these applications
are not widely available. Our approach to this problem is
to design a system that is both compact and computation-
ally powerful giving good performance as well as being user
friendly.

Our goal is to have our application run at least 5 frames
per second and to achieve a 75% accuracy on our test suite.
These goals will allow the application to be efficient and
limit the false negative rate. Our key metrics, frames per
second and accuracy, were chosen specifically to ensure that
our application is running efficiently enough to support our
desired goals and as close to real time as possible.

2 DESIGN REQUIREMENTS

The main requirements for this project include that the
driver should never take their eyes off the road for over 2
seconds. This is taken from the National Highway Traffic

Safety Administration or the NHTSA which is their re-
quirement for focus driving. Another requirement is that
the driver should not fall asleep at the wheel which is essen-
tial to the project goals. According to the NHTSA, most
fatal accidents occur when a vehicle is going over 55mph.
So, CarMa should guarantee driver monitoring over that
speed.

Given these requirements, we put together metrics and
test plans in order to ensure the project meets expecta-
tions. The metrics have been split up into 2 main cate-
gories: Driver Metrics and Device Metrics.

Here are two tables that fully illustrate the require-
ments, metrics and testing plans.

Figure 1: A table of the Driver Metrics

Looking at the driver, there are two main positions the
driver can be in: directly facing the front (frontal view)
and turning away from the camera (side view). For frontal
view, there are a few characteristics CarMa should identify:

• Eyes looking away for over 2 seconds

• Eyes closed for over 2 seconds

• Yawning - mouth open for over 2 seconds

For these metrics, we decided that it is better for us
to get false positives rather than false negatives. In other
words, we prefer if CarMa classifies the driver as distracted
or sleepy and warns the driver when they are in fact at-
tentive. But on the flip side, if CarMa fails to identify
a distracted or sleepy driver this could have fatal conse-
quences.
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Figure 2: A table of the Device Metrics

For the device, based on the fact that the driver should
be warned if their eyes are off the road for 2 seconds, the
computation must be fast. Therefore, we estimate our
round trip computation time must be under 1 second. Also
based on research for the algorithms and our board, we
would like to see a frame rate of under 5 frames per second.
Finally, for the overall accuracy of the device, based on the
models CarMa uses, the accuracy of the device against the
test suite should be over 75%.

3 ARCHITECTURE OVERVIEW

The overall architecture loosely follows the diagram in
Figure 3. The diagram demonstrates how the device will
be positioned in the car along with how the components
will be attached.

Figure 3: Mock-up of our Device

3.1 Hardware

There are multiple hardware components that CarMa
needs. First, there is the Nvidia Jetson Xavier NX board.
This boards has a powerful processor and GPU that al-
lows it to output up to 21 Trillion Tera Operations per
Second (TOPS). We believe with this compute power, we
will be able to achieve the desired frames per second us-
ing our algorithm based off previous benchmarks set on

similar hardware. The Jetson Xavier board utilizes the
Ubuntu operating system which allows us to use Jetpack
SDK which contains common CV libraries optimized for
the Xavier board. Inside Ubuntu is where we will have all
our software algorithms which we will discuss in the up-
coming sections.

Second, we have the accessory hardware components to
connect to the Jetson Xavier NX board. This includes the
camera, touch screen, sound card, and accelerometer. The
Sound Card will output warnings back to the user when
they appear distracted. The accelerometer will be used to
ensure that we are adhering to safety measures when the
driver is driving fast or completely still. The Camera will
serve as the input to the computer vision aspect of the
project. Lastly, we have our touch screen which will act
as the initial configuration and user interface. This will be
how the user interacts with CarMa. These components will
allow us to sample data while the user is driving which will
be used as input to our application. The block diagram
in figure 4 outlines how the hardware components of this
project will be connected.

Figure 4: Hardware architecture of CarMa

3.2 Software

The software approach of CarMa is split into two main
cycles. When the user first picks up the device they will be
asked to complete a calibration process. From then on, the
user will go into the main cycle (depicted in blue in Figure
5) where they will be categorized as drowsy or distracted
vs attentive using machine learning algorithms discussed in
the later sections. This entire process is summarized and
illustrated in Figure 5.
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Figure 5: General Software cycle of CarMa

When a user first begins using CarMa, they will be
asked to complete a calibration process, where the device
can read their facial dimensions to more accurately catego-
rize if the driver is sleepy or distracted. We ask the user to
face the camera straight ahead with their eyes focused and
their mouth open wide. In particular, we are recording the
vertical distance of the lips when the mouth is wide open.
We also record the eye aspect ratio when the driver is look-
ing straight at the road. These will serve as our point of
reference when checking if the driver is distracted or not.
This is also to ensure the users have adequate background
lighting which will improve the facial detection algorithms.
Figure 6 illustrates a mock-up of the process that we have
followed.

Figure 6: Mock-up of calibration process

3.2.1 User Flow

Users will be interacting with CarMa through our touch
screen. The touch screen consists of the following pages
shown in Figure 7. At the start, the user sees the start-
ing screen page, to continue they press the “start” button.
Then they are directed to the calibration page. Once they
click on “start” button on the calibration page then the
calibration process begins. This process requires the user

to place their head inside the circle that is shown to them.
After their head placement is correct then it automatically
takes the user to the page where the user is ready to start
driving. To begin the CarMa alert program, they press
“start” and the program is now classifying when the user
appears to be distracted or not! The driver can easily end
the program by pressing the ”stop” button and they will
be redirected back to the start screen.

Figure 7: CarMa User Flow

Figure 8: Block Diagram for Computer Vision Algorithms
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3.3 Computer Vision Algorithms

The computer vision aspect of CarMa allows us to de-
tect whether or not the user appears to be distracted. The
approach is summarized by the block diagram in Figure 8.
We accomplish this task by first obtaining a facial detector
followed my a facial landmark detector in order to detect
mouth and eyes. This then allows us to form a classification
to determine if the user is distracted.

3.3.1 Face Detector

The first part of our algorithm is to detect a face in
an image. Each frame of the video captured is used for
face detection in images using OpenCV and deep learn-
ing. OpenCV’s deep learning “deep neural networks”
(DNN) module [5] supports different learning frameworks
and OpenCV’s deep learning face detector is based on the
Single Shot-Multibox Detector framework with a ResNet-
10 base network as its backbone.

The DNN module requires us to pass in .prototxt file
which defines the model architecture along with the .caf-
femodel file which contains the weights for the actual layers.
Both of these files allow us to read a network model stored
in memory and it returns an artificial neural network which
allows us to pass the image through the network to ob-
tain defections and predictions for the face. We utilize this
pre-trained model for the face detection in each frame. In
short, we pass the image through the network (also known
as forward propagation) to obtain the result (with no back-
propagation). This gives us the bounding box rectangle for
the face it detects. In the case where there are multiple
faces detected in an image, then we use the face with the
largest confidence.

3.3.2 Landmark Detector

Figure 9: Landmarks Example

In order to obtain our eye and mouth detection we ob-
tain facial landmarks which are used to localize and repre-
sent regions of the face. Now that we have our bounding
box prediction of where the face is located on the image,
we then pass that information to our facial landmark de-
tector. In particular, we are utilizing a Convolutional Neu-
ral Network based facial landmarks detector, CNN-facial-

landmarks [4], as a landmark detector that estimates the
location of 68 points that map to a facial structures on
the face. We can then load and build the facial landmarks
model as Tensorflow model. We are able to find the fa-
cial landmarks in an image containing faces by passing the
landmark model along with the predicted face detection
rectangles into the facial keypoint detector to find the fa-
cial landmarks in an image from the face. This is a crucial
step in eye and mouth detection.

3.3.3 Eye Detection

Now that we have the facial landmark information on
the given image, we are ready to begin our eye and mouth
detection. In order to track the eyes we obtain the cor-
rect landmarks corresponding to each left and right eye.
We then create a region of interest on a mask with the
size of the driver’s eyes and also find the extreme points of
each eye. The mask is the same dimensions as the frame.
Using the mask, we then segment out the eyes from the
image. After we segment out the eyeballs from the rest of
the eye we then find then center. We can then track the
eyeball movements along with indicating if the center of the
eyeball has changed and reporting if the driver is looking
away from the road. Most importantly, we can track if the
user has their eyes closed by comparing their current eye
aspect ratio (EAR) to the eye aspect ratio they obtained
during the calibration step. The eye aspect ratio is a con-
stant value when the eye is open, but rapidly falls close
to 0 when the eye is close. This eye tracking method will
continue for each frame in a video sequence.

3.3.4 Mouth Detection

A similar approach is done for mouth detection. This
method requires finding the drivers mouth and recording
the distance between the lips and comparing the distance
during the calibration step when the mouth was wide open.
A open mouth means that the driver is yawning and po-
tentially beginning to get drowsy. For mouth detection, we
use the vertical mouth distance to determine if the mouth
is open or closed. To obtain more accurate results of the
eye and mouth detection we follow more precise threshold-
ing processing steps namely erosion, dilation, and median
blurs.

Figure 10: Eye and Mouth Detection
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4 DESIGN TRADE STUDIES

A number of design tradeoffs were made throughout the
design process of our system. The most important tradeoffs
involved the embedded board we chose and the computer
vision algorithms we picked. In this section, we will discuss
the following trade-offs:

• Embedded Board

• Detection Models

• Scope: Lighting and Shadows

• Scope: Speeds

• Scope: Pose Detection

• Dataset Bias

4.1 Embedded Board

There were a number of boards that we looked at in
our process of choosing an embedded board. Our require-
ments were that we wanted a board powerful enough to run
our computer vision application at greater than 5 frames
per second. Another requirement for our system was that
it should be as compact of an overall system as possible.
Thirdly, the system should support the necessary sensor
inputs that we have. Lastly, the board should be less than
$500 due to our $600 budget. From our research, we found
3 suitable boards that would meet the I/O, size, and bud-
get requirements. A chart of the comparisons between the
three is shown in Figure 11.

Figure 11: Embedded Board Comparison

We decided to go with the Nvidia Jetson Xavier NX
board due to its onboard GPU and high compute. The
Xavier NX was the most expensive out of the three boards
so we had to budget our other parts accordingly. We would
not be able to get expensive sensors and needed to borrow
from the ECE parts inventory as much as possible.

4.2 Detection Models

Face detection is the most crucial aspect of the project.
There are multiple pre-trained models available for face de-
tection and the two that we focused on include OpenCV’s
DNN Module vs Dlib frontal face detector.

OpenCV’s DNN Face Detector is a pre-trained model
based on the Single Shot-Multibox Detector (SSD) and uses
ResNet-10 architecture as its backbone. The Dlib toolkit
contains machine learning algorithms useful for computer
vision. Dlib is used for face detection and facial landmark
detection. The frontal face detector is based on histogram
of oriented gradients (HOG) and linear support vector ma-
chine (SVM). The frontal face detector works by using fea-
tures extracted by HOG which are then passed through an
SVM.

We found that Dlib algorithms did not perform well for
side faces. OpenCV’s DNN module was able to detect side
faces and quick head movement was not an issue. Dlib
failed at large angles and quick movement. In addition,
OpenCV’s DNN module ran at about 12.95 frames per sec-
ond while Dlib ran at about 5 frames per second, [1] so in
terms of speed OpenCV’s DNN module was the best choice.

Since OpenCV’s DNN module proved to be a better fa-
cial detection module for our scope, we decided to use CNN-
facial-landmarks [4], as a landmark detector that estimates
the location of 68 points that map to a facial structures
on the face. As opposed to the pre-trained facial landmark
keypoint detector inside the Dlib library.

4.3 Scope: Lighting and Shadows

Another major tradeoff we discussed was the scope
of our project specifically in relation to the environment
CarMa would operate under. Based on the algorithms and
preliminary tests, we immediately realized lighting is a cru-
cial factor. When a driver is wearing glasses and there is
reflection from the sun, neither of our algorithms performed
well. Therefore, we limited our scope to good lighting con-
ditions where the driver’s face is clear and visible. Our
group also confirmed this would be the best approach with
Professor Marios Savvides.

4.4 Scope: Speeds

Another scope based trade-off we considered was the
speed at which the vehicle is operating at. Based on the
research conducted, the NHTSA identified that most fatal
accidents occurred at speeds over 55 miles per hour. For
this reason, we wanted to ensure that our device would ac-
curately monitor the driver at these speeds. We decided
that CarMa will prioritize these speeds and guarantee a
high accuracy even if this accuracy is not guaranteed at
lower speeds due to the risk of fatal accidents. Safety is
the main goal of CarMa therefore make sure to account for
the speed that the user is driving at in our program. We
also wanted to avoid frequent alerts when the user is not
moving the vehicle such as when the user is parked.
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4.5 Scope: Pose Detection

While coming up with the goals for this project, our
group decided that the primary goals should be identify-
ing and detecting distracted eyes and a sleepy driver. Dis-
tracted eyes would be identified if the driver’s eyes are off
the road for over 2 seconds and a sleepy driver would be
identified by long blinks, more frequent blinks, eyes closed
or yawning. Pose detection would need to build on top of
the facial land marking and eye detection already used. In
addition, pose detection without the previously described
goals would not be effective for our project. So, pose de-
tection is an attainable stretch goal that we have set.

4.6 Dataset Bias

As we research which data sets to train our model on,
we realize there are two main options. We could build our
own data set with short clips of various drivers blinking
and yawning. On the other hand, our model could use a
data set found online such as DrivFacce [6]. Such a data set
would mean less time spent towards building the data set
but may require more time to adjust the videos to exactly
what CarMa requires, specifically blinking and yawning.
Building our own data set would require more time filming
people in cars but we could build the data set based on the
specifications we require. One downside is that this would
have bias towards the test subjects we use to build the data
set.

After careful consideration, we have decided to con-
struct our own driver data set specific for the models CarMa
utilizes and our use case. The data that we utilized is com-
posed of videos from our friends and family.

5 SYSTEM DESCRIPTION

The entire CarMa system can broken down into two
main sub-systems: the hardware components and the soft-
ware components.

For Hardware we have:

• Sensor Input

• System Components

For Software we have:

• Calibration

• Face Detection

• Facial Landmark Detection

• Eye and Mouth Detection

• Pose Estimation

• Classification

5.1 Hardware

5.1.1 Sensor Input

The system will be taking input from two main sen-
sors. Foremost, the camera module will be capturing im-
ages which will be sent to the computer vision applica-
tion. Secondarily, the accelerometer will collect data on
the driver’s speed which will adjust the strictness of the
driver monitoring.

The camera will be used as soon as the system starts
the calibration process. Once the user enables driver moni-
toring, both the camera and the accelerometer will be sam-
pling data at a fixed rate.

Figure 12: CarMa Components

5.1.2 System Components

We decided to go with a small, low resolution camera
as we want the system to be compact and have fast image
processing. With a lower resolution, our image process-
ing will occur quicker. After some research, we settled on
the IMX219-77 camera module as it could both capture
low resolution images, 1280x720, and took up a very small
amount of real estate, 25mm x 25mm. The IMX219-77 also
interfaces easily with the Xavier NX’s MIPI-CSI port. In
terms of video capturing, we use a gstreamer pipeline to
start video capture through our camera, and send that to
our python program. This pipeline allows us to modify ele-
ments of the video capture such as frame-rate, orientation,
and resolution.

For the accelerometer, we decided to borrow one from
the ECE Inventory as our system does not specify a need
for high accuracy for speed. The specific accelerometer
module we received was the MPU-6050. This was both a
fast and small module that fit the needs of our project. We
connected the accelerometer to the board via I2C through
the GPIO pins. Then we simply read the memory address
where the sensor is mapped to every loop of our main pro-
gram to update the speed of the car using the x-axis ac-
celeration and the time between each sample. Only once
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we detect that we are past 55 mph do we enable the driver
monitoring.

Figure 13: Complete CarMa System

5.2 Software

Our software algorithms can be broken down into a few
main parts. We first obtain the video input which is cap-
tured by the camera which is used for the following sections.

5.2.1 Calibration

Before the user is ready to receive warning sounds from
CarMa, the user needs to go through the calibration pro-
cess. The first step of the calibration process is to take a
front facing image of the driver. There will be a prompt
on the touch screen asking the driver to position their face
looking forward at the road. This process requires the user
to place their head inside the shown circle with their mouth
open and eyes open. After their head placement is cor-
rect then CarMa automatically takes their picture and the
user is ready to start driving. We use the image captured
through the calibration process to determine the parame-
ters used for our computer vision application. In particular,
we store the vertical height of the open mouth along with
the eye aspect ratio of the eyes. These values allow us to
better classify when the user might have their eyes closed
or when the user is yawning.

Figure 14: Calibration Process

5.2.2 Face Detection

Once the calibration process is completed, the user is
ready to begin CarMa! The video input captured by the
camera starts when the user clicks on the ”start” button
in the touch screen. Each frame of the video captured
is used for face detection in images using OpenCV and
deep learning. We utilize OpenCV’s Deep Neural Network
(DNN) with Caffe model as the deep learning framework.
OpenCV’s deep learning face detector is based on the Single
Shot-Multibox Detector (SSD) framework with a ResNet-
10 base network as its backbone. It allows us to take one
single shot to detect multiple objects within the image. The
object localization and classifications are done in a single
forward pass of the network. The ResNet-10 base network
is a residual neural network trained on ImagNet.

5.2.3 Facial Landmark Detection

Once the driver’s face is detected, CarMa moves on to
identifying facial landmarks. The facial landmarks are used
to localize and represent regions of the face such as eyes,
nose, chin, and more.

It is difficult to capture the frontal section of a human
face in real life situations, therefore we utilize an additional
step, “face alignment” after face detection. It is necessary
to detect the feature points in the face image, and mark
some specific areas such pupils, corner of the eyes, mouth
location, and more. This feature point detection is known
as “Facial landmark localization”.

In our algorithms of facial landmarking, we are utiliz-
ing CNN-facial-landmark [4] which is a landmarks detector
based on convolution neural network. The facial landmarks
detector gives 68 landmarks each related to a specific point
on the face and it is a Tensorflow CNN trained on multi-
ple data-sets. We utilized this pre-trained model for our
project.

5.2.4 Eye and Mouth Detection

After the feature points are detected, we are able to
mark the specific position of the face in the image. Uti-
lizing masking, we are able to obtain only the parts of the
face that we care about. In order to detect if the driver
is distracted we can check if their eyes have been focused
elsewhere for 2 or more seconds. Similarly to identify if
the driver is sleepy, we will detect if the driver’s blinks are
longer or more frequent.

We will follow a similar process for mouth detection.
Using masking, we will single out the area of the face nec-
essary. In order to identify if the driver is sleepy, we will
check if the driver is yawns, repeatedly.

5.2.5 Distracted Eyes and Pose Estimation

Distracted eyes is when the user is not looking straight
at the road. This is when their eyes are to the side either
left, right, up, or down. Pose estimation is a stretch goal
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that will build off of the facial detection, facial land mark-
ing and eye detection already in place. Pose estimation will
use the angle of the face and its features to determine the
angle at which the driver is turned. One method we will
try is to use the distance between the facial landmarks we
produce to determine an angle. For instance if my face is
turn the the left, the distance between the landmark of my
left check and nose will be closer and the distance from my
nose and my right check will be farther.

Figure 15: Distracted Eyes

5.2.6 Classification

We use the data obtained from mouth and eye detec-
tion along with pose estimated into a classifier to tells us if
the user appears distracted. For eye detection, we classify
the user as having closed eyes if their eye aspect ratio falls
below 0.75 their eye aspect ratio calculated at the calibra-
tion step. In order to classify the user as having their eyes
closed then they have to fall below this threshold for 12 con-
secutive frames which equals around 2 seconds. The frame
constraint was put in place in order to avoid declassifying
blinks as the user falling asleep.

For mouth detection, we classify the user as having an
open mouth if their mouth height is greater than 0.90 of
their open mouth height calculated at the calibration step.
In order to classify the user as yawning then they have to
fall within this threshold for 12 consecutive frames. The
frame constraint was put in place in order to avoid declas-
sifying talking as the user yawning asleep.

For distracted eye detection, we check to see if their
eyes are looking to the side. If the user is looking to the
side for 12 consecutive frames then we classify them as not
looking at the road and therefore they are distracted.

If the user appears to be distracted, an alert will sound
signaling to the user that they should adjust their behavior.

6 TEST & VALIDATION

Once we completed our system, we started working on
a testing procedure to evaluate if our system meets our
project requirements. To measure the accuracy of our sys-
tem, we created a test suite of videos of various people

blinking, talking, yawning, closing their eyes for over 2 sec-
onds and looking in various directions for over two seconds.
With these videos we kept track of how well our system did
by counting the number of error events. We found that we
met most of our original system requirements but there
could definitely be improvements in relation to the eye de-
tection. Our system was especially good at the face and
mouth detection and we managed to achieve all our hard-
ware requirements. We also kept track of our false positives
and false negatives to ensure we are prioritizing false pos-
itives over false negatives because we would rather warn
drivers more rather than less.

Figure 16: List of requirements and their statuses

6.1 Results for Design Specification: Soft-
ware

For the software aspect of this project, we did a lot
of research for various aspects of the project including the
Calibration process and more. But we needed to test and
validate that the face, mouth and eye detection were good
enough for our requirements.

6.1.1 Face Detection

OpenCV’s DNN module performed very well in our test-
ing. We performed 300 tests out of which the algorithm
correctly detected the face 295 times. The accuracy was
98.3% which is well above what we needed for our project.

In our testing we did ensure that there was at least 1
face in the frame. We also defined an accurate detection as
detecting any of the faces in the frame not necessarily the
person running the program. But when in use, the video is
angled so that only the driver’s full face will be visible.
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6.1.2 Mouth Detection

For the mouth detection, our algorithm still did quite
well with only 1.64% error and 98.4% accuracy. Out of
61 total events, the program had only 1 error which far
surpasses our initial requirement.

We tested 2 actions in these events. The first was yawns
and the second was talking. If the program identified talk-
ing as a yawn we classified it as a false positive and if it did
not classify yawning then it was a false negative. The one
error for mouth detect was a false positive which is what
we want to prioritize.

6.1.3 Eye Detection

For the eye detection we had two actions we wanted to
test. First we needed to test if the driver’s eyes were closed
for over 2 seconds. This was our first priority along with
the mouth detection. Next we also tested if the driver’s
eyes were looking away from the road for over 2 seconds.

For the eyes closed for over 2 seconds, we had a total
of 68 events with 14 resulting in an error so a 20.6% er-
ror rate. This means our eyes closed detection was 79.4%
accurate. This meets our original requirements. Here we
also satisfied our priority of false positives because we had
13.3% of our errors be false positives while only 7.4% were
false negatives.

For the eyes looking away for over 2 seconds, we did less
testing as we finished this later on in our project timeline.
We had a total of 10 events, 4 of which were error events.
So our eyes looking away error rate is 40% and accuracy is
60%. This was very close to what we were aiming to get and
we are overall satisfied with the results for eye detection.

6.2 Results for Design Specification:
Hardware

For testing our hardware, the main metric that we
wanted to test was the frames per second that we attained
from running our program on the Xavier NX. We measured
this number continuously through the development of the
project to establish our program’s performance with every
new update. The frames per second is collected by includ-
ing a timer in our main while loop that will update every
cycle.

7 PROJECT MANAGEMENT

7.1 Schedule

The full Gantt chart of the schedule is located in Ap-
pendix A. The schedule contains each part of our project
along with how we decided to break each task down. The
schedule is divided by each member with each of their tasks
listed. Adriana’s tasks are in blue, Evann’s are in pink, and
Jananni’s are in green.

7.2 Team Member Responsibilities

In terms of the division of labor, we have split up the
responsibilities for each person as primary and secondary
objectives. For the primary objectives, we focused on facial
and eye detection. For the primary objectives, Adriana will
be working on the facial detection. Evann will be working
on building the hardware aspect of the device. Jananni will
be focused on the eye detection.

For the secondary objectives, we focused on optimiza-
tion and stretch goals. For the secondary objectives, Adri-
ana will be working on algorithm optimization to make
sure we are within our project requirements. Evann will be
building off the facial landmarking and eye detection for
the pose detection. Finally, Jananni will be working on the
calibration and thresholding.

7.3 Budget

Table 1: Bill of Parts

Component Cost Notes
Jetson Xavier NX $400 Arrived

Developer Kit $83 Arrived
Accelerometer - Borrowed
Accelerometer $9 Backup
Sound Card - Borrowed
Sound Card $10 Backup

Car Power Adapter $13 Arrived
Total $540

CarMa requires multiple parts in order to successfully
work. The majority of the budget is spent on the Nvidia
Jetson Xavier NX board. The project also requires the
use of a Developer Kit as that comes with a touch screen
for the board, along with a camera and other additional
gadgets. We have borrowed an accelerometer along with a
sound card from the Capstone course but also accounted
for spare parts in our budget in case the parts break or
malfunction. Additionally, we have accounted for a backup
plan of utilizing AWS Kinesis for real time data streaming
in the case that the board cannot handle all of the com-
pute power. Thus, this would require a WiFi card in order
to connect to the internet to perform computation through
AWS. Lastly, when taking the board out for testing, a car
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power adapter would be required in order to charge the
board.

7.4 Risk Management

In order to ensure that everything will run smoothly,
we have put together a list of potential risks that could oc-
cur. Below is a full table of the risks and our corresponding
management plans.

Figure 17: List of potential risks and corresponding miti-
gation plans

One of the biggest risks that is crucial for our project is
that the Nvidia Board is inadequate for our use case. The
mitigation plan for the computation risk is using AWS Ki-
nesis for video streaming analysis. This will take the weight
off the board and will speed up our computation time and
frames per second.

In a related scenario, if the Nvidia Jetson Xavier NX is
pushed to its capacity and malfunctions, the back-up plan
is to utilize the Nvidia Jetson Nanos that the ECE depart-
ment has in addition to AWS Kinesis which should handle
most of the heavy computation.

In case our Frontal Face detection algorithm is not ac-
curate enough to meet our requirements or is incompatible
with our hardware, the mitigation plan is to switch to the
slower but more accurate Dlib Algorithm which works very
well for the frontal view but not well for side view.

Our group has also accounted for the case when spe-
cific components fail such as the accelerometer, sound card
or camera. Currently, we are borrowing the accelerometer
and sound card from the ECE department and our Nvidia
Development Kit comes with a camera. If any of these
components malfunction, we have a portion of our budget
saved so that we can buy additional components.

In addition to the additional money saved for spare com-
ponents, we have also planned our schedule such that there
will be additional slack days for unforeseen delays and is-
sues. Most likely this will be due to the integration and
testing phases.

8 ETHICAL ISSUES

In terms of ethical issues, one main concern was mak-
ing sure the user was fully aware of what the system was
doing. Since we utilize a camera, it is important to notify
the user when we are recording. Similarly, we specify that
we are not storing any of their footage. We also made it
clear to the user that they are allowed to turn the system
on and off in order to stop the application once they are
done driving.

The clarity in our system was done through the UI
and user flow of the touch screen. This involved creat-
ing on click functionality when the buttons on each page
are clicked by the user. At the start, the user sees the
starting screen page, to continue they press “start”. Then
they are directed to the “calibration” page. Once they click
on “start calibration” button then the calibration process
starts. This requires the user to place their head inside the
circle. After their head placement is correct then it auto-
matically takes the user to the page when the user is ready
to start driving. To begin the CarMa alert program, the
user presses the “start” button and the program is now clas-
sifying when the user appears to be distracted or not. This
design flow was based on the ethics conversation with stu-
dents and professors where it was mentioned that it should
be clear when the program is starting and recording so the
user can have a clear understanding of the program.

More feedback we received included the placement of
the touchscreen. Since our aim is to avoid distracted driv-
ing, we carefully placed the touch screen in a position where
it would not be distracting the driver as that would defeat
the whole purpose of our product. It is in the same location
a smart phone or a GPS would be located in the car. We
also made sure that the UI was verbose enough to be clear
but simple enough to be non distracting. When the user
is driving the screen we show in the touch screen remains
static until the user clicks the ”stop” button.

A possible edge case with CarMa is the failure to prop-
erly classify people with smaller eyes. This is because our
eye tracking algorithm checks to see if the user’s eyes are
closed. If the user has small eyes then our algorithm might
not be able to accurately detect when they are closing their
eyes. Therefore people with smaller eyes would be affected
the most by this edge case. In order to mitigate any poten-
tial foreseen adverse impact we could improve our machine
learning model to have more robust classifications by test-
ing it with more pictures of smaller eyes.

9 RELATED WORK

One commercial product that is similar to our project
is Valeo. This product has a camera embedded behind
the steering wheel leading to a very compact system. The
product has three main functionalities:

1. Identification of the driver

2. Monitor driver fatigue and trigger alert
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3. Monitor driver attentiveness by tracking eyes

Being a commercial product, the number of features that
the system has implemented is limited. Also, as a private
institution, Valeo hasn’t released much of its confidential
research.

Another commercial product that we looked into was
Rosco’s Dual Vision XC4. This device records the driver
which the driver can look back on to see any unsafe behav-
ior. It also alerts drivers if they are going over the speed
limit and or if it detects a G-force that is over a specified
threshold. This product does not do any real time drowsy
or distracted driver monitoring, which is our main focus,
however it has many of the same hardware sensors that we
do and has a similar application.

A research project that we found based some of our
project off of is the paper on Drowsy driver detection sys-
tem using eye blink patterns [3]. The researchers used a
standard webcam and was able to achieve a frame rate of
110 fps and accurately detect blinks. The paper compares
the blink duration between drowsy state and alert state to
determine when a driver begins to get sleepy. We did not
get a high enough frame rate to be able to detect most
blinks but if we were able to optimize our computer vi-
sion application to have a frame rate greater than 15 fps,
we could have explored detecting long blinks to determine
drowsiness.

We also found some research papers which performs fa-
cial pose detection. Face Detection, Pose Estimation, and
Landmark Localization in the Wild [7] describes a pose de-
tection method using facial landmarks and SVM to train
a model to detect pose. This method was found to be
extremely accurate, scoring a 99% accuracy for MultiPIE
data-set which is a common benchmark for this type of
analysis.

10 SUMMARY

To reiterate, CarMa is a driving assistant meant to re-
mind the driver to focus on the road. Our project takes
in real-time video input and classifies the driver as sleep-
y/distracted using their mouth and eyes. We check for if
the driver is yawning, eyes are closed for over 2 seconds or
eyes are off the road for over 2 seconds.

Our system was able to meet almost all of our design
requirements. We wanted CarMa to be able to accurately
detect the driver’s face and if they were sleepy. CarMa’s
face detection and mouth detection performed very well
at 98.3% and 98.4% accuracy respectively. We knew eyes
would be harder to detection and classify so we set our re-
quirements lower and we met our eyes closed requirements
and just barely missed our eyes looking away requirement.

If given more time, we would have worked to improve
our eyes detection (eyes closed and eyes away) to be more
accurate. One potential idea would be working on the
thresholding to improve the contrast between the eyeball
to improve masking.

Overall, against our test suite CarMa had an 85.9% ac-
curacy across all our tests.

In terms of hardware, CarMa met our latency and fps
requirements by far at 183 ms and 5.7 fps respectively.

One of the biggest roadblocks we faced while trying to
increase our fps was utilizing the Jetson Xavier’s GPU. Our
team worked on this for a couple weeks and tried various
things but were not able to use the GPU. Because we had
already spent a lot of time and we were passed our required
fps we decided to work on other things. But this would have
been a big improvement to our computation speed.

Another improvement that could have helped for the
eye classification is training the model we used rather than
using the pre-trained model. This would mean every time
the driver started our device and went through the Calibra-
tion process, we would use their image to train our model.
In addition, we could have used videos specific to driving
to train our model to make it more robust.

10.1 Future Work

One feature that would build off the current project is
a phone detection feature. If CarMa could identify a cell-
phone in frame then the device could alert the driver about
a possible distraction. We currently detect if the users eyes
are not looking at the road which can translate to if the
user is possibly looking down at their phone however, we
do not identify if the phone itself is in the frame.

Another idea for CarMa is lane change detection. The
device would remind the driver to turn on their signals if
the blinker sound is not detected and would remind the
driver to check their blind spots if the driver does not do a
shoulder check.

A last future idea was to identify when the car was
parked at an angle and remind the driver to use their hand-
brake. Which is something that is easily forgettable for
drivers who are not used to driving in hilly areas.

10.2 Lessons Learned

An important lesson that we learned working on this
project is that you should design your system to be as
robust as possible. This includes robustness for different
users, different lighting conditions, different angles, and
many other factors. Only when your system is robust to
all these factors can you have a usable product.

Another lesson we learned was that you should start
collecting data for testing as soon as you have an idea of
what exactly you want to test for. A challenge we faced
was collecting enough test data and the correct test data.
As we added new features, our test data didn’t test some
of the new features which made it quiet difficult to provide
useful testing for them

Finally, an important lesson we learned regarding work-
ing on a team hardware project remotely was that commu-
nication is key to a successful project. Spend the first week
or so establishing a system of communicating work done on
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a daily or weekly basis. This ensures as little merge conflict
and duplicated work as possible.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• AWS - Amazon Web Services

• CPU - Central Processing Unit

• CNN - Convolutional Neural Network

• CV - Computer Vision

• DNN - Deep Neural Network

• EAR - Eye Aspect Ratio

• GPU - Graphics Processing Unit

• SDK - Software Development Kit
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Appendix A

Figure 18: A table of the Driver Metrics

Figure 19: A table of the Device Metrics
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Figure 20: Mock-up of our Device

Figure 21: Mock-up of calibration process
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Figure 22: Hardware architecture of CarMa
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Figure 23: General Software cycle of CarMa
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Figure 24: Block Diagram for the Computer Vision Algorithms
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Figure 25: Block Diagram for the Computer Vision Algorithms
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Figure 26: Schedule Gantt Chart


