
18-500 Final Report - May 14, 2021 Page 1 of 15

AutoVot: A Vehicle to Vehicle
Communication System for Autonomous

Driving
Authors: Joel Anyanti, Fausto Leyva, Jeffrey Tsaw

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Trends point to an autonomous future in
the area of transportation. Paramount to the success
of such technologies is the addition of safety and ro-
bustness features on these vehicles. The goal with this
project was to demonstrate the usefulness of Vehicle to
Vehicle communication in autonomous vehicles. As a
result, we developed AutoVot, an autonomous vehicle
convoy that leverages Vehicle to Vehicle Communi-
cation to navigate a course with obstacles. The lead
car uses a depth camera to detect obstacles along the
course to generate a path to navigate to the goal, all
while communicating instructions to the following ve-
hicle via Bluetooth. This allows both vehicles to safely
navigate the course without collisions, even though the
following car has no perception capabilities. Our re-
sulting solution shows promise for communication in
the domain of autonomous vehicles.

Index Terms—Autonomous Driving, Object Detec-
tion, Vehicle to Vehicle Communication, Nvidia Jetson
Nano, Convoy.

1 INTRODUCTION

The transportation industry has recently turned to au-
tonomous driving solutions to perform transportation tasks
previously exclusive to human drivers. Indeed as the tech-
nology that enables self-driving becomes more reliable and
commercially available, an autonomous future looks to be
inevitable. Autonomous driving technology in its current
state relies on individual vehicles to make decisions based
on self provided sensory input and perception. As impres-
sive as the technology may become, we recognize that coor-
dination between vehicles would provide additional safety
benefits and increase the overall efficiency of transportation
networks. To demonstrate this claim, we aim to develop an
autonomous driving system which leverages vehicle to ve-
hicle communication to perform a coordinated task.

For our development we have chosen to focus on imple-
menting a convoy system between a lead and follow vehicle.
The ‘lead’ vehicle will be fully equipped with image sens-
ing to allow for object detection and path planning. By
contrast, the ‘trail’ vehicle will be blind and rely solely on
information from the ‘lead’ to navigate the course. The two
vehicles will be tasked with driving from one end of a track

to another while avoiding any obstacles in their path. With
this task we intend to highlight the benefits of communica-
tion between vehicles and ultimately hope to achieve zero
collisions in our verification runs.

2 DESIGN REQUIREMENTS

In order to best accommodate our circumstances we
considered the physical attributes of the vehicles to param-
eterize our testing course. We recognize that at the scale
we are developing under, attention to these details are crit-
ical to defining thoughtful requirements. In particular we
relied on speed estimates for the vehicles to determine the
length of the straight away for our course. To estimate
the speed of our vehicles we needed to factor in both the
payload weight and the RPM of the motors.

Standard DC motors for Arduino based RC vehicles are
rated at 200±10% RPM @ 6v. The wheel diameter for the
corresponding motors are 60mm. With the following equa-
tions we are able to estimate Vmax for the vehicles:

ω = 2πf (1)

v = rω (2)

The resulting velocity we obtain from these equation is
0.64m/s ± 10% but we must also factor in the added
weight of the vehicle components into the overall speed
of the vehicle. The required components (camera, sen-
sors, motor shield, Arduino, Jetson Nano, power supply)
for the fully equipped lead vehicle are estimated to be
around 600g (5.88N) of weight. We project that this
will cost around 15% slowdown from the theoretical max-
imum of the motors. This leaves us with the following:
Vmax = 0.54m/s± 10%.

Given these calculations we assume the top speed of
the vehicles to be a generous 0.5m/s with the lead car.
This projection allows us reasonable margin of error as the
weight projects are overestimates and the ‘trail’ vehicles
will have lighter payloads.

In determining the final length of the course, we wanted
to maintain a reasonable length for adequate testing. A
length that is too long would likely lead to reproducibility
errors and difficulty in collecting data. By contrast, A test
too short may be unimpressive and less able to illustrate the
value proposition. Acknowledging this, we targeted a test
run of 1 minute total time for completion of the course.

18-500 Final Report - May 14, 2021 Page 2 of 15

Given that a vehicle moving at 0.5m/s will reach about
30m maximum distance forgoing acceleration we opted for
a 20m straight away course with a width of 1.22m. These
values are based on the standard dimension for a track and
field race track. A diagram of this track can be seen below
in Figure 1.

Figure 1: Diagram of task verification track

This length would allow for about 20 seconds of margin
time for avoidance and navigation given our expected vehi-
cle velocity. We consider this to be a reasonable amount of
time given the requirement of successfully navigating two
vehicles to the end of the track. The decision to use a
straight away course with no turns is motivated by the fact
that such a system would rely much less on localization/-
global positioning which would cause greater difficulty in
implementation.

Critically we must also acknowledge the vehicle avoid-
ance portion of the development as a driving factor for our
requirements. In essence we need to know what the min-
imum object detection distance is our solution needs to
achieve to successfully avoid obstacles in its path. For this
we consider the following three sub-distances: latency dis-
tance, stopping distance and buffer distance. Latency dis-
tance is the distance a vehicle travels over the time required
to make one pass through the software pipeline. This in-
cludes object detection, path planning and communication.
Stopping distance is the distance a vehicle will travel after
a stop command before reaching a complete stop. Buffer
distance is the distance left between the obstacle and the
vehicle after the vehicle has stopped. This breakdown is
clearly illustrated in Figure 2 below.

Figure 2: Diagram of object detection distance breakdown

‘In order to obtain the stopping distance we estimated
the distance the vehicle travels over from its max speed to a
full stop. Using the following physics equations in relation
the our vehicle parameters,

v2 = v20 + 2a∆x (3)

F = ma (4)

The results from this calculation result in a stopping
distance of 0.03m as we observe in Table 1.We note that
since the buffer distance is a fixed parameter set by the
group, there is no corresponding calculation. The num-
bers provided in Table 1 for the compute task latencies
are rough estimates based on research into our methods of
choice. We consider these estimates to be generous as they
include slack for anticipated worst case conditions. With
this we are able to calculate the latency distance using the
following equation

xlat = vmax(tdet + tplan + tcomm) (5)

This leaves us with a latency distance of 0.125m. Thus
the overall minimum object detection distance we must tar-
get is 0.205m considering all of the sub-distances.

Vehicle Maximum Speed 0.5m/s
Object Detection Latency 100ms
Path Planning Latency 10ms
Communication Latency 100 ±40ms
Latency Distance 0.125m
Stopping Distance 0.03m
Buffer Distance 0.05m
Minimum Object Detection Distance 0.205m
Vehicle Length 0.2794m
Vehicle Width 0.1778m
Track Length 20m
Track Width 1.22m

Table 1: Summary of required metrics

For the autonomous navigation aspect of our project,
we need he lead care to be able to detect static obstacles
in the path and make planning decisions to successfully
maneuver through the obstacles. To accomplish this, we
must require that the convoy system maintains 0 collisions
through the track, as no crash mitigation will be imple-
mented. Given the track distance and the buffer, stop-
ping, and latency distance, we calculated an object detec-
tion latency of 100ms. More specifically, this involves hav-
ing the on-board stereo camera relay image information to
the compute node, which applies an object detection algo-
rithm once every 100ms. This is equivalent to developing
an object detection algorithm that is capable of performing
at 10fps, assuming negligible latency (i.e a camera latency
much less than 100ms) between the stereo camera and the
compute node.

Regarding the nature of the object detection, rather
than implementing an object classification algorithm, we
aim to overlay the image from the stereo camera with
bounding boxes surrounding the object. This would give

18-500 Final Report - May 14, 2021 Page 3 of 15

a smooth estimate as to where the obstacles in the path
are, and thus make planning decisions that produced the
least risk of crashing into obstacles. Given the combined
stopping and buffer distances is 0.08m, we require any ob-
stacle to be detected within 0.2m in order to maximize the
avoidance probability without imposing too strict require-
ments on the vehicle hardware. Assuming a frequency of
object detection performed at 10fps, and a vehicle speed
of 0.5m/s, this would give an average 2.4 frames before
the vehicle reaches the buffer and stopping distance and
jeopardizes colliding with the obstacle. For this reason, we
require our object detection algorithm to be able to per-
form at 90% precision and 95% recall, in order to minimize
the probability of missed detections and subsequent colli-
sions. With 95% recall, the probability of not detecting the
object before the vehicle reaches the danger area reduces
to 0.25%. Notice that we prioritize recall, since we want
to minimize false negatives more than false positives. In
the worst case, this would translate into having our object
detection detect phantom objects on top of actual obsta-
cles, which would not be a problem assuming our planning
algorithm is sufficient.

Figure 3: Example bounding box from object detection al-
gorithm

For planning, we simply need an algorithm capable of
making navigational decisions based on the object detec-
tion algorithm’s output and the current camera feed. For
this to be successful, we require a latency of 10ms, to al-
low for the vehicle to dynamically adjust and make smooth
turns to navigate around obstacles. The planning stack will
be located on the onboard computation node, and commu-
nication between the compute node and the motors will be
done via an onboard Arduino for simplicity. Using an Ar-
duino as a motor controller would allow the planning stack
to output target angles for the wheels to turn rather than
PWM signals. This gives greater flexibility to the develop-
ment of the planning algorithm.

Since we have a lead car equipped with the sensory
equipment (camera, distance-tracking sensors) to help it
maneuver through the track, we need the lead car to be

able to effectively and accurately communicate with the
rest of the convoy. We are going to be using Bluetooth as
our mode of communication across vehicles which must be
reliable and relatively low-latency.

One important assumption we are making is that the
Bluetooth conditions are ideal for communication; meaning
our track will be free from huge obstructions between the
transmission of Bluetooth signals. We are not expecting
the latency of Bluetooth messages to exceed 100ms. Upon
our research we found that the ideal Bluetooth latency is
around 34ms, but can range up to 100-300ms, so we are
taking the lower bound since our cars will be in close prox-
imity with a clear path between them. Communication will
consist of relaying localization information (map updates)
perceived by the lead car, out to the trailing cars. We are
expecting the Bluetooth connection to be reliable enough
for the lead vehicle to use a broadcasting protocol to accu-
rately send updates on the position of the other vehicles;
since we will be sending messages frequently, we expect
that a lost packet will not have a significant effect on the
vehicles.

3 ARCHITECTURE OVERVIEW

The architecture of the Autovot system consists of 4
major subsystems, vehicle mechanics, object detection, lo-
calization/path planning and communication. These sub-
systems are clearly broken down in the system diagram
which can be found illustrated in Figure 9 in the Appendix
(see Appendix A). Worth noting regarding the architecture
is the two different classes of vehicles that we intend to im-
plement. The key difference between the two designs is that
the lead vehicle will be equipped with a slightly more pow-
erful Jetson Nano unit as well as a Intel RealSense camera
for perception. The trail vehicles will run identical setup
with the exception of the scaled down 2GB version of the
Jetson Nano as well as not having any camera unit at all.
The reason we opted for the less powerful Nano for the
trailing cars is due to the fact that there will be no image
processing performed by these vehicles.

3.1 Vehicle Mechanics

The diagram outlining the overall system for Autovot
is based on the lead vehicle to fully cover the extent of
the development. For simplicity we can assume that the
‘trail’ vehicles are identical in regards to the core mechan-
ical systems. The core driver for the mechanical system is
the Arduino Uno R3 board which will house the logic for
controlling the motor systems. To power the Arduino we
will leverage the USB connection between the Arduino and
Jetson to supply the required 5v. This connection will also
be used to relay commands used to steer the vehicle. Our
design uses an Adafruit Motor Shield V2 unit to control
all 4 of the DC motors individually. This units sits onto of
the Arduino to relay control signals over 12C protocol. To
power the motors, the raw output from the 7.4V 2S LiPo

18-500 Final Report - May 14, 2021 Page 4 of 15

batteries is fed into the motor shield unit. This is sufficient
to provide the required voltage to the motors and fits in the
5V - 12V range of the motor shield unit. A simple diagram
of the shield connected to two DC motors can be seen in
Figure 4 below

Figure 4: Diagram of the connection between the Adafruit
Motor Shield and DC Motors.

3.2 Object Detection

The object detection node relied on an Intel RealSense
depth camera to provide RGB-D images to the Jetson
Nano. Using MobileNet v1 SSD, as well as the depth im-
age, obstacles’ (x, y) locations according to the car’s frame
are determined, and continually passed to the path plan-
ning node.

3.3 Path Planning

Path planning receives information from the localiza-
tion nodes and object detection nodes, and determines the
path that the vehicle should take according to the vehicle’s
internal map. This internal map is a 10cm x 10cm grid rep-
resentation of the course. Localization data from the IMU
and odometry nodes help determine which grid location
the vehicle is currently in. Object locations passed from
the object detection node are marked on the map, and the
updated map is passed through A* planning algorithm to
obtain an updated path. When the vehicle reaches a point
in the path where it needs to make a turn, the angle at
which to turn the vehicle specified by the path is passed to
the control node, which will pass this angle to the Arduino
to drive the motors.

Initially we planned on having path planning and object
detection handled in the same node, however, we decided
to separate the two after migrating from a simple angle
heuristic path planning algorithm to A*.

3.4 Localization

For our localization system we used odometry per-
formed by optical encoders on each of the four wheels. The
IR octocoupler signal for any given wheel is first digested
by the Arduino Pro Micro board which sits on the bottom
compartment of the vehicle. This Arduino device interprets
the signals and sends wheel RPM packets over UART to
the Jetson Nano. This result is then then processed by
the Jetson Nano and fused with IMU data to produce the
localization results.

3.5 Vehicle-to-Vehicle Communication

Since the ‘trail’ vehicle does not have any sensory in-
put of its surroundings, it relies on the ‘lead’ vehicle to
propagate information of any structural obstacle it detects.
Once the object detection node (running on the lead vehi-
cle) detects an obstacle from the Intel RealSense camera,
it produces an object message containing the absolute x, y
coordinates (in respect to the vehicle’s internal map) of the
obstacle. It then publishes these coordinates to the server
communication node, which are then sent to the trailing
vehicle over Bluetooth connection.

Originally, we had designed the communication between
vehicles to follow a piconet structure where the lead vehicle
would act as the master node which would relay any ob-
ject information to the trailing vehicles. After realizing we
had limited resources for this project, we decided to tran-
sition from a 3 car convoy to a 2 car convoy in order to
safely budget our remaining resources. This change in our
project made it impractical to create a piconet communi-
cation protocol across our vehicles (seeing as there are only
2 vehicles). Instead, we maintain a server-client model be-
tween the ’lead’ vehicle and the ‘trail’ vehicle (where the
lead vehicle acts as the server and the ‘trail’ vehicle acts as
the client).

4 DESIGN TRADE STUDIES

4.1 Vehicle Mechanics

4.1.1 RC Vehicle

One of the most critical components of this development
is the vehicle platform on which to build on. Perhaps the
more obvious solution would have been retrofitting an exist-
ing RC car to fit the requirements of this project; However,
as we found out this would prove to be a more challeng-
ing solution. An off the shelf RC vehicle would provide us
with a reliable platform but we must also acknowledge the
setbacks of this option. Namely, it would be difficult to
integrate such a system easily with the rest of our compo-
nents and this would have also eaten up the lion’s share of
the budget. Traditional RC car systems rely on radio tech-
nologies (typically on a 2.4 GHz band). This means that we
would have needed to reconfigure the radio system to talk
to the compute systems in order to allow for navigation

18-500 Final Report - May 14, 2021 Page 5 of 15

of the vehicle. Furthermore, it would have been difficult
to mount various components such as sensors and cameras
on a traditional RC vehicle system. For this reason we
opted for an in house solution to provide this requirement.
Developing our system from the ground up meant we had
control of various parameters such as vehicle speed, size,
power draw, weight and interoperability. Indeed, the abil-
ity to directly define how the vehicle would communicate
with the rest of the vehicle systems was the most convincing
advantage that a custom solution provided. Nevertheless,
we cannot ignore some of the disadvantages to a custom
solution. Most notably the custom solution lead to a loss
of development time due to design and fabrication of the
vehicles. Above all we recognized the need for flexibility
in such a project and this was a solution that provided us
with that.

4.1.2 Power Delivery

The initial solution for our power delivery involved the
use of 2 separate power supplies for the vehicle system.
One 5V supply to power the compute nodes (Nvidia Jet-
son Nano, Arduino UNO) and one 9V battery supply to
power the motors. This solution; however, did not hold
up as we expected. The 5V battery supply could not pro-
vide a high enough current to run the Jetson Nano cam-
era when we tested it. Furthermore, the 9V battery was
had much too low a capacity to drive the 4 motors for
a prolonged time period. This lead us to opt for a 7.4V
2S LiPo battery for our power delivery. This battery had
a much high charge capacity and also higher current dis-
charge rate. This meant it would be able to provide power
to all the systems on the vehicle. This solution did need an
additional Universal Battery Eliminator Circuit (UBEC)
to work. The UBEC steps down the raw voltage to 5V to
power the Jetson Nano. While this solution was more ex-
pensive to implement, it was much more reliable and saved
some space on the vehicle.

4.1.3 Motor Controls

Initial testing of the vehicle with the L298N Motor
drives showed relatively low efficiency performance for con-
trolling all 4 motors. The output voltage that the motors
received was much lower than our requirements. Further-
more, this solution was also much more I/O intensive, re-
quiring 12 GPIO pins total for all 4 wheel. The efficiency
was especially a concern due to the need to also power
the Jetson Nano which draws many amps while performing
the object detection. For this reason we switched to the
Adafruit Motor Shield V2 for our motor control system.
We saw much better power efficiency with this shield and
also saved a great deal of wire clutter since the unit mounts
on the Arduino. One downside to using this solution was
that it was limited to 12V output for the motors. We did
not encounter any issues with this as our motors operated
on range of 4V to 6V.

4.1.4 Steering System

The first iteration of our vehicle system utilized differ-
ential steering with standard wheels for vehicle mobility.
When testing this approach, we found difficulty in produc-
ing clean turns with the differential steering model. No-
tably, we saw a lot of drift in the vehicles and also stalling in
the wheels. This made it difficult to get reliable data from
the odometry sensors as often times the wheels would spin
but the vehicle would not actually progress. This model
also had a complicated vehicle kinematics which was based
around the instantaneous center of rotation [8]. In order
to get a much more accurate kinematics model, we would
need to either simulate the vehicle physics and run some
dynamics testing or run many physical tests. This would
give us better parameters for more accurate localization.
For these reasons we opted to switch to mecanum omni-
directional wheels to provide mobility. These wheels came
with a much more simplified kinematic model [6] and also
the more vehicle agility. This model can be seen in Figure
5 below. The wheel diameter did decrease from 65mm to
60mm when we switched to mecanum wheels which meant
it was a little less stable on rougher terrains. We also saw
that the mecanum wheels did not perform as well as the
standard wheels on the track. These issues ended up not
giving us too many problems as we opted to switch to an
indoor track.

Figure 5: Diagram of Mecanum Wheels Configuration and
Posture definition

4.1.5 Vehicle Track

The ultimate goal for this project is to develop a vehicle
convoy system that is capable of completing a set course
without any collisions. It is therefore crucial for the vehi-
cle track to best reflect the core of this project. Clearly
road structures can be much more complex than straight
lines and clean angles; However, the focus of the project
was less about vehicle mobility and more about commu-
nication. In general, a course with curvature would have

18-500 Final Report - May 14, 2021 Page 6 of 15

required a more robust localization and navigation system.
We acknowledge that a global positioning system (GPS)
would be useful for such a case; However, at the scale that
the project operated such technologies would be too inaccu-
rate (3m tolerance) to pose as a viable solution. Conversely,
sticking with straight tracks relaxed these requirements, al-
lowing the group to focus on the communication portion of
the project. A straight course is much more predictable and
lends to a more simple implementation overall. It is also
worth mentioning that a straight course also required much
less effort for us to develop as we were able to make use of
long hallways for our runs. A more complex solution with
turns and other complex road structures would certainly
require only more time to develop and test. Above all, the
decision was made with the idea of best accommodating the
core motivation of the project. While we initially planned
to use the university track for our test runs, we saw that
the vehicle was much to jittery due to the rough terrain
of the track. This lead us to trade off more ideal outdoor
lighting conditions for smoother vehicle motion.

4.2 Localization

Our initial design opted for the use of an IMU with open
loop odometry to provide localization of the vehicle. With
the first few tests of this method, we quickly realized that
this would be much to inaccurate for the scale at which
we were operating under. The IMU would experience drift
even when the unit was entirely still and this would add
up over time to produce unusable results. We even found
that after 1 minute of sitting still, the IMU would report a
displacement of +20cm in the x direction. Even with the
use of open loop odometry to estimate locale from expected
vehicle behaviors we could not get reliable data. For this
reason, we switched to using wheel encoders for our local-
ization solution. We found that these units provided better
accuracy and experienced much less drift when reporting
location.

4.3 Imaging

For imaging, we considered the following approaches.
One approach we considered was using LiDAR for ob-

ject detection. This has the advantage of producing point
cloud data for the surrounding environment, which can
then be passed through an object detection algorithm to
exactly outline the shape of the obstacles. LiDAR also has
the added advantage of producing information that can eas-
ily be converted to 3D maps of the environment and could
potentially make object detection and planning easier than
with traditional RGB cameras. However, after further con-
sideration, we found that most high quality LiDAR sensors
are expensive and beyond the realm of possibility given our
current budget. There are small LiDAR sensors within our
budget, however, the point cloud information that these
sensors provide are not rich enough for object detection
algorithms such as VoxelNet to run successfully. There-
fore, for these reasons, we decided against using LiDAR for

sensing and opted to use a more traditional RGB camera.

We also considered using a regular RGB camera, such
as the Logitech HD Pro Webcam. These cameras pro-
duce high quality RGB images that are suitable for a wide
variety of object detection algorithms such as YOLO V3,
VGG16, etc. These cameras are also traditionally cheaper
than depth cameras and easier to replace should something
go wrong. However, standard RGB cameras don’t provide
depth information, and it is difficult to infer depth from
these images. This would make planning difficult, as there
would be no way to infer how far the obstacles are from
the car, and hence, how extreme of a turn to make to avoid
the detected obstacle. This would complicate the planning
process, and make it hard to achieve our requirement of 0
collisions. For this reason, we decided to pursue a stereo
camera approach, which not only produces RGB images,
but can also use the stereo nature of the camera to deter-
mine depth of objects in an image.

4.4 Object Detection

4.4.1 MobileNet v1 and MobileNet v2

We initially planned on using MobileNet v2 instead of
MobileNet v1, due to the higher reported accuracy numbers
on the COCO dataset. MobileNet v2 also has less parame-
ters making it more ideal for embedded applications. Mo-
bileNet v1 has slightly more parameters [1], but is outdated
compared to MobileNet v2 [4]. As a result, we planned to
use MobileNet v2, as the lower latency makes it more ideal
for our application.

4.4.2 April Tagging

We initially considered using April Tagging for object
detection. This would involve placing April Tags on the ob-
jects, and using the camera and OpenCV to automatically
detect the tags. These April Tags are similar in nature to
QR codes, however, they encode less information for faster
processing [7]. This approach would simplify object detec-
tion, since OpenCV would make it easy to create a bound-
ing box around the detected tag. Furthermore, these tags
also have the advantage of being unique, and can help with
localization, assuming the order of which the tags should
appear in the course is known. However, this approach is
less realistic and versatile. Since our goal was to simulate
true autonomous behaviour as best as possible, we opted to
use a more general approach that relies on neural networks.

4.4.3 VGG16 / YOLO v3

In order to achieve the best possible object detection re-
sults, we considered using a variety of algorithms. The first
class of algorithms we considered were traditional object
classification algorithms such as VGG16 [5], and YOLO v3.
While these algorithms are very robust and perform well
on relevant datasets such as COCO, we were afraid the on-
board Jetson Nano would not have the computation power

18-500 Final Report - May 14, 2021 Page 7 of 15

to process images at a fast enough rate. At the current la-
tency outlined above, an object would have 2 opportunities
to be detected otherwise the RC vehicle would likely collide
with it. If these algorithms were used, this window would
likely reduce to 1 opportunity at best for each obstacle to
be detected. Assuming an accuracy of 95%, the probabil-
ity of collision would be around 5%, compared to 0.25% if
a similarly accurate algorithm, but faster algorithm were
used. For these reasons, we decided to move to MobileNet
v2, a more lightweight algorithm that still provides similar
object detection accuracy at a much lower latency.

4.4.4 Faster R-CNN

We also considered using object detection algorithms
that are able to factor in depth information. One such algo-
rithm that we initially considered was Faster R-CNN. This
algorithm relies on using a region proposal network (RPN),
in order to develop candidate regions of which objects can
be located [3]. This allows Faster R-CNN to generate accu-
rate 3D bounding boxes around objects. However, Faster
R-CNN and other algorithms that rely on RPNs are slower
than algorithms based on Single Shot Detectors (SSD) such
as MobileNet. Furthermore, the main advantage of Faster
R-CNN was that it was able to output 3D bounding boxes
around any detected objects. However, for our project, we
realized that the depth parameter of the bounding box is
not critical to our planning algorithm, and hence, tradi-
tional 2D bounding boxes would suffice.

4.5 Communication

4.5.1 Communication Technologies

We utilize Bluetooth as our mode of communication,
but another potential option to communicate between ve-
hicles is WiFi Direct. One clear advantage of WiFi is that
it has a long range. In a real world scenario with real cars,
WiFi’s long range makes it realistic for vehicles to com-
municate with each other.. WiFi also has desired ad hoc
behaviour by seamlessly allowing new nodes to send mes-
sages in a network (without having to explicitly pair). The
main tradeoffs between the two forms of communication
were ease of programmability and practicality. Compared
to WiFi direct, Bluetooth is more simple to program and
setup (especially since WiFi direct is a more proprietary
technology). We implemented the communication between
our two vehicles using the pybluez library [2] on both ve-
hicle Nvidia Jetsons. Although Bluetooth has less range
and lower speeds, it is a reliable form of communication
and for the vehicle track, the range of Bluetooth will be
more than enough (our vehicles will be less than 5m away
at any given time and current Bluetooth technology can
easily range up to 50m). Since range is not an issue and
our course will be free from large structural obstacles (such
as walls or metal objects), we found that Bluetooth was
the practical solution for our form of communication.

4.5.2 Communication Protocols

With a Bluetooth communication network of 2 vehi-
cles, a piconet network became a vestigial component of
our overall project design. A piconet consists of one mas-
ter node and up to seven active slave nodes (all in the radio
range of the master). All communication occurs between
the master node and one slave node, and time division mul-
tiplexing is used as the master switches rapidly between
slaves. Since we switched from using 2 trailing vehicles in
our convoy to using 1 trailing vehicle, there was no longer
a necessity to multiplex between different vehicles when
sending messages.

Seeing as we now only have communication between
2 vehicles, we updated our communication format to
a Server-Client communication model. In our project,
the lead vehicle acts as the server; when the lead vehi-
cle launches its server communication node, it traverses
through a list of all nearby vehicles until it comes across
the target vehicle (the trail vehicle). Afterwards, a con-
nection with the trail vehicle is maintained until the lead
vehicle sends a termination message to the trail vehicle.
As for the trail vehicle, it listens for a connection on the
same port the lead vehicle uses and accepts a connection
once the lead vehicle detects the trail vehicle and connects
to the trail vehicle. Once the initial connection between
vehicles is made, the trail vehicle will constantly listen for
any messages from the lead vehicle. The lead vehicle sends
map update messages (detailing the x,y coordinates of ob-
stacles) whenever they are detected, thus allowing the trail
vehicle to update its internal map and avoid obstacles using
its own A* path planning algorithm.

5 SYSTEM DESCRIPTION

5.1 Vehicle Mechanics

To develop our vehicles we opted for a custom designed
chassis over the likes of those offered by some third party
vendors. This was motivated by the desire for flexibility
and exactness to better fit our overall requirements. We
needed the vehicle to be able to hold all of our required com-
ponents, most notably, the Nvidia Jetson and the Stereo
camera. This space requirement ultimately drew us away
from pre-existing solutions as space would be a premium
with such options. In order to accommodate the required
components for our vehicle, we designed a full CAD model
of the design for the cars. The vehicle chassis was an 11 x
7in design with customized screw holes for each of the re-
quired components. This is done to ensure that there are no
issues with components falling off the vehicle in the event
of collisions. This design was also updated to included bat-
tery holders for the LiPo batteries for added safety and
convenience. This CAD model is clearly depicted below as
Figure 6:

18-500 Final Report - May 14, 2021 Page 8 of 15

Figure 6: CAD design model for the base vehicle system

As is visible from the CAD model, the vehicle is driven
by 4 DC motors. These motors are controlled using the
Adafruit Motor Shield and powered by a the 7.4V LiPo
battery. The Arduino UNO unit served as the controller
for the vehicle steering system. For our implementation
the Arduino received commands serially from the Jetson
Nano via the shared USB connection. The Jetson was re-
sponsible for providing a desired angular velocity for each
wheel separately. Since we did not use Electronic Speed
Control Circuits (ESCs) for the motors, we used empiri-
cal results to attempt to map the command velocity to the
actual velocity the wheels achieved. We found that these
parameters were most accurate around an 8V charge on the
LiPo batteries.

5.2 Camera

After researching potential stereo cameras that would
suit our requirements, we decided to use an Intel RealSense
Camera that we already owned. Not only would this relieve
pressure on our budget, but it is also easily integrated with
ROS, Python, and OpenCV. The camera also has a hor-
izontal field of view of 86 degrees and a frame rate of up
to 90fps, both of which exceed the necessary capabilities
for this project. This camera also has the added advantage
of being familiar to us, as most of us have a bit of experi-
ence integrating the camera with Python in the past. We
also engineered the body of our RC vehicles to ensure the
camera would fit on the car. Interfacing between the In-
tel RealSense and the Jetson is well documented and fairly
straightforward to implement.

5.3 Localization

Our localization system consisted of a combination of
wheel odometry and IMU data. For the wheel odometry
we used IR Optical Octocouplers to obtain RPM for each
wheel. This was done by using Interrupt Service Routines

(ISRs) on the Arduino Pro Micro. In particular, the in-
terrupts for each wheel are triggered by the falling edge
of the optical encoder signal. The RPMs for each wheel
are continuously updated by measuring the time between
interruptions while factoring how many slots made up the
entire wheel encoder. At a fixed rate the Pro Micro de-
vice will report the RPM data as a structured packet over
UART to the Jetson Nano. This packet reports only the
vehicle RPM and not the direction of the wheels since the
encoders are one-way. Therefore we added the expected
direction of the wheels by assuming that the control sig-
nal and physical system were in alignment. We found that
this technique worked well despite possible errors due to
switching delay in control versus physical. The RPM data
is then fed into the kinematic model of the vehicle to de-
rive longitudinal and lateral velocity. These velocities are
then used to provide x and y displacements by perform-
ing discrete integration. Notably, we consider velocity to
be constant at zero for this calculation. It is worth not-
ing that the previous method for localization included the
use of an IMU to calculate the vehicle displacements. The
IMU we used for this task was a BNO055 Adafruit 9DoF
board. With some testing we soon realized that the IMUs
were too inaccurate for our use case. This is mostly due
to the scale of the vehicle as relates to the amount of drift
in the sensor. For this reason, we opted to only use the
IMU for providing feedback to the control system. The re-
ported yaw of the vehicle from the IMU was used to check
whether the vehicle was moving the in desired direction to
some tolerance.

5.4 Object Detection

Object detection in the lead vehicle relied on an Intel
RealSense Depth Camera. This camera provides RGB-D
information to the object detection node. The RGB im-
age is passed unfiltered through MobileNet v1 SSD to ex-
tract bounding boxes around any obstacles detected. In
order to achieve optimal performance, MobileNet v1 was
first converted to a TensorRT format that is more perfor-
mant on embedded computing devices such as the Jetson
Nano. Initially we intended to use MobileNet v2, however,
after initial testing, we found that the smaller MobileNet v2
network had greater difficulty identifying small objects con-
sistently compared with MobileNet v1. Once the bounding
boxes are extracted, the RGB image and the depth image
are pixel-aligned in order to accurately extract the depth
at the center of the detected obstacle, and extrapolate the
obstacle’s location in the vehicle’s reference frame. This lo-
cation is then passed to the path planning node to update
the vehicle’s path.

In the event that the depth image outputs an unknown
depth (value of 0), the last seen valid depth value is used
in its place in order to calculate an approximate for the
detected object’s location. We found that in less than op-
timal lighting conditions the unknown depth issue was more
common.

18-500 Final Report - May 14, 2021 Page 9 of 15

5.5 Path Planning

Once an obstacle is detected, a new path must be com-
puted in case the vehicle’s current path collides with the
obstacle. Localization data is used to convert the detected
obstacle’s location in the vehicle’s reference frame to the
global reference frame. Once the global location of the ob-
stacle is known, it’s corresponding location in the vehicle’s
internal map is marked, along grid all grid locations within
a 5 × 5 square centered around the obstacle’s location is
marked as well. Once the internal map is updated, it is
then passed through A* planning algorithm to obtain the
updated path. An example of this path can be seen in Fig-
ure 7 below, where the obstacles are marked in red, and
the new computed path is marked in green. As the vehicle
approaches the detected obstacle, the weights for the cor-
responding obstacle locations increase, forcing A* to find a
path that avoids any grid location close to the obstacle.

Figure 7: Example Path Planning Map results

In order to keep our planning algorithm more flexible,
control signals are sent to the control node only when the
vehicle must make a turn. When this occurs, the angle at
which to turn the vehicle specified by the current path is
passed to the control node, which will communicate with
the Arduino and Adafruit motor shield to drive the vehicle.

Path planning for the following vehicle works in a sim-
ilar way. However, instead of having the object detection
node pass local locations of obstacle coordinates, the fol-
lowing vehicle receives obstacle coordinates in the global
reference frame over Bluetooth. The following vehicle is
then able to mark the same 5 × 5 grid in its internal map
as the lead vehicle, and run A* to update its path in the
same way as the lead vehicle.

Initially, we wanted to pursue a more simple path plan-
ning algorithm to offset the anticipated object detection
latency. Our original algorithm simply calculated an angle
at which to move the vehicle in order to avoid the closest
obstacle, but did not maintain an internal map or goal. We
felt that this approach was unrealistic and could potentially
have a lot of variance depending on the placement of the
obstacles, and would also make it difficult for the following
vehicle to replicate the path. For these reasons, we decided

to use a more robust solution, which was made possible by
the low latency of our object detection stack.

6 TEST & VALIDATION

In this section, include tests that you used to evaluate
your design implementation and compare to the theoret-
ical design trade-offs. Do your measurements match the
theoretical predictions?

You should partition with the subsection format to
group your discussion in terms of results to validate qualita-
tive and quantitative product requirements and/or design
specifications. Include test results for design specifications
that help further validate the design performance.

6.1 Results for Object Detection

To test the object detection capabilities of the system,
we first compared both MobileNet v1 and MobileNet v2
and their respective performance on a small dataset of 20
images of bottles at a range of 0.2m to 1.2m away from the
camera. The results can be summarized below. Note that
we only count an object as detected if the object was able
to maintain being detected for at least 2 seconds.

MobileNet v1 MobileNet v2

95% 75%

As a result, of we decided to implement Mobilenet v1 in-
stead of MobileNet v2.

When testing object detection capabilities of the vehi-
cle, we collected a dataset of 50 images by placing bottles at
various orientations around a static vehicle, with the cam-
era mounted, at a distance of 0.4m. We used 0.4m as the
baseline distance, since it is the minimum distance at which
an obstacle must be detected in order to successfully avoid
it when the obstacle is moving. We recorded precision and
recall on this data set. The results are summarized below.
We also experimented with using wooden blocks as another
class of obstacles. The results can also be seen in the table
below.

Object Type Precision Recall

Bottles 92% 98%

Wooden Blocks 92% 60%

The performance with wooden blocks had similar accuracy,
however, there were significant false negatives, leading to
a lower recall score. For this reason we decided to only
use bottles as the obstacles in our course to mitigate the
chances of obstacles on the course not being detected.

6.2 Path Planning

As a result of transitioning from the angle heuristic al-
gorithm, we didn’t develop any tests for simulation, since
A* is a provable algorithm that finds a path from a start
state to a goal state while actively avoiding marked loca-
tions. We simply tested the robustness of the algorithm on

18-500 Final Report - May 14, 2021 Page 10 of 15

our map by generating a path for a random sequence of ob-
stacles and visually seeing if the path ever intersected with
marked obstacles. An example of this is seen in section 5.4.
With 10 random locations of 20 obstacles , A* was indeed
able to determine a path that avoided the obstacles and
reached the goal position.

Obstacle Number Success Rate

1 5/5

2 4/5

3 4/5

4 3/5

5 3/5

As the number of obstacles increased, the vehicle had more
collisions with obstacles. We reasoned that this was not a
fault with the path planning, but rather an issue with the
drift of the vehicles. Every turn that the vehicle made to
avoid an obstacle, would cause the orientation to change
a little bit leading to non-negligible drift in the vehicle’s
movement, meaning it failed to follow the path specified by
A*.

6.3 Bluetooth Communication

The trail vehicle dependents greatly on the Bluetooth
connection which is formed with the lead vehicle. There-
fore, we had to ensure that the connection between the
two vehicles was reliable and fast in order for the trail
vehicle to receive accurate information about the detected
obstacles the lead vehicle encounters.

In the spectrum of reliability, we found our early tests
of the Bluetooth connection showed that for our purposes,
the connection will always be reliable. The first prelimi-
nary test we performed was on the integrity of an formed
connection between the two vehicles (with the goal of dis-
covering how likely the connection was to break once al-
ready formed); we connected both vehicles at a close range
of 0.5m and separated both vehicles and found that the
connection was broken only after a distance greater than
20m. This made us feel safe about the connection integrity
since our course is 5m long and both vehicles will always
be within 0.5m of each other.

Next, we wanted to test how easily the vehicles could
connect to each other. Since both of our vehicles start off
statically at the beginning of the course, we just needed to
ensure that after a certain time, they would connect to each
other. We tested the starting points at different distances
and found that the vehicles always connected to each other
after about 12 -16 seconds, and the distance did not af-
fect the connection time. Although an interesting finding
we came across was that the connection was not formed at
a distance of 5m if there was a large structure (such as a
wall) in between the two vehicles. Thus, we were confident
that a connection in an open course will always be formed
within a range of 1m between both vehicles.

Finally, we wanted to ensure that the delivery of mes-
sages between the vehicles was fast. In our original design

report we were anticipating a latency of about 140ms but
after performing timing tests of delivering messages, we
found that the rate of sending messages was about 12.5
messages per second or a communication latency of 80ms
as we see in Figure 8. We recorded the time it took 100 mes-
sages to reach the trail vehicle (client) at different lengths
ranging from [0.5m, 6.5m] and found a negligible drop in
message rate when increasing the distance. We hypothesize
that the message rate would drop more drastically given
distances larger than 10m and objects obstructing the ve-
hicles, but such scenarios are out of scope for our project.
Our track only covers 5m, so the rate of message delivery
will reliably be around 12.5 messages/s.

Figure 8: Effect of Distance on Message Sending Rate

7 PROJECT MANAGEMENT

7.1 Schedule

Our full schedule can be seen in the Appendix in Fig-
ures 10 and 11 in Appendix B. We decided to work on the
separate subsystems in parallel, and integrate the entire
systme during the last two weeks. We were on schedule for
majority of the project, but ran into some issues during the
integration phase, where integration took longer than ex-
pected. Part of the reason was porting some code written
locally onto the Jetson Nano was an adjustment, and also
converting all the systems to ROS in order to communicate
with one another also took some tinkering to get working.
In the end, integration took about 2-3 weeks in total, and
we had to work longer to get it to work properly.

7.2 Team Member Responsibilities

Joel was in charge of vehicle mechanics, including the
assembly, and design of both vehicles. He also developed
the systems for localization and odometry that were inte-
gral to the project. Joel also worked with Jeffrey on devel-
oping the path planning algorithm, and Fausto on develop-
ing the communication framework.

Jeffrey was in charge of object detection and path plan-
ning. He tested and developed the system that determined

18-500 Final Report - May 14, 2021 Page 11 of 15

local locations of detected objects. He also worked closely
with Joel to tune and create the path planning algorithm.

Fausto developed and tested the communication frame-
work and integrated Bluetooth with the system. He also
worked with Joel and Jeffrey to determine what should be
sent to make planning for the following vehicle the easiest.

The whole team worked together in lab and integrated
the subsystems together. We also all worked together to
debug any integration bugs and test the system as a whole.

7.3 Budget

The overall budget for the project is broken down in Ta-
ble 2 in Appendix C. Here we have categorized the parts as
follows. Parts that were purchased and unused in the final
solution are in yellow, parts that were purchased and used
in the final solution are in green while the parts already
owned or borrowed are in blue. For each category we also
provide the total cost for each. This cost is broken down
similarly as seen in Table 3 in Appendix C. Note that the
overall cost for the entire project came to $960.60 total.

7.4 Risk Management

The primary risk came from the design. Our original de-
sign didn’t account for the possibility that the vehicle would
drift significantly. As a result, our initial solution to local-
ization involving IMU data and open-loop feedback proved
insufficient. As a result, we transitioned to using Opti-
cal optocouplers as wheel encoders to estimate the wheel
RPM and extract more accurate localization data with an
updated vehicle model. After making this change, and im-
plementing a simple PID controller for the wheel velocities,
we were able to create somewhat accurate localization data
for the vehicle. We also integrated other solutions to miti-
gate drift in localization data, including a ramp up period
that ramps the wheel RPMs to the desired results to avoid
spinouts and slippage in the wheels. However, persistent
mechanical issues and an inaccurate vehicle model limited
our capabilities to mitigate vehicle drift. This problem af-
fected our scheduling as well, as we did not expect the
vehicle mechanics to account for a majority of the work in
the project.

In our initial review of our design, we feared that the an-
gle heuristic algorithm would be difficult to implement, as
the object detection could not update the plan fast enough
to comfortably allow the vehicle to avoid the detected ob-
stacle. As a result, we opted to transition to Mecanum
wheels for increased agility, as well as better grip on the
track when compared with standard wheels.

Another risk was moving from MobileNet v2 to Mo-
bileNet v1, as a result of the former’s inability to consis-
tently detect smaller objects. This wasn’t a huge change,
although it did mean we needed to research into how to port
larger networks on to the Jetson Nano, since MobileNet v1
is larger than MobileNet v2. We opted not to move to
our fallback solution of using April Tags, as we felt like
the object detection using MobileNet v1 in TensorRT form

provided along with the depth image from the Intel Re-
alSense camera supplied accurate enough results that we
didn’t need to move to an alternative solution.

Finally, the main challenge in our project was not the in-
dividual subsystems, but integration. We initially thought
that the integration of the subsystems would be relatively
quick, however, majority of the time was spent bug fixing
how the ROS nodes were interacting with each other. Over-
all, we needed to allot more time to vehicle drift in order
to achieve better results.

7.

8 ETHICAL ISSUES

The goal of this project was to demonstrate the ef-
fectiveness of vehicle to vehicle communication for au-
tonomous navigation purposes. Although this technology
could potentially change the landscape of transportation,
there are possible ethical issues that may arise.

First and foremost, one of the most significant chal-
lenges with this product is security of the network. Any
network that the vehicles must communicate to-and-from
must be secure, otherwise malicious users will be able to
send hostile messages to control and manipulate the vehi-
cles. Approaches to mitigate this would be to develop a
custom communication protocol to make the network more
secure, however, this introduces overheads into the commu-
nication which may delay time sensitive decisions that the
cars will make.

Furthermore, autonomous navigation also has the pos-
sibility of introducing bias into object detection. The data
sets that MobileNet v1 and other object detection algo-
rithms might be inherently biased to certain objects that
are common in some areas and not in others. This would
make object detection biased to some neighborhoods and
not others which will impact performance and accessibil-
ity. There are well documented cases in literature where
facial recognition algorithms are biased to lighter skin in-
dividuals resulting from an under-representation of darker
skinned individuals. In order to correct for this possibility,
the data sets that the object detection algorithm is trained
on should be carefully scrutinized for potential sources of
bias.

We also would like to note that V2V and autonomous
navigation in general is still in its infant stages in develop-
ment. There are many barriers to making it widespread,
and thus, potential for other ethical issues to arise. How-
ever, as this technology continues to develop, engineers
must pay attention to the accessibility of this technology to
different demographics, and ensure it doesn’t discriminate
others.

9 RELATED WORK

There are a lot of projects online that deal with au-
tonomous navigation of RC vehicles. However, most of

18-500 Final Report - May 14, 2021 Page 12 of 15

these projects involve a single car navigating through a
course, rather than a convoy. One notable project was
one produced by students at WPI also created a similar
project that involved autonomous navigation of RC vehi-
cles. However, unlike our project they relied on LiDAR and
other forms of odometry using EKF to perfect localization.
Our project not only performs object detection differently,
but also attempts to navigate a convoy of vehicle, rather
than an isolated RC vehicle. Other projects have also used
similar object detection approaches, but all rely on more
complex path planning approaches, rather than a simple
bounding box approach we decided to employ.

10 SUMMARY

Our project sought to demonstrate the effectiveness of
V2V by implementing an autonomous vehicle convoy. We
were able to develop a two car system to navigate a short
track with obstacles, where only the lead vehicle has per-
ception capabilities. Due to limitations with vehicle drift,
we had to loosen our requirements and reduce both the
track distance and the number of obstacles. Given more
time, we would have liked to introduce a third car to the
convoy that the lead car would communicate with, as well
as implement better control algorithms to help mitigate
vehicle drift.

10.1 Lessons Learned

There were many challenges that we faced in the de-
velopment of this project. The first was expecting our ve-
hicle to behave as we expected it on paper. We expected
by driving the motors with the same voltage, the vehicle
motors should move in the same way making the vehicle
go straight. However, we found out this is an unrealis-
tic model to have, as every wire and motor has slightly
different electrical characteristics making all of the hard-
ware components behave slightly differently, making it ex-
tremely hard for the vehicle to go straight. When dealing
with hardware, we learned that we needed to spend more
time developing control algorithms to help mitigate these
manufacturing differences.

We also learned a lot about integrating code with the
Jetson Nano. Neural networks off the shelf can’t directly
and efficiently integrate with the Jetson Nano due to the
large graph size. In order to make networks more perfor-
mant, we had to convert our neural network to TensorRT
format.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• IMU - Inertial Measurement Unit

• SSD - Single Shot Detection

• UBEC – Universal Battery Eliminator Circuit

• V2V - Vehicle to Vehicle

• YOLO - You Only Look Once

References

[1] Andrew G. Howard et al. “MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Appli-
cations”. In: (2017). arXiv: 1704.04861 [cs.CV].

[2] Albert Huang and Larry Rudolph. “Bluetooth for Pro-
grammers”. In: (), p. 77.

[3] Shaoqing Ren et al. Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks.
2016. arXiv: 1506.01497 [cs.CV].

[4] Mark Sandler et al. “MobileNetV2: Inverted Residu-
als and Linear Bottlenecks”. In: (2019). arXiv: 1801.
04381 [cs.CV].

[5] Karen Simonyan and Andrew Zisserman. “Very Deep
Convolutional Networks for Large-Scale Image Recog-
nition”. In: (2015). arXiv: 1409.1556 [cs.CV].

[6] Hamid Taheri, Bing Qiao, and Nurallah Ghaem-
inezhad. “Kinematic Model of a Four Mecanum
Wheeled Mobile Robot”. In: International Journal of
Computer Applications 113.3 (Mar. 18, 2015), pp. 6–
9. issn: 09758887. doi: 10.5120/19804-1586. url:
http : / / research . ijcaonline . org / volume113 /

number3/pxc3901586.pdf (visited on 05/14/2021).

[7] John Wang and Edwin Olson. “AprilTag 2: Effi-
cient and robust fiducial detection”. In: Proceedings
of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). 2016.

[8] X. Wu, M. Xu, and L. Wang. “Differential speed steer-
ing control for four-wheel independent driving electric
vehicle”. In: (2013), pp. 1–6. doi: 10.1109/ISIE.

2013.6563667.

18-500 Final Report - May 14, 2021 Page 13 of 15

11 Appendix

11.1 Appendix A

Figure 9: Architecture Diagram for the lead vehicles

Appendix B

18-500 Final Report - May 14, 2021 Page 14 of 15

Figure 10: Gantt Chart Part 1

Figure 11: Gantt Chart Part 2

18-500 Final Report - May 14, 2021 Page 15 of 15

Appendix C

Part Price Qty Subtotal

Wheel + DC Motor Kit (x4) 16.99 3 50.97
9v Power Supply Holder 8.98 1 8.98
5v Power Supply 15.95 3 47.85
Jeston Nano (2GB) 59.00 2 118.00
Micro SD Card 32 GB (x3) 15.99 1 15.99
USB to Arduino Cable (x5) 13.27 1 13.27
9-DOF Absolute Orientation IMU Fusion Breakout 38.95 3 116.85
Metric Steel Pan Head Screws M3 (x100) 2.96 1 2.96
Steel Hex Nut M3 (x100) 0.88 1 0.88
Female Hex Standoff M3 1.17 20 23.40
Steel Pan Head Phillips Screw, M3 x 0.5 mm Thread, 30 mm Long 4.66 1 4.66
Adafruit Motor Shield V2 24.14 2 48.28
2S 7.4v LiPo Batteries (x2) 29.99 2 59.98
5v/6v UBEC 3A/5A Max 9.90 2 19.80
Mecanum Omni Directional Wheels 21.99 2 43.98
Wheel Encoders + IR Optocouplers 6.79 2 13.58
12 x 24 Acryllic Sheet 7.50 1 7.50
12 x 24 Wooden Sheet 3 4 12
Nvidia Jetson Nano (4GB) 99.00 1 99.00
Arduino Pro Mirco 10.00 2 20.00
Arduino Uno R3 21.49 2 42.98
Wireless NIC Module for Jetson Nano 26.99 1 26.99
Intel RealSense D415 160 1.00 160
Mini Breadboard 1.50 2 3.00
Miscellaneous wires, screws etc. 10 1 10

Table 2: Table with full budget for project

Categories Total
Purchased (Unused) 107.80
Purchesed (Final Design) 501.13
Owned/Borrowed/Scrounged 351.97
Overall Cost 960.90

Table 3: Table summarizing budget by category of item

