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Abstract—An entertaining, motivating, at-home exercise game, using real-time, full-body motion tracking to
obtain user positioning data as they complete exercises. The game will cater to a variety of fitness levels, ranging
from beginner to advanced. These levels will vary the amount of repetitions and the length of workouts to account
for different users’ abilities. Each user will be evaluated on their performance based on their form accuracy and
the number of repetitions they completed. The system involves a display, a camera that takes images, a TX2
Xavier board to process the images taken by the camera, and a Exercise Library of exercise GIFs that will be
combined to generate the workouts.

Index Terms—Computer Vision, OpenCV, Pose Detection, PyGame, Real Time Analysis, SQLite, Tensorflow
Openpose, Workout

1 INTRODUCTION

The continued spread of COVID-19 has required people
to adjust their lifestyles to minimize in person interactions,
including placing restrictions on gyms and fitness clubs.
Many people have transitioned to working out at home, of-
ten via YouTube videos or workout apps, but these work-
outs commonly lack variety and lead to a progress plateau
over time.

Our new fitness game—Work It—aims to customize
workouts specific to the user in order to provide the best
exercise plan for their abilities. The user will earn points
based on the quality of their workout completion and be
given a workout score to track their progress over time.
Through varying workouts to avoid repetition as well as
motivating for improvement, our game will decrease the
chances of a progress plateau and make at-home workouts
more exciting.

The game will have three different exercise types: arms,
legs, and core. Since our game is focused on the user, it
will initially evaluate the user’s fitness level for each of those
categories with a standard set of nine-three per category-
exercises to provide the best possible full body workout. As
they complete more workouts, the user will be re-evaluated
and Work It will modify the user’s workout to match their
progress.

2 DESIGN REQUIREMENTS

2.1 Joint tracking/Key Point Detection

One of our main requirements is joint detection and
tracking. Since it is essential to our project, we require the
key point detection to be accurate enough. To meet this
requirement, we tested the algorithm with images of dif-
ferent workout poses and compared the key point locations
detected to the actual key point locations. Based on the
results, we can know which poses are harder to be detected
and will pre-process the frames from these poses to ensure
that enough valid key points are detected.

2.2 Pose Comparison

For pose comparison, we want to ensure that the algo-
rithm has 100% accuracy if the positions of the key points
are detected accurately in the previous step. Since the
key points of the body in TensorFlow OpenPose are repre-
sented as 2D coordinates in a Cartesian plane, the process
of computing the angles between the limbs based on the
coordinates is very straight forward. For front-view poses,
we will simply compare the angles between the limbs; for
side-view poses, we will only compare a specific set of an-
gles because some limbs might be hidden behind the body.
We will test the algorithm with both front-view and side-
view images of different poses to ensure the accuracy of the
comparison results.

2.3 Transfer Between Hardware

With our use of the Jetson TX2 for workout generation,
score computation, image processing, and pose comparison,
as well as the USB Webcam A1 for capturing video, it is
crucial that we require efficient transfer of information be-
tween our hardware components. Additionally, we had ini-
tially intended on using AWS to store the workout library,
but since we ended up storing it on the TX2 instead, we
no longer need to factor in the transfer of information from
AWS to the GPU. Instead, we need to test that our cam-
era is reaching our desired frames per second (fps) when
receiving video input of the user and sending these images
to the GPU for processing. It will also be crucial that the
video feed is displayed in time with the live input on the
Jetson TX2.

2.4 Runtime

We require that the wait time for the score generation
after the workout ends to be less than 1 minute. We will
have several 15-second breaks between exercises, which will
be used to mask the time it takes for image processing, pos-
ture analysis, and score computation. Assuming that our
easiest workout generated will have at least 5 exercises,
then there will always be at least 1 full minute in total
break time. By testing TensorFlow OpenPose with some
images, we know that the average runtime of pose estima-
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tion for one image is approximately 1.1 seconds on a laptop.
Since we are only comparing certain frames from the user
video, 1 minute of extra computation time throughout the
workout should be enough.

If our latency is more than 1 minute, and the breaks
between exercises aren’t enough to mask our algorithms
runtimes, we will also include stretching and a cool-down
at the end of each workout. This segment of the workout
will not be scored, and it’s only functions will be to mit-
igate muscle cramping and stiffness [3] (for the user) and
provide us with more computation time.

2.5 User Interface

Our game’s user interface should be simple to navigate
and inviting to use. The main purposes of the interface
are to allow users to create accounts (to save their fit-
ness progress), show users demonstration videos to mimic
throughout a workout, and display a score based on how
well they performed their workout.

The user is able to interact with the interface using a
keyboard and mouse. To create an account for the game,
users provide a unique username by typing it using the key-
board. Logging in requires the user to type in that same
unique username. Pressing specific keys on the keyboard
will allow the user to control previewing workouts, starting
workouts, ending workouts, accessing their previous scores,
and returning to the login screen.

The functionality of our user interface was tested by
pressing keys on a keyboard and ensuring that the correct
keys trigger the correct behaviors. The triggered behav-
ior had a 100% execution rate when the correct keys are
pressed.

3 ARCHITECTURE OVERVIEW

Figure 1: Block Diagram.

3.1 Python

We are using Python as our programming language. We
are using OpenCV for image pre-processing, and PyGame
for user interface, which are both compatible with Python.
In addition, TensorFlow OpenPose is also developed in
Python. Thus, it is reasonable for us to use Python for
our project.

3.2 OpenCV

We will use OpenCV for image pre-processing in our
project. After we have selected the certain key frames from
the user’s video captured by webcam, these key frames will
be pre-processed by OpenCV before being sent to Tensor-
Flow OpenPose for pose estimation. We will resize, rotate,
or increase the color contrast for some frame to ensure the
pose detection accuracy.

3.3 Tensorflow OpenPose

After we have selected and pre-processed the key frames
of the user doing workouts, TensorFlow OpenPose will pro-
cess these key frames for pose estimation. It will detect 18
key points on the user’s pose and represent these key points
as 2D coordinates in a Cartesian plane.

3.4 Pose Comparison

The key points detected by TensorFlow OpenPose will
be used for pose comparison. We will use the extracted 2D
coordinates to compute the angles between limbs. We can
compute the difference between the angles of user’s pose
and the angles of the standard pose. For front-view poses,
we can simply compare the angles; for side-view poses, we
will only compare a specific set of angles because we might
not be able to detect all key points since some limbs are
hidden behind the body. Based on the comparison results,
we will be able to determine how accurate the user’s poses
are.

3.5 Workout Library

We originally planned to use AWS to store our Exercise
Library, but the Jetson TX2 board had enough memory
to store the library, so we didn’t use AWS. The Exercise
Library contains GIFs of 72 different exercises. The GIFs
are separated into 3 categories depending on the part of
the body they target: arms, legs, and core. The GIFs are
of 1 repetition of each exercise so they can be looped and
used as demonstration videos for users to mimic during
their workouts. The forms from the clips are also used as
a standard to compare users’ forms to.

This library only contains clips of female demonstra-
tors. This shouldn’t impact scoring or pose comparison
much because we are using the angles between key points
to determine form correctness for all exercises. The only
impact it may have is on the user satisfaction of male users.
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3.6 PyGame

Our user interface was created using the Python library,
PyGame, with OpenCV. The interface starts on a general
home screen. The user can press ”enter” to continue to
a log in screen where they can enter a unique user id.
Once entered, the user is taken to their user log in screen.
Here, they can choose to either play the game or view their
progress. The progress tracker is a graph of the user’s pre-
vious workout scores.

Figure 2: progress graph

Once viewed, the user can press ”delete” to return to
their home screen. If the user chooses to play the game,
they will be prompted to do an evaluation workout. The
first screen in this sequence is an instructions page. This is
to tell the user how to preview the exercises of the evalu-
ation workout: they may use the left and right arrow keys
to cycle through the exercises until they are ready to be-
gin the evaluation. For each exercise, the user is shown
the name of the current exercise and the number of repeti-
tions required, the next exercise name and the number of
repetitions required, a demonstration video of the current
exercise, and a live camera feed:

Figure 3: preview screen

The purpose of the previews is for the user to familiar-
ize themselves with the exercises and learn how to perform
them correctly. The demonstration video is formed by loop-
ing a GIF that’s pulled from the Exercise Library. During
the preview stage, each GIF is looped infinitely, until the
user proceeds to the next or previous exercise, or starts the
actual evaluation workout.

The user can press enter to start the evaluation workout.
They will see a disclaimer explaining how the workout is
formatted: the exercises will be in the same order as shown
in the preview. However, between each exercise, the user
will have a 15 second rest period. Additionally, the user
will have 15 seconds to position themselves at the start the
workout. Throughout the workout, the screen will have the
same format as during the preview: it’ll show the names
and repetitions of the current and next exercises, a demo
video, and a live camera feed. During a rest period, the
demo video will be of the next exercise because the current
one is the rest period. This will allow the user to prepare
for it by positioning themselves to start the exercise at the
end of the rest period. The rest period will also show a
countdown of the time remaining.

Figure 4: rest screen

During an exercise period, the demo video will be of
the current exercise, looped for the number of repetitions
specified on the screen.

Upon completion of the evaluation workout, the user
will receive a score. This score is based on how closely they
were able to match the demonstration video in timing and
form. This score is automatically saved to the user’s profile
so it can be displayed on the user’s progress graph the next
time they check it. Based on this score, the program will
generate a personalized workout for the user. Once this
workout is generated, the user can start their workout.

This workout sequence works the same way as the eval-
uation workout. First, the user will preview the exercises
in the workout. Then, they’ll see a reminder of the rest
periods between their exercises of the actual workout, a 15
second readying period, and then the workout sequence.
Upon completion of the workout, the user will receive a
score, which is also automatically saved to the user’s pro-
file. After this score is shown, the user can choose to return
to the home page or quit the game completely.

Throughout the game, users can receive help with nav-
igating the screens by pressing ”h”. This brings them to
the screen shown in figure 5:
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Figure 5: help screen

The only portions of the game that don’t support the
help and pause functions are during the workouts (evalu-
ation and personalized workout). This is to prevent the
user from taking extra breaks. However, they still have the
choice to abandon their workouts by either returning to the
home screen (”q”) or exiting the game completely (”esc”).

3.7 SQLite

SQLite was used to store information about the user’s
workout scores so that they would be able to view progress
graphs. The information and the date they completed the
workout are stored in a table, and new scores are added
to the user’s specific information to update progress over
time. Once the user has reached five workout completions,
aka they have five available scores to them, earlier scores
will be disposed of as new workouts are performed. The
user can at most view their five most recent scores.

To see their personal progress chart, the user must enter
their name into a text box. This name is used to look up
their stored information, and must be typed the same way
each time to receive their correct information.

4 DESIGN TRADE STUDIES

4.1 Jetson TX2

The Jetson TX2 is a fast, power efficient GPU that will
benefit the image processing requirement of our project.
The TX2 is preferable to the Jetson Nano, another board
that we considered, because it offers 2.5 times the perfor-
mance using only 7.5 Watts. The TX2 family is ideal for
real-time processing applications where bandwidth and la-
tency can be issues, which is very suitable for our prod-
uct’s requirements.[2] Additionally, OpenPose has hard-
ware compatibility with the NVIDIA CUDA cores, which
is the technology used in the TX2.

The other two Jetson models that we considered for use
on our project were the Jetson Xavier NX and the Jetson
AGX Xavier. However, due to our other project require-
ments we decided against those two models. In a com-
parison looking at processed frames per second for pose
estimation using OpenPose, the Jetson TX2 has the capa-
bility to process 34 fps, while the Xavier NX processes 239
fps and the AGX Xavier can process 439 fps.[4] Though

the 239 and 439 are impressive, they are much more pow-
erful than anything we would need for this project. We
plan to analyze around 10 fps for our pose comparison, for
which the Jetson TX2 would meet our requirements. Ad-
ditionally, our camera, like many standard USB webcams,
captures video at 30 fps, so the capabilities of the NX or
the AGX are far beyond what is necessary for the scale of
our project.

Additionally, looking at our project budget, we were
able to get the TX2 developer kit from capstone inventory,
so we spent $0 on our board. The AGX developer kit, in
comparison, would have been $699, exceeding our budget
and leaving no room for any other purchases. The NX de-
veloper kit, on the other hand, would be within our budget
at $399, but we decided that the increased performance
was not worth the money that we would need to spend, es-
pecially when those performance increases aren’t necessary
for the success of our game.

We used a GPU for the pose analysis to reduce the
amount of computation required by the CPU. Since we re-
quired real-time processing, it is most efficient for our GPU
to do the image processing work instead of trying to run
our application on only a laptop. We wanted low latency
in our performance to provide user satisfaction.

4.2 Webcam

We chose our webcam requirements based on a trade-off
between image processing speed and how much of a user’s
movements we capture (number of frames). Real-time im-
age processing is as important as capturing key forms of
an exercise in our game. To determine the ideal frame
rate that would satisfy both of the aforementioned require-
ments, we compared the forms captured for running and
walking at different frame rates[1]. These were chosen as
the representatives of slow (ex: slow mountain climbers,
push ups) and fast exercises (ex: jump squat).

At 30 fps, the typical video frame rate, tiny changes
were captured for both exercises. These captured changes
weren’t large enough to justify the number of frames we
would have to analyze. At 10 fps, larger changes were cap-
tured, but the changes were of key forms of each of the
running and walking exercises. And, at 1 fps, a single rep-
etition of either exercise couldn’t be captured.

From these results, we concluded that around 10 fps
would be enough to capture the major parts of most exer-
cises. This lower frame rate will translate to fewer images
to process, which will help us reach our real-time image
processing goal. By this metric, we wanted a camera that
exceeds 10 fps, preferably recording in the 20-50 fps range.
The IFROO 1080p USB Webcam A1 model offers 30 fps,
which suits our needs. It also offers an 82 degree non-fisheye
lens, which will capture a large enough field of view or the
user.

Initially we had looked at a variety of CSI camera op-
tions, but the USB webcam will provide us with more than
enough fps, while costing at least $100 less than the CSI
cameras, so it is more suitable for our game.
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4.3 Tensorflow OpenPose

At the beginning, we planned to use OpenPose for pose
estimation. It is a real-time system developed by CMU
Perceptual Computing Lab to jointly detect human body
key points for images and videos. It supports hand and
foot key point detection as well. However, after installing
OpenPose and testing it on a laptop, we found that the
frame rate was lower than 0.1 fps when a video was pro-
cessed, and the runtime of pose estimation for one image
was approximately 9 seconds. Since we want low latency
for our project, we switched from OpenPose to TensorFlow
OpenPose.

TensorFlow OpenPose is a library built based on the
original OpenPose. It includes the same model for pose
estimation and takes out some features, such as key points
detection for hand and foot. TensorFlow OpenPose is not
as detailed as OpenPose but is faster. The average runtime
for TensorFlow OpenPose to process one image is about
1.1 seconds on a laptop. Since we will not being using key
points on hand or foot for our pose comparison, and we
want low latency, TensorFlow OpenPose is a better choice
for us.

4.4 CMU Model

TensorFlow OpenPose library includes four different
models for pose estimation: CMU, Mobilenet thin, Mo-
bilenet v2 large, and Mobilenet v2 small. We ran a set of
50 images with each model to test the runtime and accu-
racy. We manually evaluated the accuracy of key point
positions detected by TensorFlow OpenPose because the
sample size is not too large. We considered the detection
result for a image to be accurate if all visible joints of the
body have been correctly detected.

Figure 6: Test with different models.

We found that the CMU model works pretty well over-
all. It sometimes makes mistakes when the background
is not clean, the person is lying down, or some limbs are
hidden behind the body. The Mobilenet models are much
faster compared to the CMU model, but for some images
they are only able to detect parts of body, or are missing
out the key points completely.

Based on the results, it appears that the CMU model
is obviously the most accurate one; since we want high ac-
curacy for our project, we choose to use the CMU model
though it takes longer than the other models.

4.5 PyGame

Our user interface is important to our game because
it significantly influences a user’s experience. An inviting,
easy to use interface will increase a user’s satisfaction.

Since we chose Python as the language for our project,
we considered using Tkinter as well as PyGame for the cre-
ation of our user interface. We eliminated Tkinter in favor
of PyGame because Tkinter is simpler and doesn’t have as
many builtin features as PyGame. PyGame is also meant
to simplify the game-making process, which better matches
our goal of creating an exercise game.

5 SYSTEM DESCRIPTION

Figure 7: Software block diagram.

5.1 Workout Metrics Library

For each exercise in our workout library, we first select
2 to 4 key frames from it. These key frames should be the
most important ones for the exercise. For example, for side
lunges, we select two frames, one with the person doing the
lunge on the left side, the other one with the person doing
the lunge on the right side. The poses in all the other
frames are not important for other pose analysis, since the
person is either standing, or moving from one side to the
other. We only need information of the two selected frames
to determine how accurate the users’ poses are. Thus, We
only compare users’ poses with the ones in these specific
frames.
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Figure 8: Key frames of side lunges.

We run TensorFlow OpenPose with these selected
frames, and save the timestamp, coordinate, and angle in-
formation for each exercise. This metrics library is used
when we select frames from the user video input and com-
pute the angle differences.

5.2 Image Pre-processing

We use OpenCV for image pre-processing before feeding
the frames into TensorFlow OpenPose for pose estimation.
We first get the timestamps of the frames we want to se-
lect by searching the workout name in the metrics library.
Then, we will select 10 frames around that timestamp and
feed them into OpenPose for pose detection. After we get
the angle information for each frame from OpenPose, we
will use the set of angles closest to the standard angles to
compute the user’s score. We do this to allow some speed
difference between the user and the demonstration video.
The user can do the exercises at a slight faster or slower
speed but still be considered accurate.

We also need to pre-process the frames to ensure the
accuracy of pose estimation. We tested TensorFlow Open-
Pose with images from 5 different workout exercises, 10 im-
ages per workout, to understand which poses TensorFlow
OpenPose have difficulties detecting.

From the test results, as shown on figure 9 below, it ap-
pears that poses with twisted body and poses lying down
are harder for TensorFlow OpenPose to detect correctly.
In that case, we will try to increase the detection accuracy
by pre-processing the frames. For instance, we will rotate
the frames with the person lying down, such as the poses
from the Elbow to Knee exercise, since it would be easier
for TensorFlow OpenPose to perform estimation on poses

with the human head at the top of the image.

Figure 9: Test with different workouts.

5.3 Pose Alignment

After TensorFlow OpenPose performs pose estimation
on the user’s poses, we need to align the poses before we
proceed to pose comparison. We determine the differences
between user’s pose and standard pose by computing the
angles between limbs. Since angles would not be affected by
resizing or rotating, and we do require the users to place
the camera at a specific angle, we do not need do pose
alignment in space.

However, we do need to perform pose alignment in time.
We will penalize the users for doing the exercises signifi-
cantly faster or slower than the standard exercise clip shown
to them on the screen, but we want to allow some tiny
speed differences. If the user does the exercises slightly
faster or slower than the standard one, for example, the
difference is within 1 second, the score will not be affected.
Thus, pose alignment in time is needed. Since we are select-
ing 10 frames around the key frames, by running Tensor-
Flow OpenPose on each of them, and comparing the angles
of each with the standard angles, we will find the frame
with the best match pose and use it for score computation.
Thus, users are allowed to have some minor speed difference
with the demonstration video.

5.4 Pose Comparison

TensorFlow OpenPose will output 18 key points after
the torso detection. We use the positions of these key
points to perform pose comparison. The key points po-
sitions are represented as 2D coordinates in a Cartesian
plane, so we can compute the angles between the limbs by
simply computing the angles between the vectors defined
by these coordinates.
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Figure 10: OpenPose angles.

As shown on figure 10 above, we want to compute and
compare a total of 8 angles: R1, L1, R2. . . and L4. For
instance, if we want to get angle R1, we will first compute
the vectors from key point 2 to 3 and 2 to 0, and compute
the angle between these two vectors.

The difference between the user pose and standard
workout pose can be determined by computing the differ-
ence between the angles. For front-view poses, we compare
all the valid angles. For side-view poses, since some limbs
might be hidden behind the body, we only compare a spe-
cific set of angles for certain workout poses. We will later
use the angle differences for score computation.

5.5 Workout Generation

First, the user must complete an evaluation workout.
This workout is static and consists of 3 pre-selected exer-
cises from each exercise category (arms, legs, core). Each
of the 3 exercises of each category is of a different difficulty
level (1, 2, 3). The exercises are pulled from the Exercise
Library stored on the TX2 board.

The Exercise Library is composed of GIFs of a single
repetitions of exercises. Each exercise is labeled in the for-
mat of

[exercise category][difficulty rating] [id]

The exercise category is one of {”arm”, ”leg”, ”core”}, the
difficulty rating is one of {1, 2, 3}, and the id is to dif-
ferentiate exercises of the same difficulty level and exercise
category. The difficulty ratings were subjectively chosen
by my group mates and I, with 1 representing the easiest
exercises and 3 representing the hardest exercises.

Upon completion of the evaluation workout, Work It
computes a score for each exercise category for the user.

So, the user will get separate scores for arms, legs, and
core (the sum is the score shown to the user). Comparing
the categorical score the user received to the total possible
categorical score they could’ve received generates a per-
centage out of 100. The difficulty range of the exercises
and the number of repetitions chosen for each category is
based on its percentage:

Figure 11: difficulty ranges (top) and number of repetitions
(middle) based on score percentage (bottom)

If the percentage is between 0 and 33, the maximum ex-
ercise difficulty will be set to 1. If the percentage is between
34 and 66, the maximum exercise difficulty will be set to
2. If the percentage is between 67 and 100, the maximum
exercise difficulty will be set to 3.

If the percentage is between [0, 11], [33, 44], or [66, 77],
the number of repetitions assigned to each exercise will be
set to 10. If the percentage is between [12, 22], [45, 55], or
[78, 88], the number of repetitions assigned to each exercise
will be set to 20. If the percentage is between [23, 33], [56,
66], or [89, 100], the number of repetitions assigned to each
exercise will be set to 30.

After the difficulty ranges and number of repetitions
are determined for each category, exercises that meet those
requirements are randomly chosen. Since the GIFs stored
in the Exercise Library are named based on category, dif-
ficulty, and id, extracting valid candidates is simple. Only
exercises starting with ”[category][value from determined
difficulty range] ” are considered. The number of repeti-
tions for all exercises in the category is set to the deter-
mined number of repetitions. The ids are determined by
randomly choosing ids from the valid candidates. The total
number of ids generated per category is 4 more than the
maximum determined difficulty. This is to ensure that at
least 5 exercises, and no more than 7 exercises, are included
in the workout. We want to push the user to improve their
fitness level, but we don’t want them to be discouraged by
an extremely difficult workout.

As an example, suppose a user’s scores for the arm, leg,
and core categories be 20%, 70%, and 50% of the total
scores they could’ve received from the evaluation workout.
Then, for each category the requirements would be set as
the values listed below, in figure 12:

Figure 12: category and score percentage −→ maximum
difficulty, number of repetitions, and number of exercises

So, our algorithm could choose 5 arm exercises of dif-
ficulty level 1, 7 leg exercises of any difficulty level, and 6
core exercises of difficulty levels 1 or 2.
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5.6 Score Computation

Score computation is based on pose analysis and the
number of repetitions for the exercise. We use an ”all or
nothing” approach to scoring each repetition of each ex-
ercise. The user must perform each repetition accurately,
with a total angle difference below a certain threshold to
gain any points. This threshold was manually determined
for each exercise in our Exercise Library. The number of
points the user can gain for each repetition is based on the
difficulty of the exercise: exercise difficulty * 100.

Repetition scores are summed together to get the to-
tal scores for each category. These categorical totals are
summed to get the overall total workout score. This total
workout score is what is shown to the user at the end of
their workout.

5.7 User Accounts

SQLite is used for robust storage of user data. User’s
are identified by the name that they enter at the start of
the game. This name is then used to look up the user’s
scores that are stored from previous workouts.

By saving a workout score along with the date com-
pleted, we efficiently track progress overtime of the user’s
Work It usage and display it in a chart that is easy for the
user to interpret. At the completion of a workout, the score
is entered into the user’s row of the table. If they have less
than five workouts saved, then the new score will just be
added and the game will proceed from there. If instead
they have more than five, their earliest score will be re-
moved and all of the scores shifted, so that only five scores
are kept at a time. This serves the purpose of keeping the
graph easy to interpret.

6 TEST & VALIDATION

6.1 Hardware Performance

To keep our game engaging, we decided that keeping
the time required for image processing down was of ut-
most importance. Due to our inclusion of 15 second rest
breaks throughout the workout, we decided that as long
as the time needed for image processing stayed beneath 1
minute, the rest breaks would account for that time and the
user wouldn’t be dissatisfied with our game’s performance.
Thus, we set our requirement for hardware performance at
less than 1 minute.

In our testing of 6 repetitions on a sample size of 20
exercises, our pose comparison algorithm returned the an-
gle computations immediately, followed by a 2 second de-
lay with score computation. This put our Hardware Per-
formance at a much better value than we expected, with
computation taking less than 3 seconds total. This value
exceeded our expectations for this category.

6.2 OpenPose Detection

For our pose detection testing, we looked at which frame
size for the images will deliver the most accuracy. We ex-
pected an accuracy rate of 90% for the frame size that we
would use for our game.

Using a sample size of 50 images, we ran OpenPose on
frames from our exercise GIFs from our workout library to
determine how well the key points on the model were being
tracked. We found that a lower resolution for the images re-
sults in a shorter runtime but lower accuracy. The highest
resolution sometimes led to more errors, either from our al-
gorithm picking up other ’people’ in the background, or not
being able to detect the whole body. The 432x368 frame
size was calculated to have an accuracy of 90%, meeting
our requirement. These results are displayed in the table
below.

Figure 13: Frame Size Accuracy Values

6.3 Pose Alignment

To test pose alignment, we first did some exercises
slightly faster or slower than the demonstration video. We
still got nearly perfect scores, which means that some small
speed differences are allowed. Users can be slightly faster or
slower than the demonstration video shown on the screen,
and their workouts will still be considered accurate and
complete.

We then did the exercises significantly faster or slower
than the demonstration video, and the resulting scores were
around 30% to 50% of the max score, which is what we
want. Since we were too slow or too fast, we missed the
10-frame detection interval for each key frame, and were
penalized for not following the demonstration video.

6.4 Pose Comparison

We developed the concept of a threshold for our an-
gle comparison in our pose comparison evaluation. These
threshold tests were done with a sample size of about 40
exercises. In our testing, we found that there would always
be some angle differences between the user and demo, even
if the user does their best in matching the demo video. To
determine an appropriate threshold for each exercise, we
tested the exercise by running through it 4-6 times. From
there we computed a threshold (in radians) for which the
user will receive full points for the repetition if their an-
gle difference falls below the value. Each exercise has a
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different calculated threshold associated with it. After es-
tablishing an appropriate threshold value, we ran accuracy
tests with a sample size of about 40 exercises. We tested
exercises from the 3 categories and found that the detection
accuracy for core exercises is lower than the others. The
table below displays the accuracy values for each category
of exercises.

Figure 14: Accuracy Values by Exercise Type

The core exercises often have the user lying down with
limbs hidden behind the body which makes it more diffi-
cult for us to analyze the user and demo video’s poses. In
some frames some limbs were not detected and in others
the user was not detected at all. Since our goal for accu-
racy of pose comparison was 90%, we decided to remove a
few of the core exercises that were causing these issues from
our workout library. We decided to value accuracy over a
larger core library, and since these particular exercises were
not crucial to the overall success of our game, we decided
removing them was worth it. The updated accuracy values
are displayed in the table below. These accuracy values
meet our expected 90% standard.

Figure 15: Accuracy - Modified Core Library

6.5 Score Computation

Figure 16: Score Computation Testing

To verify that our score computation changed with
user performance, we performed 5 rounds of 6 reps of side
lunges. Since the scoring algorithm is the same for all exer-
cises, we decided that testing one exercise would be enough
to verify that the scores change correctly with user perfor-
mance.

For the first round, we performed the lunges as per-
fectly as we could. This generated full points (600) for the
exercise, since the difficulty for this exercise is 1 and we
completed all reps with few errors.

In the second round, we completed only half the repeti-
tions. However, for the ones we performed, we imitated the
demo as closely as we could. The resulting score was 300,
or 50% of the highest possible score. This was expected
because we only did half the reps.

For the poor form and full repetition category, we per-
formed 4 repetitions with form that happened to be decent
(angle difference was still below the threshold for the exer-
cise), so 400 points were awarded for the exercise.

And for poor form and partial repetitions, only one rep
was beneath the threshold so only 100 points were awarded.

Our final round was not performing any reps, and the
resulting score was 0.

7 PROJECT MANAGEMENT

7.1 Schedule

Our schedule was broken into three phases in order to
distinguish generally between setup, working on individual
components, and integration and testing. Throughout the
semester, we updated our gantt chart to allow more time
for setup of all of the components from phase 1, as well as
allowing more time for adding gifs to our workout library.

7.2 Team Member Responsibilities

Zixuan lead image processing and analysis using Ten-
sorflow OpenPose. She created the pose comparison, angle
difference computation, and frame selection algorithms.

Maddie lead the integration of the software components
and the TX2 board. She was also in charge of creating user
accounts.

Sarah lead the creation of the user interface, workout
generation algorithm, and scoring algorithm.

Maddie and Sarah contributed clips to the Exercise Li-
brary. This included manually ranking the difficulty of the
exercises and creating the gifs.

We all tested and debugged our algorithms for pose
comparison, workout generation, and score generation. We
all also performed user testing to ensure that our game
functioned correctly.
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7.3 Budget

Figure 17: Bill of Materials

We borrowed our Jetson TX2 board from the Capstone
course and bought 2 webcams from Amazon.

We originally planned on using only 1 webcam. How-
ever, after integrating our pose comparison code with our
TX2 board, we realized the algorithms functioned differ-
ently on the board than on a laptop. We figured out that
the different frame rates of the laptop camera and our we-
bcam generated different behavior, so we ordered a second
webcam to allow for local testing/debugging on a laptop.
Local testing was important because Zixuan was working
remotely, so she wasn’t able to debug the code on the board.

We also originally planned on using AWS to store our
Exercise Library, so we received AWS credits from the Cap-
stone course. However, we found that the library was able
to fit on the TX2 board, so we didn’t end up using the
AWS credits.

7.4 Risk Management

One of the risks we encountered at the beginning is
high latency. The runtime of OpenPose was longer than
we wanted. Since we want to provide real-time feedback to
the user by showing the OpenPose result on the screen, we
switched to TensorFlow OpenPose, which cannot detect the
fingers but is faster than the original OpenPose. We also
choose not to run TensorFlow OpenPose on all frames from
the user input; instead, we only run pose detection on the
10 frames around the key frames and find the best-match
pose among them, because we only need these frames for
pose analysis.

Another risk is that TensorFlow OpenPose may not be
able to detect all key points on the user. After some test-
ing, we learned that both clothing and background can af-
fect the estimation accuracy. We require the users to wear
tighter clothes and have a clean background. TensorFlow
OpenPose also tends to make mistakes when the person is
lying down. We pre-process the frames, such as rotating
and resizing, for certain poses to increase the accuracy.

We want the score to reflect the user’s performance ac-
curately enough, so we tested it with the good form vs.
the poor form, doing full repetitions vs. doing only par-
tial repetitions of the exercise (as mentioned in the score
computation section). The score should reflect the corre-
sponding level of completion and accuracy. By doing this

test, we were able to know whether the scoring algorithm
works and make adjustments to it.

8 ETHICAL ISSUES

Some possible ethical issues arise from our use of a cam-
era and our collection of fitness scores.

A camera is used to provide a live feed of a user in a
room. It is only meant to be on when the user is using
the program. However, if a malicious attacker were to gain
access to the program remotely, they could also gain access
to the camera feed. This could result in images or videos
taken in situations that a user wouldn’t want them to be
taken in.

Another possible issue is from the data we collect about
users. If our program is hacked, the stored fitness data
about users could be leaked. This information could be
used against the users by corporations such as insurance
companies. If a user has a history of low workout scores,
insurance companies could deny health insurance to them,
citing the low scores as proof of a higher likelihood of pre-
existing health conditions. If the insurance companies are
able to save our angle difference data, then they could also
gain insight into the form of the user. This could possibly
be used to determine susceptibility to certain physical ail-
ments, such as back or joint issues. If the user habitually
performs exercises using incorrect form, the angle differ-
ence information could allow companies to predict pain in
body parts affected by the incorrect form.

9 RELATED WORK

Two similar Capstone projects are Falcon: Pro Gym
Assistant, from Fall 2020, and Virtual Yoga Coach, from
Spring 2019. Falcon: Pro Gym Assistant customizes work-
outs for it’s users and provides periodic feedback on their
posture. So, it’s similar to Work It because it also generates
customized workouts for their users. However, it differs in
how it process it’s images (use an FPGA) and in when it
provides feedback to it’s users (periodically throughout the
workout).

Virtual Yoga Coach provides form feedback for users’
on a limited number of yoga poses. Although the exercises
it supports are different from the ones we support, it’s still
similar to Work It because it also requires image process-
ing and analysis, and uses the same software (Tensorflow
OpenPose). Because it uses the same software libraries,
and it’s goals were similar to ours, we were able to guide
some of our design choices by looking at what the creators
of this project did. This is how we decided to use angles in
our pose detection algorithm.

10 SUMMARY

Our system was able to meet most of our design speci-
fications. Our hardware performance was much faster than
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we originally anticipated (<5 seconds vs 1 min). Our
pose alignment worked with 90% accuracy, pose compar-
ison averaged out to 90% accuracy, and score computation
changed according to user form accuracy.

The only design specification we didn’t meet was Open-
Pose detection requirement of 90%. We ended with a 86%
rate of detection, but this is because of the exercise forms
we chose. Some of the forms have hidden limbs, or require
twisting. These make parts of the body not visible to the
camera, and thus not able to be detected by OpenPose.

If we had more time, we would’ve pruned our Exercise
Library a bit more. We started removing exercises that
were not ideal for OpenPose detection, and replaced a few
of them with more OpenPose-friendly ones. This is why
we only have 72 exercises and not more. If we optimized
our Exercise Library, our OpenPose detection requirement
would’ve been met.

10.1 Lessons Learned

We learned about the importance of communication
when working remotely. Even though we met and discussed
our work during our lab meetings, we learned that we
needed more frequent communication through extra zoom
meetings or slack.

We also learned to allocate more time than we thought
we would need for everything. Especially for integration.
Even if our code worked locally on our own laptops, the
dependencies on the board were not the same, so the be-
havior of the code was sometimes different. Also, the board
can only support certain dependencies, so testing changes
in code on the board often helps keep dependency errors
minimal.
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Appendix A

Figure 18: Gantt Chart


