
18-500 Design Report - March 17, 2021 Page 1 of 16

AutoVot: A Vehicle to Vehicle
Communication System for Autonomous

Driving
Authors: Joel Anyanti, Fausto Leyva, Jeffrey Tsaw

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—We cannot deny that the future of trans-
portation looks to be dominated by autonomous ve-
hicles. Given this trend we look to solutions in this
area that may enhance such technologies. Vehicle to
Vehicle communication (v2v) may provide additional
safety and increased network efficiency in autonomous
vehicles systems. In this project we intend to demon-
strate value behind v2v by delivering a convoy system
cable of navigating a course while avoiding all obstacles.

Index Terms—Autonomous Driving, Object Detec-
tion, Vehicle to Vehicle Communication, Jetson Nano,
Convoy, AprilTags.

1 INTRODUCTION

The transportation industry has recently turned to au-
tonomous driving solutions to perform transportation tasks
previously exclusive to human drivers. Indeed as the tech-
nology that enables self-driving becomes more reliable and
commercially available, an autonomous future looks to be
inevitable. Autonomous driving technology in its current
state relies on individual vehicles to make decisions based
on self provided sensory input and perception. As impres-
sive as the technology may become, we recognize that coor-
dination between vehicles would provide additional safety
benefits and increase the overall efficiency of transportation
networks. To demonstrate this claim, we aim to develop an
autonomous driving system which leverages vehicle to ve-
hicle communication to perform a coordinated task.

For our development we have chosen to focus on imple-
menting a convoy system between a lead and follow vehicle.
The ‘lead’ vehicle will be fully equipped with image sens-
ing to allow for object detection and path planning. By
contrast, the ‘trail’ vehicle will be blind and rely solely on
information from the ‘lead’ to navigate the course. The two
vehicles will be tasked with driving from one end of a track
to another while avoiding any obstacles in their path. With
this task we intend to highlight the benefits of communica-
tion between vehicles and ultimately hope to achieve zero
collisions in our verification runs.

2 DESIGN REQUIREMENTS

In order to best accommodate our circumstances we
considered the physical attributes of the vehicles to param-
eterize our testing course. We recognize that at the scale
we are developing under, attention to these details are crit-
ical to defining thoughtful requirements. In particular we
relied on speed estimates for the vehicles to determine the
length of the straight away for our course. To estimate
the speed of our vehicles we needed to factor in both the
payload weight and the RPM of the motors.

Standard DC motors for Arduino based RC vehicles are
rated at 200±10% RPM @ 6v. The wheel diameter for the
corresponding motors are 65mm. With the following equa-
tions we are able to estimate Vmax for the vehicles:

ω = 2πf (1)

v = rω (2)

The resulting velocity we obtain from these equation is
0.68m/s±10% (See Appendix A) but we must also factor in
the added weight of the vehicle components into the over-
all speed of the vehicle. The required components (cam-
era, sensors, motor shield, Arduino, Jetson Nano, power
banks) for the fully equipped lead vehicle are estimated to
be around 600g (5.88N) of weight. We project that this
will cost around 15% slowdown from the theoretical max-
imum of the motors. This leaves us with the following:
Vmax = 0.58m/s± 10%.

Given these calculations we assume the top speed of
the vehicles to be a generous 0.5m/s with the lead car.
This projection allows us reasonable margin of error as the
weight projects are overestimates and the ‘trail’ vehicles
will have lighter payloads.

In determining the final length of the course, we wanted
to maintain a reasonable length for adequate testing. A
length that is too long would likely lead to reproducibility
errors and difficulty in collecting data. By contrast, A test
too short may be unimpressive and less able to illustrate the
value proposition. Acknowledging this, we targeted a test
run of 1 minute total time for completion of the course.
Given that a vehicle moving at 0.5m/s will reach about
30m maximum distance forgoing acceleration we opted for
a 20m straight away course with a width of 1.22m. These
values are based on the standard dimension for a track and
field race track. A diagram of this track can be seen below
in Figure 1.

18-500 Design Report - March 17, 2021 Page 2 of 16

Figure 1: Diagram of task verification track

This length would allow for about 20 seconds of margin
time for avoidance and navigation given our expected vehi-
cle velocity. We consider this to be a reasonable amount of
time given the requirement of successfully navigating two
vehicles to the end of the track. The decision to use a
straight away course with no turns is motivated by the fact
that such a system would rely much less on localization/-
global positioning which would cause greater difficulty in
implementation.

Critically we must also acknowledge the vehicle avoid-
ance portion of the development as a driving factor for our
requirements. In essence we need to know what the min-
imum object detection distance is our solution needs to
achieve to successfully avoid obstacles in its path. For this
we consider the following three sub-distances: latency dis-
tance, stopping distance and buffer distance. Latency dis-
tance is the distance a vehicle travels over the time required
to make one pass through the software pipeline. This in-
cludes object detection, path planning and communication.
Stopping distance is the distance a vehicle will travel after
a stop command before reaching a complete stop. Buffer
distance is the distance left between the obstacle and the
vehicle after the vehicle has stopped. This breakdown is
clearly illustrated in Figure 2 below.

Figure 2: Diagram of object detection distance breakdown

In order to obtain the stopping distance we estimated
the distance the vehicle travels over from its max speed to a
full stop. Using the following physics equations in relation
the our vehicle parameters,

v2 = v20 + 2a∆x (3)

F = ma (4)

The results from this calculation (See Appendix A) re-
sult in a stopping distance of 0.03m as we observe in Table
1.We note that since the buffer distance is a fixed parameter
set by the group, there is no corresponding calculation. The

numbers provided in Table 1 for the compute task latencies
are rough estimates based on research into our methods of
choice. We consider these estimates to be generous as they
include slack for anticipated worst case conditions. With
this we are able to calculate the latency distance using the
following equation

xlat = vmax(tdet + tplan + tcomm) (5)

This leaves us with a latency distance of 0.125m. Thus
the overall minimum object detection distance we must tar-
get is 0.205m considering all of the sub-distances.

Vehicle Maximum Speed 0.5m/s
Object Detection Latency 100ms
Path Planning Latency 10ms
Communication Latency 100 ±40ms
Latency Distance 0.125m
Stopping Distance 0.03m
Buffer Distance 0.05m
Minimum Object Detection Distance 0.205m
Vehicle Length 0.2794m
Vehicle Width 0.1778m
Track Length 20m
Track Width 1.22m

Table 1: Summary of required metrics

For the autonomous navigation aspect of our project,
we need he lead care to be able to detect static obstacles
in the path and make planning decisions to successfully
maneuver through the obstacles. To accomplish this, we
must require that the convoy system maintains 0 collisions
through the track, as no crash mitigation will be imple-
mented. Given the track distance and the buffer, stop-
ping, and latency distance, we calculated an object detec-
tion latency of 100ms. More specifically, this involves hav-
ing the on-board stereo camera relay image information to
the compute node, which applies an object detection algo-
rithm once every 100ms. This is equivalent to developing
an object detection algorithm that is capable of performing
at 10fps, assuming negligible latency (i.e a camera latency
much less than 100ms) between the stereo camera and the
compute node.

Regarding the nature of the object detection, rather
than implementing an object classification algorithm, we
aim to overlay the image from the stereo camera with
bounding boxes surrounding the object. This would give
a smooth estimate as to where the obstacles in the path
are, and thus make planning decisions that produced the
least risk of crashing into obstacles. Given the combined
stopping and buffer distances is 0.08m, we require any ob-
stacle to be detected within 0.2m in order to maximize the
avoidance probability without imposing too strict require-
ments on the vehicle hardware. Assuming a frequency of
object detection performed at 10fps, and a vehicle speed
of 0.5m/s, this would give an average 2.4 frames before

18-500 Design Report - March 17, 2021 Page 3 of 16

the vehicle reaches the buffer and stopping distance and
jeopardizes colliding with the obstacle. For this reason, we
require our object detection algorithm to be able to per-
form at 90% precision and 95% recall, in order to minimize
the probability of missed detections and subsequent colli-
sions. With 95% recall, the probability of not detecting the
object before the vehicle reaches the danger area reduces
to 0.25%. Notice that we prioritize recall, since we want
to minimize false negatives more than false positives. In
the worst case, this would translate into having our object
detection detect phantom objects on top of actual obsta-
cles, which would not be a problem assuming our planning
algorithm is sufficient.

Figure 3: Example bounding box from object detection al-
gorithm

For planning, we simply need an algorithm capable of
making navigational decisions based on the object detec-
tion algorithm’s output and the current camera feed. For
this to be successful, we require a latency of 10ms, to al-
low for the vehicle to dynamically adjust and make smooth
turns to navigate around obstacles. The planning stack will
be located on the onboard computation node, and commu-
nication between the compute node and the motors will be
done via an onboard Arduino for simplicity. Using an Ar-
duino as a motor controller would allow the planning stack
to output target angles for the wheels to turn rather than
PWM signals. This gives greater flexibility to the develop-
ment of the planning algorithm.

Since we have a lead car equipped with the sensory
equipment (camera, distance-tracking sensors) to help it
maneuver through the track, we need the lead car to be
able to effectively and accurately communicate with the
rest of the convoy. We are going to be using Bluetooth as
our mode of communication across vehicles which must be
reliable and relatively low-latency.

One important assumption we are making is that the

Bluetooth conditions are ideal for communication; meaning
our track will be free from huge obstructions between the
transmission of Bluetooth signals. We are not expecting
the latency of Bluetooth messages to exceed 100ms. Upon
our research we found that the ideal Bluetooth latency is
around 34ms, but can range up to 100-300ms, so we are
taking the lower bound since our cars will be in close prox-
imity with a clear path between them. Communication will
consist of relaying localization information (map updates)
perceived by the lead car, out to the trailing cars. We are
expecting the Bluetooth connection to be reliable enough
for the lead vehicle to use a broadcasting protocol to accu-
rately send updates on the position of the other vehicles;
since we will be sending messages frequently, we expect
that a lost packet will not have a significant effect on the
vehicles.

3 ARCHITECTURE OVERVIEW

The architecture of the Autovot system consists of 4
major subsystems, vehicle mechanics, object detection, lo-
calization/path planning and communication. These sub-
systems are clearly broken down in the system diagram
which can be found illustrated in Figure 10 and Figure 11
in the Appendix (see appendix B). Worth noting regard-
ing the architecture is the two different classes of vehicles
that we intend to implement. The key difference between
the two designs is that the lead vehicle will be equipped
with a slightly more powerful Jetson Nano unit as well as a
camera for perception. The trail vehicles will run identical
setup with the exception of the scaled down 2GB version
of the Jetson Nano as well as not having any camera unit
at all. The reason we opted for the less powerful Nano for
the trail cars is due to the fact that there will be no image
processing performed by these vehicles.

3.1 Vehicle Mechanics

The diagram outlining the overall system for Autovot
is based on the lead vehicle to fully cover the extent of the
development. For simplicity we can assume that the ‘fol-
low’ vehicles are identical in regards to the core mechanical
systems. The core driver for the mechanical system is the
Arduino Uno R3 board which will house the logic for con-
trolling the motor systems. To power the Arduino we will
leverage the USB connection between the Arduino and Jet-
son to supply the required 5v. This connection will also be
used to relay commands to steer the vehicle. Our design
requires the use of 12 GPIO pins (4 PWM enabled) to es-
tablish connections between the LN298 H Bridge Motor
Controllers. Each controller drives two DC motors to en-
able the steering of the vehicle. Notably we specify the use
of a 9 V battery to deliver power to the controllers which
in turn power the drivers. A simple diagram of this archi-
tecture can be seen in Figure 7 below. The LN298 modules
experience a 2 V voltage drop which leads to about 7 V
terminal voltage to power the motors. As the DC motors

18-500 Design Report - March 17, 2021 Page 4 of 16

are rated for 4-6 V this will satisfy the voltage requirement.

Figure 4: Diagram of the connection between the L298N H
Driver and Arduino Board.

3.2 Object Detection

Aboard the lead car will be an Intel RealSense Depth
camera that will relay RGB-D information to the Jetson
Nano also located on the lead car. The camera will be
positioned facing forward such that it can see the obsta-
cles that are on the track. The raw image input will be
processed using OpenCV to extract the depth information
using the stereo function in OpenCV. This image will then
be fed through SSD, or MobileNet V2 to extract the bound-
ing boxes around any objects in the image. The advantage
of these networks is the high frequency that they can be
performed at, in particular, MobileNet is a single shot de-
tector designed to be applied to embedded computer vision
applications such as ours. From here, the resulting image is
overlaid with the depth image from the camera and fed to
the planning stack. Furthermore, to account for processing
issues given the input image size, we propose downsampling
the image to increase processing speed. With the require-
ment of object detection at 0.2m, downsampling would not
reduce the resolution of the image as to prevent obstacle de-
tection. Rather than retraining MobileNet to work for our
obstacles, if out-of-the-box MobileNet fails to perform well
on our obstacles, we will place images from common objects
in the COCO dataset, of which MobileNet was trained on,
onto our obstacles to boost performance.

3.3 Path Planning

During the planning stage, an angle at which to turn
the wheels is chosen in order to avoid the obstacles. Based
on the depth information and the edge of the bounding box,
calculate an angle to turn the car. Finally we will limit the
angles to values between 0 and 80 degrees to ensure the car
remains moving forward. 2 angles are calculated based on
the left and right edge of the largest bounding box, and the
smaller of the two angles is chosen as the angle to turn the
wheels to. In order to prevent making unnecessarily wide
turns around the obstacles, we limit initial angle planning
decisions to the object detection range (0.2m) to the buffer
and stopping distance (0.08m), and only allow for small
adjustments (0-15 degrees) after the initial angle at which
to turn the wheels is determined.

3.4 Localization

In order to allow the convoy to navigate together, lo-
calization for the cars will be done using an IMU that
tracks accelerometer and gyroscope information that can
be passed between the lead and following cars in order to
determine relative position. However, we also noticed that
IMUs are typically inaccurate after more than 10m. To ac-
commodate for the fact that our track will be 20m long, we
plan to implement a system that utilizes April Tagging for
localization. The idea is to leverage the fact that we know
the parameters of the vehicle track beforehand to provide
the vehicles with a software based map that is tethered to
the physical implementation of the track. This will enable
us to discretize the 2D software map by breaking up the
track into a grid formation. Using AprilTags, we can mark
checkpoints on the physical track which have direct corre-
spondence to features that exist in the software map. The
lead vehicle will be able to compare the distance from a
detected checkpoint to itself. In doing so we create relative
positioning landmarks to aid in localizing the lead vehicle.
This strategy combined with data from the IMU should
allow for a reasonable solution for localizing the lead ve-
hicle. Critically the locations of the obstacles will not be
present in the software map provided to the vehicles at the
beginning of the course. Therefore, it is the job of the lead
vehicle to broadcast the location of detected obstacles as
communicated map updates to allow the following vehicles
to adequately navigate their physical environment. Ad-
mittedly, we anticipate difficulty in getting highly accurate
localization in the following vehicles. However, we note
that for the IMU tracing we expect ideal conditions for the
track (no tire slipping due to inadequate friction). Further-
more, we will attempt to enhance the localization system
with open loop odometry on the wheels of the vehicle. In
essence, we will gather empirical data from vehicle tests
to allow for estimation of total displacement as a function
of the vehicle commands over time. Accordingly we will
pay special attention to this portion of the development as
we believe this will be the most challenging portion of the
project.

18-500 Design Report - March 17, 2021 Page 5 of 16

3.5 Vehicle-to-Vehicle Communication

For the vehicle to vehicle (v2v) communication, we will
have the lead car act as the master node within a piconet.
In the piconet architecture, the lead node can maintain a
stable connection with up to 7 other trailing nodes (maxi-
mum of 2 trailing nodes required for our application). With
our piconet network setup, we plan on directing the con-
voy by frequently sending messages regarding new obstacles
that the lead car detects. Our target message frequency is
between 2-4Hz for this application. We chose this range
because the car will travel a maximum of 0.25m given its
maximum speed. We believe that any more than this dis-
tance and we may have serious issues avoiding obstacles.
With our compute latency estimated at 250ms we antici-
pate that this frequency range will be achievable.

The core idea for the communication is to send messages
that include map updates to the trailing vehicles. The ini-
tial software map will mirror the physically implemented
track; however, will not contain obstacle locations. Since
the software map will be implemented within a grid for-
mation, the broadcasted messages will be locations within
the grid to mark as obstacle locations. This will allow the
trailing vehicles to perform local decisions about how to
navigate the course. Furthermore, since these updates will
be of the form of a coordinate and some signaling param-
eters, we anticipate that the message size will be much
smaller than 100Kb. Therefore, with a transmission speed
of 1Mb/s we are confident that we will be able to meet the
150ms communication latency requirements.

4 DESIGN TRADE STUDIES

4.1 Vehicle Mechanics

4.1.1 RC Vehicle

One of the most critical components of this develop-
ment is the vehicle platform on which to build on. Perhaps
the more obvious solution would be to retrofit an existing
RC car to fit the requirements of this project; However,
as we found out this would prove to be a more challeng-
ing solution. An off the shelf RC vehicle would provide
us with a reliable platform but we must also acknowledge
the setbacks of this option. Namely, it would be difficult
to integrate such a system easily with the rest of our com-
ponents and this would also eat up the lion’s share of the
budget. Traditional RC car systems rely on radio tech-
nologies (typically on a 2.4 Ghz band). This means that
we would have to reconfigure the radio system to talk to
the compute systems in order to allow for navigation of the
vehicle. Furthermore, it would be difficult to mount various
components such as sensors and cameras on a traditional
RC vehicle system. For this reason we opted for an in house
solution to provide this requirement. Developing our sys-
tem from the ground up meant we had control of various
parameters such as vehicle speed, size, power draw, weight
and interoperability. Indeed, the ability to directly define

how the vehicle would communicate with the rest of the
vehicle systems was the most convincing advantage that a
custom solution provided. Nevertheless, we cannot ignore
some of the disadvantages to a custom solution. Most no-
tably the custom solution leads to a loss of development
time due to design and fabrication of the vehicles. Above
all we recognized the need for flexibility in such a project
and this was a solution that would provide us with that.

4.1.2 RC Controls

Given the choice of a custom vehicle solution we would
be required to develop a method for controlling the RC
vehicle through the compute systems. As the main com-
pute board for this project is the Nvidia Jetson Nano, this
was a natural candidate for developing the control system
on. To accommodate the requirements of the project, the
Jetson would need to be able to drive 4 total PWM sig-
nals from its GPIO pins. This is the required number of
pins for driving 2 LN298 H motor controllers. Since only
3 PWM pins are available by default, the solution would
require re-configuring the firmware of the board to activate
another pin. This domain was mostly unfamiliar to the
group and would be difficult to trust without having a Jet-
son on hand to validate the solution. Another solution to
this issue would be to purchase a specialized PCB to handle
the PWM signals. Similarly, this solution was less than op-
timal since the information we found regarding the boards
left us unsure about getting the desired result. For this rea-
son, we opted to go with the more familiar Arduino system
to serve as the control system for the vehicle. We felt much
more comfortable in this decision since RC Arduino cars are
quite common projects and the group has had previous ex-
perience working in that domain. Admittedly the Arduino
solution costs us in increased latency from command to ex-
ecution; However, we are confident that this latency should
not pose a large issue in the progression of the project. An-
other disadvantage is the additional albeit small weight and
power draw from this solution. This setback was offset by
the ease of development provided by the Arduino platform.
In addition, the Arduino solution did present itself with
the additional benefit of modularity. In particular, sepa-
rating the control system from the main compute system
alleviates potential issues that may arise from integration
and synchronization of the control interface with the rest of
the compute laden tasks. Ultimately, the decision favored
the solution which we were most familiar with and could
develop the most seamlessly.

4.1.3 Steering System

Another artifact of developing a custom vehicle is the
implementation of the steering system. Steering systems
play an important role in the navigation of the vehicle since
turn radius determines the distance at which an object can
be avoided at. The most commonly used system for steer-
ing is known as the Ackerman Steering System. This ap-
proach utilizes a steering pivot to direct the foremost wheel

18-500 Design Report - March 17, 2021 Page 6 of 16

around a central turning radius. The back wheels remain
in a stationary straight direction at all times. The main
advantage with this system is the ability to independently
control the speed and direction of the vehicle. Since the
steering follows a specified angle, this solution boasts an
elegant way to pre-calcultate the trajectory of the vehi-
cle. This mechanism also additionally reduces the effects
of tire slipping while driving. It is worth noting however
the complexity of such a design in a project of this scope.
Indeed, using this method would require an axle structure
that allows for pivoting the front wheel. Given this fact, we
opted to go with an approach that better suited the time-
line of our project. Our solution of choice was to use what
is known as Differential Steering to guide the direction of
our vehicle. This design relies on the relative difference
between wheel speeds to produce a turn. The vehicle will
experience a turn in the direction of the wheels which have
a lower angular velocity. This solution presents a relatively
more simple approach to developing the steering system.
As our vehicles will use 4 DC motors in a 4WD system, we
just have to tune the motor speeds to produce the turns
that we desire. Admittedly, the Differential Steering tech-
nique produces a more complex relationship between wheel
speed and direction of the vehicle. In fact, this relationship
has been explored in greater depths [6] to allow for more
accurate calculations For this reason we may have to intro-
duce adjustments motivated by empirical data to allow for
better calculation of vehicle trajectory with this approach.
In all, we trade-off simplicity of implementation for ease of
trajectory calculation with this decision.

Figure 5: Diagram of Ackerman vs. Differential Steering
Designs.

Trade studies of sub-systems can also be included in
this section. You should use sections with the
subsection command to split up this section either in

4.1.4 Vehicle Track

The ultimate goal for this project is to develop a vehicle
convoy system that is capable of completing a set course

without any collisions. It is therefore crucial for the vehi-
cle track to best reflect the core of this project. Clearly
road structures can be much more complex than straight
lines and clean angles; However, the focus of the project was
less about vehicle mobility and more about communication.
In general, a course with curvature would have required a
more robust localization and navigation system. We ac-
knowledge that a global positioning system (GPS) would
be useful for such a case; However, at the scale that the
project operates such technologies would be too inaccurate
(5m tolerance) to pose as viable solutions. This difficulty
is further exposed by the less than optimal steering system
which the vehicles use to navigate. Indeed, sharp turns
and wide banks would be much more challenging to navi-
gate given these mechanics. Convervely, straight tracks re-
lax these requirements, allowing the group to focus on the
communication portion of the project. A straight course
is much more predictable and lends to a more simple im-
plementation overall. It is also worth mentioning that a
straight course also requires much less effort for the group
to develop as we anticipate being able to use the university
track for our testing. A more complex solution with turns
and other complex road structures would certainly require
only more time to develop and test. Above all, the decision
was made with the idea of best accommodating the core
motivation of the project.

4.2 Localization

For localization purposes, we proposed using only IMUs
to localize the lead and following vehicles, and using the
accelerometer information to infer distance travelled and
distance from the lead car, as well as the relative orienta-
tions to allow the convoy to navigate the course successfully.
However, after more research on IMUs, we found that they
become inaccurate after 10m. This presents a problem as
following vehicle planning decisions will be made off of inac-
curate odometry calculations. Since our track will be 20m
long, this solution cannot guarantee that the convoy will be
able to travel together properly after 10m, so we decided
to use alternative measures on top of IMUs.

An alternative to using IMUs for localization purposes
was to use a global camera that would be able to deter-
mine the relative locations of all the vehicles and obstacles.
However, this would require physically mounting a cam-
era high enough to view the entire track, while still being
able to identify the vehicles accurately. This introduces
a challenge as to how to mount the camera, which might
not be physically feasible in our testing location. Further-
more, given the field of view necessary for the camera, it
will be hard to find one that has good enough resolution
to determine the locations of the vehicles to the necessary
accuracy. Even if such a camera exists, it would likely be
unfeasible given our current budget. For these reasons, we
decided to move away from a global camera system and use
an integrated approach with IMUs and April Tagging.

18-500 Design Report - March 17, 2021 Page 7 of 16

4.3 Imaging

For imaging, we considered the following approaches.

One approach we considered was using LiDAR for ob-
ject detection. This has the advantage of producing point
cloud data for the surrounding environment, which can
then be passed through an object detection algorithm to
exactly outline the shape of the obstacles. LiDAR also has
the added advantage of producing information that can eas-
ily be converted to 3D maps of the environment and could
potentially make object detection and planning easier than
with traditional RGB cameras. However, after further con-
sideration, we found that most high quality LiDAR sensors
are expensive and beyond the realm of possibility given our
current budget. There are small LiDAR sensors within our
budget, however, the point cloud information that these
sensors provide are not rich enough for object detection
algorithms such as VoxelNet to run successfully. There-
fore, for these reasons, we decided against using LiDAR for
sensing and opted to use a more traditional RGB camera.

We also considered using a regular RGB camera, such
as the Logitech HD Pro Webcam. These cameras pro-
duce high quality RGB images that are suitable for a wide
variety of object detection algorithms such as YOLO V3,
VGG16, etc. These cameras are also traditionally cheaper
than depth cameras and easier to replace should something
go wrong. However, standard RGB cameras don’t provide
depth information, and it is difficult to infer depth from
these images. This would make planning difficult, as there
would be no way to infer how far the obstacles are from
the car, and hence, how extreme of a turn to make to avoid
the detected obstacle. This would complicate the planning
process, and make it hard to achieve our requirement of 0
collisions. For this reason, we decided to pursue a stereo
camera approach, which not only produces RGB images,
but can also use the stereo nature of the camera to deter-
mine depth of objects in an image.

4.4 Object Detection

4.4.1 April Tagging

We initially considered using April Tagging for object
detection. This would involve placing April Tags on the ob-
jects, and using the camera and OpenCV to automatically
detect the tags. These April Tags are similar in nature to
QR codes, however, they encode less information for faster
processing. This approach would simplify object detection,
since OpenCV would make it easy to create a bounding box
around the detected tag. Furthermore, these tags also have
the advantage of being unique, and can help with localiza-
tion, assuming the order of which the tags should appear
in the course is known. However, this approach is less re-
alistic and versatile. Since our goal was to simulate true
autonomous behaviour as best as possible, we opted to use
a more general approach that relies on neural networks.

4.4.2 VGG16 / YOLO v3

In order to achieve the best possible object detection re-
sults, we considered using a variety of algorithms. The first
class of algorithms we considered were traditional object
classification algorithms such as VGG16, and YOLO v3.
While these algorithms are very robust and perform well
on relevant datasets such as COCO, we were afraid the on-
board Jetson Nano would not have the computation power
to process images at a fast enough rate. At the current la-
tency outlined above, an object would have 2 opportunities
to be detected otherwise the RC vehicle would likely collide
with it. If these algorithms were used, this window would
likely reduce to 1 opportunity at best for each obstacle to
be detected. Assuming an accuracy of 95%, the probabil-
ity of collision would be around 5%, compared to 0.25% if
a similarly accurate algorithm, but faster algorithm were
used. For these reasons, we decided to move to MobileNet
v2, a more lightweight algorithm that still provides similar
object detection accuracy at a much lower latency.

4.4.3 Faster R-CNN

We also considered using object detection algorithms
that are able to factor in depth information. One such algo-
rithm that we initially considered was Faster R-CNN. This
algorithm relies on using a region proposal network (RPN),
in order to develop candidate regions of which objects can
be located. This allows Faster R-CNN to generate accu-
rate 3D bounding boxes around objects. However, Faster
R-CNN and other algorithms that rely on RPNs are slower
than algorithms based on Single Shot Detectors (SSD) such
as MobileNet. Furthermore, the main advantage of Faster
R-CNN was that it was able to output 3D bounding boxes
around any detected objects. However, for our project, we
realized that the depth parameter of the bounding box is
not critical to our planning algorithm, and hence, tradi-
tional 2D bounding boxes would suffice.

4.5 Communication

4.5.1 Communication Technologies

We utilize bluetooth as our mode of communication,
but another potential option to communicate between ve-
hicles is WiFi Direct. One clear advantage of WiFi is that
it has a long range. In a real world scenario with real cars,
WiFi’s long range makes it realistic for vehicles to com-
municate with each other.. WiFi also has desired ad hoc
behaviour by seamlessly allowing new nodes to send mes-
sages in a network (without having to explicitly pair). The
main tradeoffs between the two forms of communication
were ease of programiamlity and practicality. Compared to
WiFi direct, bluetooth is more simple to program and setup
(especially since WiFi direct is a more proprietary technol-
ogy). Although bluetooth has less range and lower speeds,
it is a reliable form of communication and for the vehicle
track, the range of bluetooth will be more than enough (our
vehicles will be less than 5m away at any given time and

18-500 Design Report - March 17, 2021 Page 8 of 16

current bluetooth technology can easily range up to 50m).
Since range is not an issue and our course will be free from
large structural obstacles (such as walls or metal objects),
we found that bluetooth was the practical solution for our
form of communication.

4.5.2 Communication Protocols

Our vehicles will communicate within a piconet which
consists of a master node and up to 7 trailing nodes. This
form of networking works well for our purposes since it al-
lows the lead vehicle to easily transmit information out to
the trailing cars.

Some other existing messaging protocols such as MQTT
were considered for the communication architecture as well.
Notably, this publish and subscribe framework is used in
many IoT edge applications. We decide to move against
this option for our solution as the added functionality was
not worth the extra implementation cost. We thought
about using a transmission protocol which uses handshakes
(like TCP) but acknowledgements will add unnecessary
overhead to our communication (increasing latency). Since
the Bluetooth connection between the vehicles will be sta-
ble throughout the course, we do not need a super reliable
protocol and are prioritizing low-latency. Therefore we will
be using a broadcasting protocol where the lead car sends
messages out to the trailing cars and the trailing cars listen
for messages. Our project does not require the trailing cars
to send messages to the lead car so this protocol works well.

5 SYSTEM DESCRIPTION

5.1 Vehicle Mechanics

To develop our vehicles we opted for a custom designed
chassis over the likes of those offered by some third party
vendors. This was motivated by the desire for flexibility
and exactness to better fit our overall requirements. We
needed the vehicle to be able to hold all of our required com-
ponents, most notably, the Nvidia Jetson and the Stereo
camera. This space requirement ultimately drew us away
from pre-existing solutions as space would be a premium
with such options. In order to accommodate the required
components for our vehicle, we designed a full CAD model
of the anticipated design for the car. The vehicle chassis
will be an 11 x 7in design with customized screw holes for
each of the required components. This is done to ensure
that there are no issues with components falling off the ve-
hicle in the event of collisions. This CAD model is clearly
depicted below as Figure 6:

Figure 6: CAD design model for the anticipated vehicle
systems

As is visible from the CAD model, the vehicle will be
driven by 4 DC motors. These motors will be controlled
by using the L298N H Motor Shield and powered by a 9V
battery. The connections between these components will
be tied together with a mini breadboard to manage cables.
The Arduino unit will serve as the controller for the ve-
hicle steering system. For our implementation we decided
to receive commands serially from the Jetson Nano via the
Arduino USB connection. The Jeston is tasked with pro-
viding an approach angle to the Arduino which in turn is
used to determine the heading of the vehicle. This is done
by defining a discrete space over the unit circle in the in-
terval of 0 to 127 (1 Byte angle space). As depicted in the
Figure 5 below, each discrete angle around the circle cor-
responds to the desired direction that the vehicle should
turn.

Figure 7: Diagram of the steering system design

18-500 Design Report - March 17, 2021 Page 9 of 16

5.2 Camera

After researching potential stereo cameras that would
suit our requirements, we decided to use an Intel RealSense
Camera that we already owned. Not only would this relieve
pressure on our budget, but it is also easily integrated with
ROS, Python, and OpenCV. The camera also has a hor-
izontal field of view of 86 degrees and a frame rate of up
to 90fps, both of which exceed the necessary capabilities
for this project. This camera also has the added advantage
of being familiar to us, as most of us have a bit of experi-
ence integrating the camera with Python in the past. We
also engineered the body of our RC vehicles to ensure the
camera would fit on the car. Interfacing between the In-
tel RealSense and the Jetson is well documented and fairly
straightforward to implement.

5.3 Object Detection

Obstacle detection will be handled by implementing
MobileNet v2 on the Jetson Nano using Python and ROS.
Keras has an existing implementation of MobileNet v2 with
pre-trained weights that will be used as a baseline due to
its baseline success on the COCO dataset. We will then
tune the network to achieve better precision and recall by
training parts of the network on printouts of images from
COCO at various distances and orientations to ensure that
the bounding boxes are still properly determined. For the
purposes of this project we will not retrain MobileNet on
a custom dataset, as we feel that this would take too long
to compile a dataset of suitable size, and retraining might
not guarantee an increase in performance.

5.4 Path Planning

Outputted images from MobileNet v2 should appear
like they do in figure 2. We can combine this image with
the depth map from the depth capabilities of the Intel Re-
alSense. This depth map, as seen in Figure 6, along with
the bounding box will give the Jetson a reasonable esti-
mate for the distance L from the vehicle’s current location
to the obstacle. From this point, we can determine the
horizontal distance of the object from the depth map, by
finding the pixel distance, D1, D2 from the right and left
edge of the bounding box to the center of the image respec-
tively, as in Figure 7. Now, this pixel distance will be scaled
heuristically by a factor of k, determined experimentally, to
generate an estimate of the real distance to the right edge
of the object, kD1, and left edge of the object kD2. In
order to ensure safe navigation around the object, we add
a small distance to the above, which will become the target
location for the car to navigate to. This gives us a distance
of kD1 + ε to the right edge, and kD2 + ε to the left edge.
From here, we can calculate the angle to turn the wheels
assuming a right angled triangle between the depth of the
object and the horizontal distance. This gives the relation-
ship tan tan(θ1) = kD1+ε

L , and tan(θ2) = kD2+ε
L , where θ1

is the angle to avoid the right edge of the box, and θ2 is

the same angle but for the left edge. From here, we pick
the smaller of the two angles to turn the vehicle.

Figure 8: Sample depth image from Intel RealSense camera

Figure 9: Inputs for path planning: D1 is the distance to
right edge of bounding box, D2 is distance to left edge

Since our requirements dictate that each obstacle has,
on average, 2.4 opportunities to be detected, we angle de-
terminations to when a new object is detected. This would
ensure that the RC car won’t over avoid the obstacles and
take too long to finish the course.

5.5 Localization

Localization for our vehicles will be done in two parts.
One part will be using April Tags inherent to the course,
and the other will be done using IMU data. We decided
to use the Adafruit 9-DOF IMU Fusion for the purposes
of this project. This IMU is capable of detecting up to 9-
DOF, which is more than needed for the purposes of this
project. Communication between this IMU and the Jetson

18-500 Design Report - March 17, 2021 Page 10 of 16

will be done using I2C, and the IMU is capable of updating
its accelerometer and gyroscope information at a frequency
of 100Hz, which is ideal since this information will need to
be communicated between vehicles at the same frequency.

5.6 Communication

The Nvidia Jetson 4GB variant does not come native
with wireless capabilities so we have to rely on a Wifi +
Bluetooth NIC module to provide this feature. Conversely,
the Jetson Nano 2GB comes with a WiFi + Bluetooth
adapter so no extra hardware is required to enable wire-
less communication. For the software implementation of
the network we intend to use the PyBluez library which is
the default open source library for bluetooth development
in python. Our communication system must also coordi-
nate with the ROS system so we will be sure to take note
of the interface between the two.

6 PROJECT MANAGEMENT

6.1 Schedule

We had to modify our schedule after some deeper con-
sideration between hardware components we were using
(such as switching to a stereo camera instead of a LIDAR
sensor). The reflections of the new schedule can be seen in
the updated Gantt chart (See Appendix C)

6.2 Team Member Responsibilities

Our project can naturally be segmented into three
parts. RC vehicle mechanics, Object Detection and Path
Planning, and Communication Protocol.

Joel will be taking the lead on RC Vehicle manufactur-
ing, including designing and manufacturing the body, as
well as creating an interface to allow the vehicles to turn
properly simply by inputting an angle. As soon as the RC
cars are working to the specified requirements, Joel will as-
sist Fausto and Jeffrey on the communication and object
detection/planning parts of the project.

Jeffrey is in charge of the object detection and path
planning aspect of the project. His responsibilities include
connecting the Intel RealSense camera to the Jetson and
extracting the RGB image and depth map, developing and
tuning the MobileNet v2 object detection model to en-
sure obstacles are detected successfully, implementing, and
modifying, if necessary, the planning algorithm to meet our
requirements. Jeffrey will also work with Joel to test this
aspect of the project on the physical RC cars.

Fausto will be working on establishing Bluetooth con-
nection between RC cars and creating message structures
for ease of message parsing and decoding. His tasks involve
developing a suitable communication protocol to allow the
following vehicles to maintain the convoy formation, as well
as determining how to incorporate the communicated infor-
mation into planning for the following vehicles.

graphicx

6.3 Budget

Part Price Qty Subtotal
Wheel + DC Motor (x4) $16.99 3 $50.97
9v Power Supply Holder $8.98 1 $8.98
5v Power Supply $15.95 3 $47.85
Jeston Nano (2Gb) $59.00 2 $118.00
Jetson Nano WiFi + Bluetooth Card $26.99 1 $26.99
Micro SD Card 32 GB (x3) $15.99 1 $15.99
USB to Arduino Cable (x5) $13.27 1 $13.27
9-DOF Absolute Orientation IMU Fusion Breakout $38.95 3 $116.85
Metric Steel Pan Head Screws M3 (x100) $2.96 1 $2.96
Steel Hex Nut M3 (x100) $0.88 1 $0.88

Table 2: Purchased items list

The table above summarizes the purchased parts for
this project. The total cost for these items comes to
$426.14. Since we already had some of the components be-
fore, we did not have to purchase them. These such items
are listed in the table below.

Part Price Qty Subtotal
Arduino Uno R3 $21.40 3 $64.20
Nvidia Jetson Nano (4GB) $99.00 1 $99.00
Wireless NIC Module for Jetson Nano $26.99 1 $26.99
Intel RealSense D415 $160.00 1 $160.00

Table 3: Borrowed items list

6.4 Risk Management

In order to mitigate the budget risk, we decided to CAD
our own RC cars and avoided excess spending on better
components to make these cars. We also simplified the
steering mechanics and used an Arduino as a motor con-
troller for simplicity, since we are more familiar with this
method of motor control, rather than having the Jetson
communicate with the motors directly. If the steering con-
trol of the RC vehicles fails to perform at the necessary
level to avoid objects, we have planned to reduce the size
of the objects and increase the distance at which objects
are to be detected, allowing planning decisions to be made
easier without putting as much stress on the physical RC
vehicle.

The object detection aspect of the project is dependent
upon MobileNet performing at a suitable level, as well as
the algorithm having a low enough latency to meet our re-
quirements. We realize that in practice there are a lot of
variables and we have developed an alternative approach
should we determine our current plan is unfeasible. This
would involve putting April Tags on all our objects, and us-
ing the Intel RealSense to detect the April Tags and use the
associated bounding box for planning decisions. Alterna-
tively, if the computation latency is too expensive to meet
our requirements, we also considered slowing the car down
such that the window to detect objects becomes larger, and
false negatives do not become critical.

Finally, we realized that our solution approach is very re-
liant on communication between lead and following vehi-

18-500 Design Report - March 17, 2021 Page 11 of 16

cles, as this is what defines the convoy. We initially wanted
to develop our own complex protocol to ensure robustness,
however, due to the complexity of this task, we decided to
simplify the communication to just broadcasting instruc-
tions between lead and following vehicle. If we fail to de-
velop an accurate communication protocol between the lead
and following vehicles, our alternative approach is to phys-
ically tie the vehicles together in order to maintain a strict
bound on how far the vehicles are, which would make deter-
mining what instructions to tell the following vehicle much
easier.

7 RELATED WORK

There are a lot of projects online that deal with au-
tonomous navigation of RC vehicles. However, most of
these projects inovlve a single car navigating through a
course, rather than a convoy. One notable project was
one produced by students at WPI also created a similar
project that involved autonomous navigation of RC vehi-
cles. However, unlike our project they relied on LiDAR and
other forms of odometry using EKF to perfect localization.
Our project not only performs object detection differently,
but also attempts to navigate a convoy of vehicle, rather
than an isolated RC vehicle. Other projects have also used
similar object detection approaches, but all rely on more
complex path planning approaches, rather than a simple
bounding box approach we decided to employ.

8 SUMMARY

From our preliminary solution approach, our project
has undergone several design changes to meet our require-
ments. However, despite several iterations of design, our
solution still has limits on performance. RC Vehicle per-
formance is limited by fluctuations in voltages, and the
assumption that all the motors will behave similarly. Our
object detection algorithm and planning assume ideal light-
ing conditions that might not always be possible. Finally,
communication is limited by the behaviour of the Bluetooth
chips on the Jetson. To improve our performance and make
our project success, we have considered several alternatives
to the solution presented above. With a larger budget, we
would likely have bought more expensive RC parts, such
as Donkey cars, more powerful computation nodes, which
would guarantee better consistency in performance.

References

[1] X. Wu, M. Xu, and L. Wang. “Differential speed steer-
ing control for four-wheel independent driving electric
vehicle”. In: (2013), pp. 1–6. doi: 10.1109/ISIE.

2013.6563667.

18-500 Design Report - March 17, 2021 Page 12 of 16

9 Appendix

9.1 Appendix A

Calculation for Estimated Vehicle Maximum Velocity

ω = 2πf

v = rω

RPM @6V (frequency) 200RPM ± 10%
Wheel Diameter 65mm

Table 4: Vehicle Parameters

f = 200rpm10% = 200/60s = 3.33Hz10%

r = D/2

v =
ωD

2
=

2Dπf

2
= πDf

v = π(65 · 10−3)(3.33Hz) ± 10% = 0.68m/s± 10%

18-500 Design Report - March 17, 2021 Page 13 of 16

9.2 Appendix B

Figure 10: Architecture Diagram for the lead vehicles

18-500 Design Report - March 17, 2021 Page 14 of 16

Figure 11: Architecture Diagram for the trail vehicles

18-500 Design Report - March 17, 2021 Page 15 of 16

Appendix C

Figure 12: Gantt Chart Part 1

18-500 Design Report - March 17, 2021 Page 16 of 16

Appendix D

Figure 13: Gantt Chart Part 2

