
18-500 Design Report - March 17, 2021 Page 1 of 8

Work It
Authors: Maddie Mianzo, Sarah Tan, Zixuan Zou: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—An entertaining, motivating, at-home exercise game, using real-time, full-body motion tracking to
obtain user positioning data as they complete exercises. The game will cater to a variety of fitness levels,
ranging from beginner to advanced. These levels will vary the amount of repetitions and the length of workouts
to account for different users’ abilities. Each user will be evaluated on their performance based on their form
accuracy and the number of repetitions they completed. The system involves a display, a camera that takes
images, a TX2 Xavier board to process the images taken by the camera, and a exercise library of exercise gifs
that will be combined to generate the workouts.

Index Terms—Computer Vision, OpenCV, Pose Detection, PyGame, Real Time Analysis, SQLite, Tensorflow
Openpose, Workout

1 INTRODUCTION

The continued spread of COVID-19 has required people
to adjust their lifestyles to minimize in person interactions,
including placing restrictions on gyms and fitness clubs.
People have transitioned to working out at home, often
via YouTube videos or workout apps, but these workouts
commonly lack variety and lead to a progress plateau over
time.

Our new fitness game—Work It—aims to customize
workouts specific to the user in order to provide the best
exercise plan for their abilities. The user will earn points
based on the quality of their workout completion and be
given a workout score to compare with friends or track
their progress over time. Through progress motivation and
tracking, as well as varying workouts to avoid repetition,
our game will decrease the chances of a progress plateau
and make home workouts more exciting.

The game will have three different workout types: arms,
legs, and core. Since our game is focused on the user, it
will initially evaluate the user’s fitness level for each of those
categories with a standard set of exercises to provide the
best possible full body workout. Over time, the user will be
re-evaluated and Work It will modify the user’s workouts
to match their progress.

2 DESIGN REQUIREMENTS

2.1 Joint tracking/Key Point Detection

One of our main requirements is joint detection and
tracking. Since it is essential to our project, we require the
key point detection to be accurate enough. To meet this
requirement, we tested the algorithm with images of dif-
ferent workout poses and compared the key point locations
detected to the actual key point locations. Based on the
results, we can know which poses are harder to be detected
and will pre-process the frames from these poses to ensure
that enough valid key points are detected.

2.2 Pose Comparison

For pose comparison, we want to ensure that the algo-
rithm has 100% accuracy if the positions of the key points

are detected accurately in the previous step. Since the
key points of the body in TensorFlow OpenPose are repre-
sented as 2D coordinates in a Cartesian plane, the process
of computing the angles between the limbs based on the
coordinates is very straight forward. For front-view poses,
we will simply compare the angles between the limbs; for
side-view poses, we will only compare a specific set of an-
gles because some limbs might be hidden behind the body.
We will test the algorithm with both front-view and side-
view images of different poses to ensure the accuracy of the
comparison results.

2.3 Transfer Between Hardware

With our use of AWS on a laptop for the workout li-
brary, the Jetson TX2 for image processing and pose com-
parison, and the USB Webcam A1 for capturing video, it
is crucial that we require efficient transfer of information
between our hardware components. We will need to test
that our camera is reaching our desired frames per second
(fps) when receiving video input of the user and sending
these images to the GPU for processing.

2.4 Runtime

We require that the wait time for the score generation
after the workout ends to be less than 1 minute. We will
have several 15-second breaks between exercises, which will
be used to mask the time it takes for image processing, pos-
ture analysis, and score computation. Assuming that our
easiest workout generated will have at least 5 exercises,
then there will always be at least 1 full minute in total
break time. By testing TensorFlow OpenPose with some
images, we know that the average runtime of pose estima-
tion for one image is approximately 1.1 seconds on a laptop.
Since we are only comparing certain frames from the user
video, 1 minute of extra computation time throughout the
workout should be enough.

If our latency is more than 1 minute, and the breaks
between exercises aren’t enough to mask our algorithms
runtimes, we will also include stretching and a cool-down
at the end of each workout. This segment of the workout
will not be scored, and it’s only functions will be to mit-
igate muscle cramping and stiffness [3] (for the user) and

18-500 Design Report - March 17, 2021 Page 2 of 8

provide us with more computation time.

2.5 User Interface

Our game’s user interface should be simple to navigate
and inviting to use. The main purposes of the interface
are to allow users to create accounts (to save their fitness
progress), show users demonstration videos to mimic for
each exercise, and display a score based on how well they
performed their workout.

The user should be able to interact with the interface
solely through a keyboard. To create an account for the
game, users should be able to uniquely name their accounts
by typing it using the keyboard. Logging in will similarly
only require the user to type in their unique username.
Pressing specific keys on the keyboard will allow the user
to control starting workouts, ending workouts, accessing
their previous scores, and returning to the login screen.

The functionality of our user interface can be tested by
pressing keys on a keyboard and ensuring that the correct
keys trigger the correct behaviors. The intuitiveness of the
interface can be tested by obtaining feedback from volun-
teers (our housemates and friends) about the ease of use of
our interface.

3 ARCHITECTURE OVERVIEW

Figure 1: Block Diagram.

3.1 Python

We are using Python as our programming language. We
are using OpenCV for image pre-processing, and PyGame
for user interface, which are both compatible with Python.
In addition, TensorFlow OpenPose is also developed in
Python. Thus, it is reasonable for us to use Python for
our project.

3.2 OpenCV

We will use OpenCV for image pre-processing in our
project. We will use OpenCV to select certain key frames
from the user’s video captured by webcam for pose compar-
ison. These key frames will be pre-processed by OpenCV
before being sent to TensorFlow OpenPose for pose esti-
mation. The frames from certain workout poses need to be
rotated as well to ensure the pose detection accuracy.

3.3 Tensorflow OpenPose

After we have selected and pre-processed the key frames
of the user doing workouts, TensorFlow OpenPose will pro-
cess these key frames for pose estimation. It will detect 18
key points on the user’s pose and represent these key points
as 2D coordinates in a Cartesian plane.

3.4 Pose Comparison

The key points detected by TensorFlow OpenPose will
be used for pose comparison. We will use the extracted 2D
coordinates to compute the angles between limbs. We can
compute the difference between the angles of user’s pose
and the angles of the standard pose. For front-view poses,
we can simply compare the angles; for side-view poses, we
will only compare a specific set of angles because we might
not be able to detect all key points since some limbs are
hidden behind the body. Based on the comparison results,
we will be able to determine how accurate the user’s poses
are.

3.5 Workout Library

AWS will be used to store our exercise library. This
library will contain clips of various exercises. The clips will
be looped so they can be used as the demonstration videos
for users to mimic during their workouts. The forms from
the clips will also be used as a standard to compare users’
forms to.

This library will only contain clips of female demon-
strators. This aspect will only potentially affect the user
experience of male users. However, there shouldn’t be any
impact on scoring or pose comparison because we are using
the angles between key points to determine form correct-
ness for all exercises. As a stretch goal, we want to add
clips of male demonstrators for the exercises in our work-
out library.

3.6 PyGame

Our user interface will be created using the Python li-
brary, PyGame. The demonstrations of exercises will be
composed of exercise clips taken from the Standard Exer-
cise Library. These clips will be looped for the number of
repetitions chosen by our workout generation algorithm.

The interface will look similar to figures 2 and 3 (be-
low). They are modeled off of the layout of YouTube video
workouts.

18-500 Design Report - March 17, 2021 Page 3 of 8

Figure 2: UI exercise demonstration page.

Figure 3: UI water break page.

3.7 SQLite

SQLite will be used to store previous workout scores for
each user. This will allow users to see their progress over
time.

4 DESIGN TRADE STUDIES

4.1 Jetson TX2

The Jetson TX2 is a fast, power efficient GPU that will
benefit the image processing requirement of our project.
The TX2 is preferable to the Jetson Nano, another board
that we considered, because it offers 2.5 times the perfor-
mance using only 7.5 Watts. The TX2 family is ideal for
real-time processing applications where bandwidth and la-
tency can be issues, which is very suitable for our prod-
uct’s requirements.[2] Additionally, OpenPose has hard-
ware compatibility with the NVIDIA CUDA cores, which
is the technology used in the TX2.

The other two Jetson models that we considered for use
on our project were the Jetson Xavier NX and the Jetson
AGX Xavier. However, due to our other project require-
ments we decided against those two models. In a com-
parison looking at processed frames per second for pose

estimation using OpenPose, the Jetson TX2 has the capa-
bility to process 34 fps, while the Xavier NX processes 239
fps and the AGX Xavier can process 439 fps.[4] Though
the 239 and 439 are impressive, they are much more pow-
erful than anything we would need for this project. We
plan to analyze around 10 fps for our pose comparison, for
which the Jetson TX2 would meet our requirements. Ad-
ditionally, our camera, like many standard USB webcams,
captures video at 30 fps, so the capabilities of the NX or
the AGX are far beyond what is necessary for the scale of
our project.

Additionally, looking at our project budget, we were
able to get the TX2 developer kit from capstone inventory,
so we spent $0 on our board. The AGX developer kit, in
comparison, would have been $699, exceeding our budget
and leaving no room for any other purchases. The NX de-
veloper kit, on the other hand, would be within our budget
at $399, but we decided that the increased performance
was not worth the money that we would need to spend, es-
pecially when those performance increases aren’t necessary
for the success of our game.

We want to use a GPU for the pose analysis to reduce
the amount of computation required by the CPU. Since we
require real-time processing, it would be most efficient for
our GPU to do the image processing work instead of try-
ing to run our application on only a laptop. We want low
latency in our performance to provide user satisfaction.

4.2 Webcam

We chose our webcam requirements based on a trade-off
between image processing speed and how much of a user’s
movements we capture (number of frames). Real-time im-
age processing is as important as capturing key forms of
an exercise in our game. To determine the ideal frame
rate that would satisfy both of the aforementioned require-
ments, we compared the forms captured for running and
walking at different frame rates[1]. These were chosen as
the representatives of slow (ex: slow mountain climbers,
push ups) and fast exercises (ex: jump squat).

At 30 fps, the typical video frame rate, tiny changes
were captured for both exercises. These captured changes
weren’t large enough to justify the number of frames we
would have to analyze. At 10 fps, larger changes were cap-
tured, but the changes were of key forms of each of the
running and walking exercises. And, at 1 fps, a single rep-
etition of either exercise couldn’t be captured.

From these results, we concluded that around 10 fps
would be enough to capture the major parts of most exer-
cises. This lower frame rate will translate to fewer images
to process, which will help us reach our real-time image
processing goal. By this metric, we wanted a camera that
exceeds 10 fps, preferably recording in the 20-50 fps range.
The IFROO 1080p USB Webcam A1 model offers 30 fps,
which suits our needs. It also offers an 82 degree non-fisheye
lens, which will capture a large enough field of view or the
user.

18-500 Design Report - March 17, 2021 Page 4 of 8

Initially we had looked at a variety of CSI camera op-
tions, but the USB webcam will provide us with more than
enough fps, while costing at least $100 less than the CSI
cameras, so it is more suitable for our game.

4.3 Tensorflow OpenPose

At the beginning, we planned to use OpenPose for pose
estimation. It is a real-time system developed by CMU
Perceptual Computing Lab to jointly detect human body
key points for images and videos. It supports hand and
foot key point detection as well. However, after installing
OpenPose and testing it on a laptop, we found it to be ex-
tremely slow. The frame rate was lower than 0.1 fps when
a video was processed, and the runtime of pose estimation
for one image was approximately 9 seconds. Since we want
low latency for our project, we switched from OpenPose to
TensorFlow OpenPose.

TensorFlow OpenPose is a library built based on the
original OpenPose. It includes the same model for pose
estimation and takes out some features, such as key points
detection for hand and foot. TensorFlow OpenPose is not
as accurate as OpenPose but is much faster. The average
runtime for TensorFlow OpenPose to process one image is
about 1.1 seconds. Since we will not being using key points
on hand or foot for our pose comparison, and we want low
latency, TensorFlow OpenPose is clearly a better choice for
us.

4.4 CMU Model

TensorFlow OpenPose library includes four different
models for pose estimation: CMU, Mobilenet thin, Mo-
bilenet v2 large, and Mobilenet v2 small. We ran a set of
50 images with each model to test the runtime and accu-
racy. We manually evaluated the accuracy of key point
positions detected by TensorFlow OpenPose because the
sample size is not too large. We considered the detection
result for a image to be accurate if all visible joints of the
body have been correctly detected.

Figure 4: Test with different models.

We found that the CMU model works pretty well over-
all. It sometimes makes mistakes when the background

is not clean, the person is lying down, or some limbs are
hidden behind the body. The Mobilenet models are much
faster compared to the CMU model, but for some images
they are only able to detect parts of body, or are missing
out the key points completely.

Based on the results, it appears that the CMU model
is obviously the most accurate one; since we want high ac-
curacy for our project, we will use the CMU model though
it takes longer than the other models.

4.5 PyGame

Our user interface is important to our game because
it significantly influences a user’s experience. An inviting,
easy to use interface will increase a user’s satisfaction.

Since we chose Python as the language for our project,
we considered using Tkinter as well as PyGame for the cre-
ation of our user interface. We eliminated Tkinter in favor
of PyGame because Tkinter is simpler and doesn’t have as
many builtin features as PyGame. PyGame is also meant
to simplify the game-making process, which better matches
our goal of creating an exercise game.

5 SYSTEM DESCRIPTION

Figure 5: Software block diagram.

5.1 Image Pre-processing

We will use OpenCV for image pre-processing before
feeding the frames into TensorFlow OpenPose for pose es-
timation. We will first select the key frames which we want
to analyze from the video captured by webcam. Our plan is
to select specific frames based on timestamps in OpenCV,
and the timestamp for each exercise varies depending on
the standard workout videos we are using from our work-
out library. We will select frames within 1 second around
that timestamp to allow some speed differences.

We also need to pre-process the frames to ensure the
accuracy of pose estimation. We tested TensorFlow Open-
Pose with images from 5 different workout exercises, 10 im-

18-500 Design Report - March 17, 2021 Page 5 of 8

ages per workout, to understand which poses TensorFlow
OpenPose have difficulties detecting.

Figure 6: Test with different workouts.

From the test results, as shown on figure 6, it appears
that poses with twisted body and poses lying down are
harder for TensorFlow OpenPose to detect correctly. In
that case, we will try to increase the detection accuracy
by pre-processing the frames. For instance, we will rotate
the frames with the person lying down, such as the poses
from the Elbow to Knee exercise, since it would be easier
for TensorFlow OpenPose to perform estimation on poses
with the human head at the top of the image.

5.2 Pose Alignment

After TensorFlow OpenPose performs pose estimation
on the user’s poses, we need to align the poses before we
proceed to pose comparison. We determine the differences
between user’s pose and standard pose by computing the
angles between limbs. Since angles would not be affected by
resizing or rotating, and we do require the users to place
the camera at a specific angle, we do not need do pose
alignment in space.

However, we do need to perform pose alignment in time.
We will penalize the users for doing the exercises signifi-
cantly faster or slower than the standard exercise clip shown
to them on the screen, but we want to allow some tiny speed
differences. If the user does the exercises slightly faster or
slower than the standard one, for example, the difference is
within 1 second, the score will not be affected. Thus, pose
alignment in time is needed. We are looking in to the Dy-
namic Time Warping method, an algorithm that measures
similarity between two temporal sequences. We will look
for the best alignments between two time series, and com-
pare the frames of the poses that align with the standard
poses.

5.3 Pose Comparison

TensorFlow OpenPose will output 18 key points after
the torso detection. We will use the positions of these key
points to perform pose comparison. The key points po-
sitions are represented as 2D coordinates in a Cartesian
plane, so we can compute the angles between the limbs by

simply computing the angles between the vectors defined
by these coordinates.

Figure 7: OpenPose angles.

As shown on figure 7 above, we want to compute and
compare a total of 8 angles: R1, L1, R2. . . and L4. For
instance, if we want to get angle R1, we will first compute
the vectors from key point 2 to 3 and 2 to 0, and compute
the angle between these two vectors.

The difference between the user pose and standard
workout pose can be determined by computing the differ-
ence between the angles. For front-view poses, we will com-
pare all the valid angles. For side-view poses, since some
limbs might be hidden behind the body, we will only com-
pare a specific set of angles for certain workout poses. We
will later use the angle differences for score computation.

5.4 Workout Generation

We will use AWS to store a library composed of single
repetition clips of all of our potential exercises. Each exer-
cise will be labeled by their name, and will be accordingly
categorized by the type of exercise (arms, legs, core) and
it’s difficulty level.

Workout generation will work hand in hand with the
pose comparison that we will be performing. Upon begin-
ning the game, the user will perform a basic set of exercises
(ex: for the core evaluation, users could be asked to per-
form 40 crunches, 20 russian twist crunches, 20 leg lowers,
and 20 reverse crunches). Using pose comparison, Work It
will compute a score for each of the arms, legs, and core
requirements. This score will be scaled to determine the
amount of repetitions that the user should complete in that
category to build up their full body workout. For example,
a score of 60/100 for core may have a scale factor of 3 and
recommend a workout that includes 180 repetitions of core

18-500 Design Report - March 17, 2021 Page 6 of 8

exercises for which the user would strive for precision with
the demo video.

After the required total repetitions is determined, we
will randomize the selected exercises from within the li-
brary options. Repetitions of each selected exercise should
range from 20-40, depending on difficulty. In our library we
plan to assign each exercise a difficulty level of either easy,
medium, or hard (1, 2, or 3), where, for instance, an easy
exercise would be assigned closer to 40 repetitions while a
hard exercise would be assigned 20 repetitions.

After our algorithm has specified which exercises are
chosen at a specified number of repetitions, the selected
exercise library videos will be looped for that amount of
repetitions to be displayed on the screen for the user to
follow as they complete that exercise.

5.5 Score Computation

Score computation will be based on pose analysis and
the number of repetitions for the exercise. For a breakdown
of a specific exercise, we can give each individual repetition
a score ranging from 0-1, where a zero would be absolutely
no accuracy between the user video and the demo video for
each compared frame, and a one would require all angles
between key points to match with very minimal error. Due
to variance in body types, even with normalization and
alignment of the user video, a very well performed exercise
should score between .9 and 1 for each repetition.

Repetition scores will be summed together for the total
exercise score, and that exercise score will be added to the
overall total. Because there will be differences in lengths
of workouts (variance of repetition amounts based on diffi-
culty levels) we anticipate needing to scale these total scores
by some scale factor in order to always provide a score out
of a set total (ex. a full body workout score will always be
given to the user out of 1000).

We prefer to give the user an integer score instead of
a percentage for their performance since we are sticking to
the idea of the game format. Similar to the video game Just
Dance, an integer score will increase the ease at which the
user can determine their performance and improvement.

5.6 User Accounts

SQLite will be used for robust storage of user data. We
will be able to assign a user an ID and use this ID to look
up all previous information regarding their past workouts.

By saving a workout score along with the date com-
pleted, we can efficiently track progress overtime of Work
It usage and display it in a chart that is easy for the user
to interpret. We will also use a combination of user IDs
for the construction of a leader board. The top scores
along with the date completed and the user account will
be stored in the SQLite database for easy lookup when a
user wants to view the current leader board. By using the
SQLite database, we will be able to substitute in current
high scores when they pass scores on the current leader
board.

6 PROJECT MANAGEMENT

6.1 Schedule

Currently, we are transitioning between our setup phase
and our first execution phase. We have chosen a list of
videos from which to assemble our workout library, as well
as done initial OpenPose testing using a laptop on still
frames from a few of the workout videos. We have also
begun setup of our TX2, though we still need to finish
OpenPose installation of the physical board.

We are moving into execution, where we will now be as-
sembling the library in AWS, as well as implementing our
workout construction algorithm from those videos. From
there, we will be analyzing the pose of two different videos
of the same exercise to implement pose comparison and
test the way we are evaluating the accuracy between poses.
These steps will take place over the next few weeks.

6.2 Team Member Responsibilities

Even though we split our project tasks up among our-
selves, we will all work together on the tasks. The assign-
ment of responsibilities is more for leadership of the task.

Zixuan has been, and will continue, leading image pro-
cessing and analysis using Tensorflow OpenPose. Maddie
will lead programming and testing OpenPose on the Xavier
board. She will also be in charge of creating user accounts
and score tracking over time. Sarah will lead the creation
of the user interface, the scoring algorithm, and the exer-
cise library in AWS. Sarah and Maddie will work together
to create the workout construction algorithm that will gen-
erate workouts based on users’ fitness levels.

All of us will contribute clips to the exercise library.
This includes manually ranking the difficulty of the exer-
cises. We all will also test and debug our algorithms for
pose comparison and score generation.

6.3 Budget

Item Cost Source
Jetson TX2 Xavier $0 18-500 Parts Inventory

Camera $30.50 Amazon
AWS $0 18-500

6.4 Risk Management

One of the risks we might encounter is high latency. To
reduce computation and runtime, we will only select and
compare key frames from the user’s workout video and use
the 15-second breaks to process the images.

Another potential risk is that TensorFlow OpenPose
may not be able to detect all key points on the user. After
some testing, we learned that clothing and background can
both affect the estimation accuracy. We will require the
users to wear tighter clothes and have a clean background.
TensorFlow OpenPose also tends to make mistakes when
the person is lying down. We will do some pre-processing,

18-500 Design Report - March 17, 2021 Page 7 of 8

such as rotating and resizing, for certain poses to increase
the accuracy.

If the score generate is not able to reflect the perfor-
mance accurately enough, we will test it with the good
form vs. the poor form, doing full repetitions vs. doing
only partial repetitions of the exercise. The score should
reflect the corresponding level of completion and accuracy.
Therefore, we can figure out which part of our algorithm
needs to be fixed.

7 RELATED WORK

Two similar Capstone projects are Falcon: Pro Gym
Assistant, from Fall 2020, and Virtual Yoga Coach, from
Spring 2019. Falcon: Pro Gym Assistant customizes work-
outs for it’s users and provides periodic feedback on their
posture. So, it’s similar to Work It because it also generates
customized workouts for their users. However, it differs in
how it process it’s images (use an FPGA) and in when it
provides feedback to it’s users (periodically throughout the
workout).

Virtual Yoga Coach provides form feedback for users’
on a limited number of yoga poses. Although the exercises
it supports are different from the ones we support, it’s still
similar to Work It because it also requires image process-
ing and analysis, and uses the same software (Tensorflow
OpenPose). Because it uses the same software libraries,
and it’s goals were similar to ours, we were able to guide
some of our design choices by looking at what the creators
of this project did. This is how we decided to use angles in
our pose detection algorithm.

References

[1] IPVM. “Frame Rate Guide for Video Surveillance”.
In: (Jan. 2021). url: "https://ipvm.com/reports/
frame-rate-surveillance-guide".

[2] NVIDIA. “Jetson TX2”. In: (). url: "https : / /

www.nvidia.com/en- us/autonomous- machines/

embedded-systems/jetson-tx2/".

[3] American Heart Association editorial staff. “Warm
Up, Cool Down”. In: (Sept. 2014). url: "https://
www . heart . org / en / healthy - living / fitness /

fitness-basics/warm-up-cool-down".

[4] Elaine Wu. “Compare NVIDIA Jetson Xavier NX with
Jetson TX2 Developer Kits”. In: (2020). url: "https:
/ / www . seeedstudio . com / blog / 2020 / 05 / 19 /

compare-nvidia-jetson-xavier-nx-with-jetson-

tx2-developer-kits/".

18-500 Design Report - March 17, 2021 Page 8 of 8

Appendix A

Figure 8: Gantt Chart

