18-500 Design Review - March 17, 2021

Page 1 of 9

CarMa

Authors: Jananni Rathnagiri, Adriana Martinez, Evann Wu: Electrical and Computer Engineering, Carnegie Mellon
University

Abstract—CarMa is a driving assistant tool de-

signed to guide drivers to follow safe protocols. It
would primarily be used to help new and inexperi-
enced drivers get comfortable on the road. Our driving
assistant would simulate the role of a parent or driving
instructor in the front seat warning the driver about
distracted driving. We plan on having a camera pointed
at the driver and using computer vision to detect if the
driver is falling asleep. This would prevent drivers from
falling asleep at the wheel.
CarMa primarily focus on ensuring the driver is fo-
cused on the road using computer vision to track the
driver’s face and movements. The domains used in this
project are Software along with Signals and systems.
The driving scope is focused on residential roads and
our project requires there to be adequate lighting on
the user’s face.

Index Terms—Driving assistant, Computer Vi-
sion, Facial Detection, Facial Landmarks, Eye tracker,
Mouth Tracker, Embedded System

1 INTRODUCTION

Distracted driving is the cause of every 1 in 5 deaths
from vehicle related accidents [2]. It is a issue rampant
among young drivers learning how to drive for the first
time. We believe it is critical that drivers learn safe driv-
ing habits as they are learning to drive. Our project CarMa
is an automated driving assistant that takes real time video
data of the driver and alerts the driver when they are be-
coming drowsy or looking away from the road for too long.
While driver monitoring is a well explored field, especially
monitoring drivers in the trucking industry, these applica-
tions are not widely available. Our approach to this prob-
lem is to design a system that is both compact and com-
putationally powerful giving good performance as well as
being easy to install.

Our goal is to have our application run at least 5 frames
per second and to achieve a 75% accuracy on our test suite.
These goals will allow the application to be performant and
limit the false negative rate. Our key metrics, frames per
second and accuracy, were chosen specifically to ensure that
our application is running efficiently enough to support our
desired goals.

2 DESIGN REQUIREMENTS

The main requirements for this project include that the
driver should never take their eyes off the road for over 2

seconds. This is taken from the National Highway Traf-
fic Safety Administration or the NHTSA. Another require-
ment is that the driver should not fall asleep at the wheel
which is essential to the project goals. According to the
NHTSA, most fatal accidents occur when a vehicle is going
over 55mph. So, CarMa should guarantee driver monitor-
ing over that speed.

Given these requirements, we put together metrics and
test plans in order to ensure the project meets expecta-
tions. The metrics have been split up into 2 main cate-
gories: Driver Metrics and Device Metrics.

Here are two tables that fully illustrate the require-
ments, metrics and testing plans.

Metrics and Validation: Driver

Driver should never take Frontal view: Error rate <10%
eyes off the road for > 2 secs = EYes looking away > 2 sec False + <9%
False - <1%

Driver should not fall asleep Frontal view: Error rate <156%
at the wheel Frequency of blinking andfor length False + <13%
of blink increases by 0.25x norm False - <2%

Driver should not fall asleep Frontal view: Error rate <15%
at the wheel detect yawning False + <13%
detect eyes closed False - <2%

Most fatal accident happen Side view: Error rate <35%
over 55 mph turned > 2 secs while driving > 55 False + <30%
mph False - <5%

Figure 1: A table of the Driver Metrics

Looking at the driver, there are two main positions the
driver can be in: directly facing the front (frontal view)
and turning away from the camera (side view). For frontal
view, there are a few characteristics CarMa should identify:

Eyes looking away for over 2 seconds

Higher frequency of blinking

Longer blinks

e Yawning

Eyes closed

For these metrics, we decided that it is better for us
to get false positives rather than false negatives. In other
words, we prefer if CarMa classifies the driver as distracted
or sleepy and warns the driver when they are in fact at-
tentive. But on the flip side, if CarMa fails to identify
a distracted or sleepy driver this could have fatal conse-
quences.
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Metrics and Validation: Device

Requirements Metrics Test Plan

Driver should never take Computation Time < 1000ms | Measure the time at start
eyes off the road for > 2 secs and end of computation
so computation must be fast

Driver should never take
eyes off the road for > 2 secs
so computation must be fast

>=5 frame/sec (fps) Run the program with a

person looking at the camera
for 60 seconds. Take the
average frame rate

Total Device Accuracy Accuracy of model against

test suite >=75%

Figure 2: A table of the Device Metrics

For the device, based on the fact that the driver should
be warned if their eyes are off the road for 2 seconds, the
computation must be fast. Therefore, we estimate our
round trip computation time must be under 1 second. Also
based on research for the algorithms and our board, we
would like to see a frame rate of under 5 frames per second.
Finally, for the overall accuracy of the device, based on the
models CarMa uses, the accuracy of the device against the
test suite should be over 75%.

3 ARCHITECTURE OVERVIEW

The overall architecture will loosely follow the diagram
in Figure 3. The diagram demonstrates how the device will
be positioned in the car along with how the components will
be attached.

Camera (o

-l
£ Sound Card

Figure 3: Mock-up of our Device

3.1 Hardware

The hardware that CarMa needs is split into two main
parts. First, there is the Nvidia Jetson Xavier NX board.
This boards has a powerful processor and GPU that al-
lows it to output up to 21 Trillion Tera Operations per
Second (TOPS). We believe with this compute power, we
will be able to achieve the desired frames per second using

our algorithm based off previous benchmarks set on similar
hardware. The Jetson board utilizes the Ubuntu operating
system which allows us to use Jetpack SDK which contains
common CV libraries optimized for the Xavier board. In-
side Ubuntu is where we will have all our software algo-
rithms which we will discuss in the upcoming sections.

Second, we have the accessory hardware components to
connect to the Xavier NX board. This includes the camera,
touch screen, sound card, and accelerometer. The Sound
Card will output warnings back to the user when they ap-
pear distracted. The accelerometer will be used to ensure
that we are adhering to safety measures when the driver
is driving fast or completely still. The Camera will serve
as the input to the computer vision aspect of the project.
Lastly, we have our touch screen which will act as the ini-
tial configuration and user interface. This will be how the
user interacts with CarMa. These components will allow
us to sample data while the user is driving which will be
used as input to our application. The block diagram in
figure 4 outlines how the hardware for this project will be
connected.
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Figure 4: Hardware architecture of CarMa

The diagram in figure 4 contains a dotted path which is
an optional route that we might pursue. In case the Nvidia
Jetson Xavier NX board is not able to handle the amount
of computation necessary or if it is unable to obtain the
desired frames per seconds, we plan on utilizing AWS Ki-
nesis for real-time video processing and analysis. This is a
backup plan in case we run into unforeseen problems with
our board handling all of the compute power.

3.2 Software

The software approach of CarMa is split into two main
cycles. When the user first picks up the device they will
be asked to complete a calibration cycle. From then on,
the user will be categorized as asleep or distracted vs at-
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tentive using machine learning algorithms discussed in a
later paragraph. This is summarized and illustrated in the
diagram in figure 5.

Start

Calibration Process ] \ \ /

F =
OpenCV’s DNN Output Warning

L J

Figure 5: General Software cycle of CarMa

—

When a user first begins using CarMa, they will be
asked to complete a calibration process, where the device
can read their facial dimensions to more accurately cate-
gorize if the driver is sleepy or distracted. In particular,
we are recording the distance of the lips when the mouth
is closed along with eye measurements of the driver look-
ing straight at the road. These will serve as our point of
reference when checking if the driver is distracted or not.
This is also to ensure the users have adequate background
lighting which will improve the facial detection algorithms.
Figure 6 illustrates a mock-up of the process.

Figure 6: Mock-up of calibration process

3.3 Computer Vision Algorithms

The computer vision aspect of CarMa allows us to de-
tect whether or not the user appears distracted. The ap-
proach is summarized by the block diagram in Figure 7.
We accomplish this task by first obtaining a facial detector
followed my a landmark detector.

Video Input

Face
Detection
Facial Landmark
Detection
Mouth .

Driver
Classification

Figure 7: Block Diagram for the Computer Vision Algo-
rithms

3.3.1 Face Detector

We are obtaining face detection by utilizing OpenCV
and deep learning [5]. In particular, we are using OpenCV’s
“deep neural networks” (DNN) module which supports dif-
ferent learning frameworks such as TensorFlow and Caffe
based face detectors. OpenCV'’s face detector is deep learn-
ing based and it utilizes the Single Shot-Multibox Detector
framework with a ResNet base network.

The DNN module requires us to pass in .pro-
totxt file which defines the model architecture along
with the .caffemodel file which contains the weights
for the actual layers. Both of these files al-
low us to read a network model stored in memory
by utilizing cv2.dnn.readNetFromCaffe(args[”prototxt”],
args[’model”]). This returns an artificial neural network
which allows us to pass the image through the network to
obtain defections and predictions for the face. In short,
we pass the image through the network (also known as
forward propagation) to obtain the result (with no back-
propagation). This gives us the face detection bounding
box rectangles predictions.

3.3.2 Landmark Detector

In order to obtain our eye and mouth detection we ob-
tain facial landmarking. In particular, we are utilizing
a Convolutional Neural Network for facial landmarks de-
tection, CNN-facial-landmarks [4], as a landmark detector
that estimates the location of 68 points that map to a fa-
cial structures on the face. We can then load and build
the facial landmarks model as Tensorflow model. We are
then able to find the facial landmarks in an image from
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the faces by passing the landmark model along with the
predicted face detection rectangles into the facial keypoint
detector to find the facial landmarks in an image from the
face.

3.3.3 Eye and Mouth Detection

In order to track the eyes we obtain the correct land-
marks corresponding to each left and right eye. We then
create a region of interest on a mask with the size of the
driver’s eyes and also find the extreme points of each eye.
The mask is the same dimensions as the frame. Using the
mask, we then segment out the eyes from the image. Af-
ter we segment out the eyeballs from the rest of the eye
we then find its center. We can then track the eyeball
movements along with indicating if the center of the eye-
ball has changed and reporting if the driver is looking away
from the road which we calculated during the calibration
process. This eye tracking method will continue for each
frame in a video sequence. A similar approach is done
for mouth detection. However, this method requires find-
ing the drivers mouth and recording the distance between
the lips and comparing that distance during the calibration
step when the mouth was closed. A open mouth means
that the driver is yawning and potentially beginning to get
drowsy.

To obtain more accurate results of the eye and mouth
detection we follow more precise thresholding processing
steps namely erosion, dilation, and median blurs.

Figure 8: Eye Tracking

4 DESIGN TRADE STUDIES

A number of design tradeoffs were made throughout the
design process of our system. The most important tradeoffs
involved the embedded board we chose and the computer
vision algorithms we picked. In this section, we will discuss
the following trade-offs:

Embedded Board
Detection Models
Scope: Lighting and Shadows

Scope: Speeds
Scope: Pose Detection
Dataset Bias

4.1 Embedded Board

There were a number of boards that we looked at in
our process of choosing an embedded board. Our require-
ments were that we wanted a board powerful enough to run
our computer vision application at greater than 5 frames
per second. Another requirement for our system was that
it should be as compact of an overall system as possible.
Thirdly, the system should support the necessary sensor
inputs that we have. Lastly, the board should be less than
$500 due to our $600 budget. From our research, we found
3 suitable boards that would meet the 1/0, size, and bud-
get requirements. A chart of the comparisons between the
three is shown below.

Raspberry Pi | Nvidia Nvidia
4 Jetson Jetson
Nano Xavier NX
Cost |$35 $99 $399
CPU | Quad-core Quad-Core | 8-core NVIDIA
ARM ARM Carmel
Cortex-A72 Cortex-A57 | ARM«v8.2
64-bit@ 1.5 64-bit @ 1.42 | 64-bit CPU
Ghz Ghz 6MB L2 +
4MB L3
GPU | Broadcom NVIDIA 384-core
VideoCore VI | Maxwellw/ | NVIDIA Volta-
(32-bit) 128 CUDA | GPU with 48
cores @ 921 | Tensor Cores
Mhz

Figure 9: Embedded Board Comparison

We decided to go with the Nvidia Jetson Xavier NX
board due to its onboard GPU and high compute. The
Xavier NX was the most expensive out of the three boards
so we had to budget our other parts accordingly. We would
not be able to get expensive sensors and needed to borrow
from the ECE parts inventory as much as possible.

4.2 Detection Models

Face detection is the most crucial aspect of the project.
There are multiple pre-trained models available for face de-
tection and the two that we focused on include OpenCV’s
DNN Module vs Dlib frontal face detector.

OpenCV’s DNN Face Detector is a Caffe model based
on the Single Shot-Multibox Detector (SSD) and uses
ResNet-10 architecture as its backbone. The Dlib toolkit
contains machine learning algorithms useful for computer
vision. Dlib is used for face detection and facial landmark
detection. The frontal face detector is based on histogram
of oriented gradients (HOG) and linear SVM. The frontal
face detector works by using features extracted by HOG
which are then passed through an SVM.

We found that Dlib algorithms did not perform well for
side faces. OpenCV’s DNN module was able to detect side
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faces and quick head movement was not an issue. Dlib
failed at large angles and quick movement. In addition,
OpenCV’s DNN module ran at about 12.95 frames per sec-
ond while Dlib ran at about 5 frames per second, [1] so in
terms of speed OpenCV’s DNN module was the best choice.

Since OpenCV’s DNN module proved to be a better fa-
cial detection module for our scope, we decided to use CNN-
facial-landmarks [4], as a landmark detector that estimates
the location of 68 points that map to a facial structures
on the face. As opposed to the pre-trained facial landmark
keypoint detector inside the Dlib library.

4.3 Scope: Lighting and Shadows

Another major tradeoff we discussed was the scope
of our project specifically in relation to the environment
CarMa would operate under. Based on the algorithms and
preliminary tests, we immediately realized lighting is a cru-
cial factor. When a driver is wearing glasses and there is
reflection from the sun, neither of our algorithms performed
well. Therefore, we limited our scope to good lighting con-
ditions where the driver’s face is clear and visible. Our
groups also confirmed this would be the best approach with
Professor Marios Savvides.

4.4 Scope: Speeds

Another scope based trade-off we considered was the
speed at which the vehicle is operating at. Based on the
research conducted, the NHTSA identified that most fatal
accidents occurred at speeds over 55 miles per hour. For
this reason, we wanted to ensure that our device would ac-
curately monitor the driver at these speeds. We decided
that CarMa will prioritize these speeds and guarantee a
high accuracy even if this accuracy is not guaranteed at
lower speeds due to the risk of fatal accidents.

4.5 Scope: Pose Detection

While coming up with the goals for this project, our
group decided that the primary goals should be identify-
ing and detecting distracted eyes and a sleepy driver. Dis-
tracted eyes would be identified if the driver’s eyes are off
the road for over 2 seconds and a sleepy driver would be
identified by long blinks, more frequent blinks, eyes closed
or yawning. Pose detection would need to build on top of
the facial land marking and eye detection already used. In
addition, pose detection without the previously described
goals would not be effective for our project. So, pose de-
tection is an attainable stretch goal.

4.6 Dataset Bias

As we research which data sets to train our model on,
we realize there are two main options. We could build our
own data set with short clips of various drivers blinking
and yawning. On the other hand, our model could use a
data set found online such as DrivFacce [6]. Such a data set

would mean less time spent towards building the data set
but may require more time to adjust the videos to exactly
what CarMa requires, specifically blinking and yawning.
Building our own data set would require more time filming
people in cars but we could build the data set based on the
specifications we require. One downside is that this would
have bias towards the test subjects we use to build the data
set.

After careful consideration, we have decided to con-
struct our own driver data set specific for the models CarMa
utilizes and our use case.

5 SYSTEM DESCRIPTION

The CarMa system can broken down into four main
subprocesses:
e Sensor Input
e Calibration
e Face Detection
Facial Landmark Detection
Eye and Mouth Detection
Pose Estimation

5.1

The system will be taking input from two main sen-
sors. Foremost, the camera module will be capturing im-
ages which will be sent to the computer vision applica-
tion. Secondarily, the accelerometer will collect data on
the driver’s speed which will adjust the strictness of the
driver monitoring.

The camera will be used as soon as the system starts
the calibration process. Once the user enables driver moni-
toring, both the camera and the accelerometer will be sam-
pling data at a fixed rate.

We decided to go with a small, low resolution camera
as we want the system to be compact and have fast image
processing. With a lower resolution, our image processing
with occur quicker. For the accelerometer, we decided to
borrow one from the ECE Inventory as our system does not
specify a need for high accuracy for speed.

Sensor Input

5.2 Calibration

On startup, our application will load the calibration se-
quence, which is a series of prompts that ask the user to
capture their face at different angles. We will use the im-
ages captured through the calibration process to determine
parameters to use for our computer vision application. The
first step of the calibration process is to take a front facing
image of the driver. There will be a prompt on the touch
screen asking the driver to position their face looking for-
ward at the road and to press a capture photo button when
they are ready. There will then be a 5 second countdown
before the image is captured. We will then ask the user to
turn their head to the left and repeat the process. Finally,
we will repeat the process with the user facing to the right.
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5.3 Face Detection

Once the calibration process is complete and the driver
monitoring begins we utilize OpenCV’s Deep Neural Net-
work (DNN) with Caffe model as the deep learning frame-
work. OpenCV’s deep learning face detection based on
Single Multi-Shot Detector framework allows us to take
one single shot to detect multiple objects within the im-
age. The object localization and classifications are done in
a single forward pass of the network. OpenCV’s Deep Neu-
ral Network has a ResNet base network which is a residual
neural network trained on ImagNet.

5.4 Facial Landmark Detection

Once the driver’s face is detected, CarMa moves on to
identifying facial landmarks.

It is difficult to capture the frontal section of a human
face in real life situations, therefore we utilize an additional
step, “face alignment” after face detection. It is necessary
to detect the feature points in the face image, and mark
some specific areas such pupils, corner of the eyes, mouth
location, and more. This feature point detection is known
as “Facial landmark localization”.

In our algorithms of facial landmarking, we are utiliz-
ing CNN-facial-landmark [4] which is a landmarks detec-
tion based on convolution neural network, this model is
build with Tensorflow. The landmark detector returns 68
landmarks each related to a specific point on the face.

5.5 Eye/Mouth Detection

After the feature points are detected, we are able to
mark the specific position of the face in the image. Uti-
lizing masking, we are able to obtain only the parts of the
face that we care about. In order to detect if the driver
is distracted we can check if their eyes have been focused
elsewhere for 2 or more seconds. Similarly to identify if
the driver is sleepy, we will detect if the driver’s blinks are
longer or more frequent.

We will follow a similar process for mouth detection.
Using masking, we will single out the area of the face nec-
essary. In order to identify if the driver is sleepy, we will
check if the driver is yawns, repeatedly.

5.6 Pose Estimation

Pose estimation is a stretch goal that will build off of
the facial detection, facial land marking and eye detection
already in place. Pose estimation will use the angle of the
face and its features to determine the angle at which the
driver is turned. One method we will try is to use the
distance between the facial landmarks we produce to de-
termine an angle. For instance if my face is turn the the
left, the distance between the landmark of my left check
and nose will be closer and the distance from my nose and
my right check will be farther.

6 PROJECT MANAGEMENT

6.1 Schedule

The full Gantt chart of the schedule is located in Ap-
pendix A. The schedule contains each part of our project
along with how we decided to break each task down. The
schedule is divided by each member with each of their tasks
listed. Adriana’s tasks are in blue, Evann’s are in pink, and
Jananni’s are in green.

6.2 Team Member Responsibilities

In terms of the division of labor, we have split up the
responsibilities for each person as primary and secondary
objectives. For the primary objectives, we focused on facial
and eye detection. For the primary objectives, Adriana will
be working on the facial detection. Evann will be working
on building the hardware aspect of the device. Jananni will
be focused on the eye detection.

For the secondary objectives, we focused on optimiza-
tion and stretch goals. For the secondary objectives, Adri-
ana will be working on algorithm optimization to make
sure we are within our project requirements. Evann will be
building off the facial landmarking and eye detection for
the pose detection. Finally, Jananni will be working on the
calibration and thresholding.

6.3 Budget
Table 1: Bill of Parts
Component Cost Notes
Jetson Xavier NX | $400 Arrived
Developer Kit $83 Arrived
Accelerometer - Borrowed
Accelerometer $9 Backup
Sound Card - Borrowed
Sound Card $10 Backup
AWS Credit - ECE Free Credit
WiFi Card $25 In Progress
Car Power Adapter | $13 In Progress
Total $540

CarMa requires multiple parts in order to successfully
work. The majority of the budget is spent on the Nvidia
Jetson Xavier NX board. The project also requires the
use of a Developer Kit as that comes with a touch screen
for the board, along with a camera and other additional
gadgets. We have borrowed an accelerometer along with a
sound card from the Capstone course but also accounted
for spare parts in our budget in case the parts break or
malfunction. Additionally, we have accounted for a backup
plan of utilizing AWS Kinesis for real time data streaming
in the case that the board cannot handle all of the com-
pute power. Thus, this would require a WiFi card in order
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to connect to the internet to perform computation through
AWS. Lastly, when taking the board out for testing, a car
power adapter would be required in order to charge the
board.

6.4 Risk Management

In order to ensure that everything will run smoothly,
we have put together a list of potential risks that could oc-
cur. Below is a full table of the risks and our corresponding
management plans.

Risks Mitigation

Inadequate Board
Performance (Low FPS)

Using AWS Kinesis for Faster
Computation

Poor Frontal Face Detection
or DNN GPU parallelization
incompatibility

Switch to Dlib Algorithm

Xavier NX Board Malfunction | Use Jetson Nano (~$100) +

AWS

Accelerometer/Sound
Card/Camera Failure

Purchase new parts using
remaining budget

Unforeseen delays 10 days of slack

Figure 10: List of potential risks and corresponding miti-
gation plans

One of the biggest risks that is crucial for our project is
that the Nvidia Board is inadequate for our use case. The
mitigation plan for the computation risk is using AWS Ki-
nesis for video streaming analysis. This will take the weight
off the board and will speed up our computation time and
frames per second.

In a related scenario, if the Nvidia Jetson Xavier NX is
pushed to its capacity and malfunctions, the back-up plan
is to utilize the Nvidia Jetson Nanos that the ECE depart-
ment has in addition to AWS Kinesis which should handle
most of the heavy computation.

In case our Frontal Face detection algorithm is not ac-
curate enough to meet our requirements or is incompatible
with our hardware, the mitigation plan is to switch to the
slower but more accurate Dlib Algorithm which works very
well for the frontal view but not well for side view.

Our group has also accounted for the case when spe-
cific components fail such as the accelerometer, sound card
or camera. Currently, we are borrowing the accelerometer
and sound card from the ECE department and our Nvidia
Development Kit comes with a camera. If any of these
components malfunction, we have a portion of our budget
saved so that we can buy additional components.

In addition to the additional money saved for spare com-
ponents, we have also planned our schedule such that there
will be additional slack days for unforeseen delays and is-

sues. Most likely this will be due to the integration and
testing phases.

7 RELATED WORK

One commercial product that is similar to our project
is Valeo. This product has a camera embedded behind
the steering wheel leading to a very compact system. The
product has three main functionalities:

1. Identification of the driver
2. Monitor driver fatigue and trigger alert
3. Monitor driver attentiveness by tracking eyes

Being a commercial product, the number of features that
the system has implemented is limited. Also, as a private
institution, Valeo hasn’t released much of its confidential
research.

A research project that we found based some of our
project off of is the paper on Drowsy driver detection sys-
tem using eye blink patterns [3]. The researchers used a
standard webcam and was able to achieve a frame rate of
110 fps and accurately detect blinks. The paper compares
the blink duration between drowsy state and alert state to
determine when a driver begins to get sleepy. We do not
expect to get a high enough frame rate to be able to detect
most blinks but if we are able to optimize our computer vi-
sion application to have a frame rate greater than 15 fps, we
will explore detecting long blinks to determine drowsiness.

7.1 Future Work

One feature that would build off the current project is
a phone detection feature. If CarMa could identify a cell-
phone in frame then the device could alert the driver about
a possible distraction.

Another idea for CarMa is lane change detection. The
device would remind the driver to turn on their signals if
the blinker sound is not detected and would remind the
driver to check their blind spots if the driver does not do a
shoulder check.

A last future idea was to identify when the car was
parked at an angle and remind the driver to use their hand-
brake.
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Appendix A

Metrics and Validation: Driver

Requirements Metrics Test Plan
Driver should never take Frontal view: Error rate <10%
eyes off the road for > 2 secs | Eyes looking away > 2 sec False + <9%
False - <1%
Driver should not fall asleep Frontal view: Error rate <15%
at the wheel Frequency of blinking and/or length False + <13%
of blink increases by 0.25x norm False - <2%
Driver should not fall asleep Frontal view: Error rate <15%
at the wheel detect yawning False + <13%
detect eyes closed False - <2%
Most fatal accident happen Side view: Error rate <35%
over 55 mph turned > 2 secs while driving > 55 False + <30%
mph False - <6%

Figure 11: A table of the Driver Metrics

Metrics and Validation: Device

Requirements Metrics Test Plan
Driver should never take Computation Time < 1000ms | Measure the time at start
eyes off the road for > 2 secs and end of computation

so computation must be fast

Driver should never take >= 5 frame/sec (fps) Run the program with a
eyes off the road for > 2 secs person looking at the camera

so computation must be fast for 60 seconds. Take the
average frame rate

Total Device Accuracy - Accuracy of model against
test suite >= 75%

Figure 12: A table of the Device Metrics
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Figure 13: Mock-up of our Device

Figure 14: Mock-up of calibration process
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Figure 15: Hardware architecture of CarMa

Start
[ Calibration Process I \ \ /

f User Input ﬁ

‘ OpenCV'’'s DNN I ‘ Output Warning}

b [ Classify driver ] :ﬁ

Figure 16: General Software cycle of CarMa
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Figure 17: Block Diagram for the Computer Vision Algorithms
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Figure 18: Schedule Gantt Chart



