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Abstract–A system capable of teaching people how
to play chess on a real chessboard. The system is able
to play chess against a human being and also recom-
mend moves to give them optimal moves to help them
improve their performance. The system involves a
real chessboard with a camera that takes image when
pressed a button to detect the moves of the chess
pieces on a computer. Then, it validates the move and
also recommends moves on the FPGA, communicating
through UART with the computer.

Index Terms—Artificial Intelligence, Chess, Com-
puter Vision, Design, FPGA, HPS, OpenCV, PyGame,
Stockfish, UART

1 INTRODUCTION

The Chess Teacher is motivated from learning how to
play chess in this pandemic and the chess boom after the
Netflix’s historical drama “The Queen’s Gambit” became
famous. In the COVID era, it is hard for people to learn
how to play chess from a human coach or play over the
board with others. We wanted a way to solve this issue
when people are desperate to learn how to play chess after
the boom from the Netflix drama. Our group aims to cre-
ate a Computer Vision based Chess Artificial Intelligence
(AI) which can compete against a human player and teach
various moves while a user is playing the game.

Computer Vision based Chess AI can give the follow-
ing advantages. First, people can save money from the
in-person tutoring. Because the Chess Teacher will recom-
mend various moves and play against the human player,
the user does not have to learn from a human coach which
can cost quite a lot. In addition, our approach definitely
helps social distancing in the pandemic since people do not
have to meet each other to play chess. Most importantly,
users can play with a physical chessboard. There are chess
games available online, but users often feel like they are not
playing chess. They feel like they are playing a computer
game. However, because our Computer Vision chessboard
detector can detect changes on the board, users can play
with an actual chessboard which will help them feel like
they are in competitive settings such as tournaments.

Our goal for this project is to let people enjoy playing
and learning chess with physical chessboards and pieces
without any help from other people. In order to achieve
this goal, we need to detect the board accurately and effi-
ciently through computer vision algorithms. The computer
of the Chess Teacher must detect changes on the board
within 400 ms with 99 percent accuracy. The FPGA of

the Chess Teacher should be able to generate all possible
moves in 500ms. The UART communication between the
FPGA and the computer must have a latency of less than 1
second with 100 percent data accuracy. The user interface
of the Chess Teacher should be able to display the board
correctly 100 percent of the time.

2 DESIGN REQUIREMENTS

2.1 Move Detection

The main requirement of the move detection is split into
two parts: the accuracy and the processing time. The ac-
curacy of detecting the board will be done through a scene
of 40 unique moves. The reason behind 40 unique moves
is that an average of moves per chess game is 40 moves.
To test the accuracy, after 40 unique moves, we will have
a visual confirmation of where the chess piece moved to
on a physical board and also print out what the software
thought to make sure both of them indicate the same posi-
tion of the chessboard. To achieve 100 percent accuracy, we
want to ensure none of the moves are detected incorrectly,
since not detecting the move will have a significantly neg-
ative impact on the user experience especially messing up
with the clock system. To measure the processing time, the
software will have print statements to indicate how long it
took to detect the move in milliseconds after receiving two
frames.

2.2 Legal Move Generation

For the main requirements of the legal move generation,
we want to ensure 100 percent correctness on all generated
moves. We tested the correctness of legal move genera-
tions on 10 unique board states. On these 10 unique board
states, we will check all the valid moves by going through
each piece and see if all the moves have been generated
correctly. This is part of the FPGA subsystem and hence,
we will provide a hardware test bench which provides the
proper inputs and checks the outputs for correctness. We
also have a latency requirement for this move generation.
We want the overall system to run very quickly and given
that we are using the FPGA to accelerate stockfish, the
legal move generation should take 50ms at the most.

2.3 Communication Protocol

The main requirements of the communication protocol
are accuracy and speed. We want to ensure that each of
the packets we send is not corrupted and 100 percent cor-
rect. We also want to ensure that the speed of the Transfer
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Protocol to be under 1 second. This is important because
communication will be the main bottleneck of the FPGA
subsystem. The user should not experience any large la-
tency or noticeable lag after making their move.

2.4 User Interface

The main requirement of the user interface is its cor-
rectness and accessibility. The interface should show the
correct state of the board. The correctness is tested on vi-
sual confirmation on whether the board and the interface
matches. In addition, we wanted the user interface to be
easily accessible to the users. Users shouldn’t have trouble
understanding how to play the entire game. So, we focused
on making the interface intuitive and easy for the users.

3 ARCHITECTURE OVERVIEW

The overall architecture is divided into two main sub-
systems. The computer vision software, and the game logic
software/hardware system. These subsystems are further
divided into the following components:

• OpenCV

• UART Communication Protocol

• PyGame

• FPGA Custom Hardware

• Stockfish AI

We will now describe in detail these components and
interconnects and demonstrate how they fit into our over-
all architecture. For a full diagram of how all components
work and connect, see the appendix.

3.1 OpenCV

We are using OpenCV for our Computer Vision part
of the project, which provides an optimized Computer Vi-
sion library and tools. Since OpenCV supports Python,
it easily soothes into our program which is mainly based
on Python. OpenCV provides conversion to HSV scale,
chess corner detection and blob detection. We use all of
the functions mentioned to reduce the development cycle
drastically and also tune them carefully to achieve our tar-
get accuracy. The OpenCV takes in input from the frames
obtained from the camera to do all the computer vision
work necessary.

Figure 1: Chessboard image converted into HSV space and
black and white

3.2 UART Communication Protocol

UART is used to communicate between the PC and
FPGA. We chose UART over other serial communication
protocols such as I2C or SPI because of the ease of im-
plementation. The FPGA has a dedicated UART to mi-
croUSB port, thus allowing an easier time to implement
the serial communication protocol. I2C or SPI would re-
quire use of general purpose IO pins and possibly a very
specific cable to connect to the PC. Moreover, the UART
protocol is estimated to fulfill the communication latency
requirements as demonstrated in equation 1. We are also
able to use the python library PySerial on both the FPGA
and the PC to further reduce the burden of implementing
a complex communication system.

Assumption 1: 921,600 baud rate

Assumption 2: 20,000 bits / board state

20,000/921,600 = 0.022s communication latency

3.3 PyGame

PyGame is a cross platform set of Python modules de-
signed for writing video games. A Chess game written with
PyGame will mainly handle the user interface part of the
game. The user interface will show the status of the board,
moves that the Chess Artificial Intelligence makes, and rec-
ommendation of moves for the user.

3.4 FPGA Custom Hardware

The FPGA custom hardware will be computing the le-
gal move set for any given board state. This is the com-
pute heavy portion of any chess engine because of the sheer
number of squares and possible moves for any given square.
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However, the task is easily parallelizable by generating le-
gal moves for all squares at the same time. The FPGA
excels at this task as it can generate application specific
hardware for each square on the chessboard which allows
the legal move generation to happen in parallel for each
square. Furthermore, the FPGA consists of a hard-system
processor (HPS) which allows the chess engine (described
in section 3.5) to be closely integrated with the FPGA’s
application specific integrated circuit. This reduces any
additional communication latency.

3.5 Stockfish AI

The chess engine we are using is Stockfish, which is an
open source chess engine. The majority of the engine code
will run on the FPGA’s Hard Processor System (HPS).
Move generation is repurposed to make use of the custom
FPGA logic. This system used Stockfish 8, an older ver-
sion of the engine. This is because of some compatibility
issues due to the Arm Cortex CPU and somewhat dated
operating system which ran on it. We chose Stockfish be-
cause it is the most known open source engine, and as it
is open source we may modify its code base to implement
and make use of our FPGA fabric[8].

4 DESIGN TRADE STUDIES

4.1 Chessboard Corner Detection

We used the chessboard corner detection algorithm pro-
vided by OpenCV to retrieve chessboard corners’ individ-
ual pixel points to keep track of the positions of pieces.
Another option for us was to use an edge detection of the
square tiles on the chessboard. Although the edge detec-
tion might be effective at first, the accuracy of the edge
detection was poor compared to that of corner detection.
Because there are so many edges on the chessboard which
can possibly make a noise, a small error on edge detection
could result on wrong positioning of the tiles and result in
wrong positioning of the pieces. Hence, we decided to use
chessboard corner detection which was more accurate than
edge detection algorithm.

4.2 Move detection Algorithm

To detect the moves of the chess pieces, we had two
choices. The first choice was to use template matching [7].
to find which pieces moved to where. From having two
frames to compare to, we find each position of the pieces to
find which moved to where. However, the template match-
ing was not very accurate. In figure 3, you can see the
template and in figure 4, you can see the whole chessboard
to find the template. As you can see with human eyes, the
template and the image does not really match in most of
the pawns due to the angle of the camera and also because
of having different backgrounds. As a result, the algorithm
is also unable find any correlation from the image, and the
template matching was not particularly useful.

Figure 3: An Image of a Pawn as a Template

Figure 4: The Board to Match the Pawn

The other choice, using background subtraction algo-
rithm [5], was effective. We used the background subtrac-
tion to find the original position of the chess piece and
where it moved to. Since the camera does not move, only
the pieces that have moved from the two frames that the
system uses will be subtracted and will be represented as
white circles because white pixels have a value of 255. An-
other reason that this is useful is because our camera has
a top down view, so in most cases the subtraction of pieces
will result in circles rather than random shapes. Having
circles is especially useful for blob detection after the back-
ground subtraction step because the shapes are similar.

4.3 Turn Based Chess Game

To do a background subtraction algorithm on two
frames, we could have chosen two approaches to take the
frames. First approach is to do a real time analysis of the
chessboard. We can capture multiple frames and try to find
the best two frames which the chess system sees fit to sub-
tract background on. However, though many applications
use this approach, our system is just complicated by this
design. Instead, we could use a turn based system, where
the users click a button to capture each frame, similar to
how chess players a push a button to indicate that they are
done. Using this approach, the game becomes more real-
istic and also becomes more accurate to meet our design
requirements.



18-500 Final Report - May 14, 2021 Page 4 of 12

Figure 2: System Diagram

4.4 User Interface

We wanted to use Python to develop the User Inter-
face because we are also using OpenCV which is written
in Python, which makes it easier for the User Interface to
interact with the Computer Vision algorithms. There are
mainly two possible options for us to create the User Inter-
face. First, we can use tkinter which is a built-in Graphical
User Interface toolkit. However, tkinter only supports sim-
ple features, so we thought it would be a good idea to use
a different toolkit. The second option was to use Pygame.
Pygame is explicitly built for creating a game using Python
programming language. Thus, it will be a better idea to
use Pygame over tkinter to create the User Interface for
our Chess game. [3]

4.5 Computer

While it may be easily thought that Raspberry Pi would
be an appropriate choice for our choice of computer to run
the computer vision algorithm, the Raspberry Pi was not
able to handle the Pygame. Pygame is heavy for many
reasons. It is constantly reading external resources, read-
ing the events going on and also reading the position of
the mouse constantly. As a result, the Raspbery Pi kept
on crashing after not being able to handle the workload of
Pygame. In metrics, the Computer Vision algorithm took
20 percent workload of the CPU while the Raspberry Pi
took around 80 percent workload of the CPU that con-
stantly made the Raspberry Pi crash. As a result, we de-

cided to use the Macbook Air that we had readily avail-
able, which has same number of 4 i5 Intel cores running
at 1.1 GHz compared to 4 Arm Cortex A72 cores running
at 1.5GHz on the Raspberry Pi. Just by the numbers, it
may seem the Arm Cortex should perform better, but the
Intel cores actually perform better because of other factors
such as instructions per cycle, better CPU cooling, and
overclocking.

4.6 Computer Vision Software

For using OpenCV, we had two choices. We could have
either used C++ or Python. C++ had its advantages. We
had more fine grained control of the computer vision al-
gorithm, which would decrease the execution time of the
OpenCV algorithms. Python had other advantages. It
has a fast development cycle, and since the Pygame was
in Python, the integration with the UI would be seamless
without having to compile C++ into machine code and in-
tegrate the code with the user interface application. Since
the execution time of the OpenCV algorithm was relatively
negligible because the algorithms we were running were not
heavy, we chose Python as our software for a faster devel-
opment cycle and better portability.

4.7 FPGA

We decided to use an FPGA for move generation. This
was mainly inspired by previous chess engines which han-
dled move generation on FPGA. Such engines include Hy-
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dra[4] which was developed in 2004. We hope that running
Stockfish on the integrated HPS system will ensure that
latency costs are minimized and there is a total compute
time decrease as compared to Stockfish’s base move gener-
ation. FPGAs and custom logic appear to have some ad-
vantage in terms of computing legal moves of a given state.
This is because the task is highly parallelizable over the 64
squares of the chessboard. Checking for the legal moves of
each of the 64 squares requires the exact same logic and
all the other squares. Hence, it makes sense to attempt to
accelerate the move generation portion of the chess engine
over an FPGA. Alternatively, we may instead run stan-
dard Stockfish13 on the PC. This may have reduced the
communication latency needed because of the FPGA sub-
system, but may have worse compute times overall when
considering the legal moves of any given board state.

4.8 Terasic DE-10 Standard FPGA

We chose the DE-10 Standard mainly because of its IO
capacities and its relatively simple layout and design pro-
cess. The DE-10 Nano has no switches and only 2 push
buttons. We figured there may be a possibility that we
use FPGA IO to toggle different modes in Stockfish. The
DE10-Standard has sufficient switches and push buttons
to allow for this possibility[10]. We also considered Xilinx
Kintex-7 boards but ultimately decided to use an Altera
compatible board due to our experience with the Altera
workflow as compared to Xilinx’s Vivado software. The
DE-10 Standard also had capabilities to display to an ex-
ternal monitor via VGA cable. This was important for
debugging purposes as a graphical interface came in handy
when working with the FPGA.

4.9 Stockfish

We chose to build on the Stockfish engine rather than
other engines because Stockfish is open source and per-
haps the most widely known and documented open source
chess engine. Although it may not be the absolute best as
it has lost to other engines such as Alpha-Zero[9] in com-
puter chess tournaments, it has won a fair number of chess
tournaments and was the most documented of open source
chess engines. Another open source engine we could have
used was Leela Chess Zero but we decided there was more
documentation and popular usage around the stockfish en-
gine.

5 SYSTEM DESCRIPTION

5.1 Image Processing and Chess System

Figure 5: Image Processing Diagram

The computer starts the image processing through re-
ceiving images from the camera through a USB connection.
The images received form the camera will be converted
from a RGB image into a HSV space. This will allow the
image to be less affected by glare which helps our computer
vision algorithm to detect the board and pieces better. Af-
ter converting into HSV space, the chessboard detection
algorithm will detect the corners of the chessboard. The
problem with this chessboard detection algorithm is that
the order is non-deterministic. It will sometimes look for
corners from the top left to bottom right, and it will some-
times look for corners from top right to bottom left, and
etc. To solve this problem, we sort the corners so that the
bottom left corner is the first corner on our list. Another
problem we faced was that this chessboard detection algo-
rithm can only detect the inner corners of the chessboard,
so we had to use the 64 inner corners [2] to find the outer
most corners. The computation behind getting the outer
most corners was done by calculating the average width
and height of the corners and using this information to
predict the outermost corners. After getting the outermost
corners, the number of corners become 81 corners.

Figure 6: Corners Detected as Green Dots on a chessboard

By obtaining the coordinates of the 81 chessboard cor-
ners like on figure 6, we are able to get the corners of each
square. Then, we place the pieces and map each of the
squares to its pieces. When the game starts, the camera
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will automatically save the frame that it is seeing at the
moment which will serve as the initial frame. Then, af-
ter the white player makes a move, the player presses the
button. This signifies an end of a turn, in which case the
camera will save another frame at the end of each turn.
From these two frames, we use the background subtraction
algorithm on the board to see which pieces have moved by
comparing two frames.

The background subtraction subtracts the two frames.
Then, it uses a threshold of 45 to set every pixel value
lower than 45 to 0 and every pixel value greater than 45 to
255. As a result, we get the background as a black back-
ground with the moving piece as white circles to indicate
where it moved from and where it moved to. An example
of this result is shown on figure 7. Afterwards, we use the
fact that the ones subtracted are circles to our advantage
by using a blob detection[6]. Because blob detection algo-
rithm only works on white backgrounds, we first invert the
frame we obtained from the background subtraction algo-
rithm. Then we find the new black circles through the blob
detection. An example of this result is shown on figure 8.
From the blobs that we identify, we get the coordinates of
the original position of the piece and the position it moved
to. From these positions, we look at our original 81 chess
corners to find which square the coordinate belongs under.
We find if the piece belongs to a square by comparing the
top left and bottom right coordinates of the corners of each
square of the chessboard. If the coordinate belong between
the coordinates, then we locate the squares to the system.
Then the system looks if any of the squares correspond to
squares of any chess pieces. If it does, we know it is the
original position that it used to be in. Then, the other
square is the new position it moved to. The reason that we
have to find this manually is because blob detection is not
deterministic and can potentially find one circle before the
other and vice versa.

After the moves are recognized, the board first commu-
nicates with the FPGA to validate the possible moves. If
the move turns out to be illegal, it will communicate with
the user interface to make the user interface show the user
that the move made is an illegal move instead of allowing
it on the board state. Otherwise, the board updates the
board state with the new chess piece positions and com-
municates with the user interface to show the new board
state.

Another feature that the chess system has is recognizing
whose turn it is. This feature helps the chess game from fig-
uring out certain edge cases. For example, if a piece takes
another piece, it will show two circles from the background
subtraction, but we are unable to figure out which piece
took which piece because the the pieces are converted to
black and white. By having turns, we know which one took
the other one because one of them has to be a white piece,
and the other one has to be a black piece. So we eliminate
the other piece from the game in this way.

Figure 7: Frame Obtained from Background Subtraction

Figure 8: Blob Detection Locating Two Blobs with Red
Circles

5.2 FPGA + Hard Processor System

The FPGA and Hard Processor System are used to gen-
erate the legal moves given a specific board state. The Hard
Processor System (HPS) is tasked with running Stockfish,
an open source chess engine/AI, with slight modifications
to make use of the FPGA hardware. Custom logic will be
described in SystemVerilog and synthesized onto the FPGA
board. This custom logic will handle the legal move gen-
eration of a specific board state. This will aid stockfish
to make faster decisions and also quickly verify whether or
not the human user has made a legal move. The General
algorithm of the custom logic is demonstrated in the two
figures below (figures 9, 10):
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Figure 9: Standard Queen Logic

Figure 10: Standard Knight Logic

To summarize, one may think of the circuit as a grid
of comparators. For the queen, it must compare itself to
all squares which are on the same diagonals, same row, and
same column. When it encounters a piece which is the same
color as itself it must not move to that square or past it.
When it encounters a piece which is a different color it may
move to that square but not past it. The knight, on the
other hand, has 8 set squares which it may move to. We
simply check these 8 square to see if they are legal squares
and if there is not a piece of the same color on that square.
All other pieces move similar to a queen and will have some
subset of the queen’s move.

5.3 User Interface

Figure 11: Main User Interface when Chess Teacher is
started

User Interface is mainly written in Pygame, which al-
lows the user to interact with the overall system. The
figure 11 above is the interface when the user first starts
Chess Teacher. There are mainly three options on the main
page: start the chess game, see instructions, and detect
board. After reading the instructions on how to play Chess
Teacher, user must detect the board first without any pieces
placed on the board. The camera that the user is using
should have a top-down view in order for the easier detec-
tion of the chessboard. When the user interface shows that
the board was detected successfully, user can start placing
chess pieces on the board and start the game whenever the
user is done setting up the initial chess game set up.

When the game starts, the user has two options. First,
the user can place the piece by him or herself, or the user
can press the light bulb button [1] see a recommendation
of move that the AI is recommending. The figure 12 be-
low shows a recommendation of move with a dotted circle
which the AI is suggesting. This is to help user learn var-
ious moves from the recommendations that the AI sends.
Once the AI’s turn is over and the User Interface shows
the AI’s move, the user needs to move the piece for the
AI so that the new board representation can be recognized
by the Computer Vision Algorithm. And, this process will
be repeated until the game is over. Each user and the AI
gets 5 minute of total time to make moves in a single game,
and the timer for each of them are shown on the top-right
corner of the user interface.

Figure 12: User Interface when the Game is played
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6 TEST & VALIDATION

6.1 Move Detection

As stated in the design requirements, there were two
main criteria to the move detection: accuracy and latency.
The accuracy we aimed for was 100 percent accurate from
40 frames because the user should have a good experience
in each game. The latency we aimed for was less than
400ms for the user to have a low-latency experience with
the game.

The accuracy of 100 percent was achieved under perfect
conditions. By perfect conditions, there are mainly two re-
quirements to be met. The first requirement is to make
sure the lighting is appropriate. The lighting source needs
to be ideally on top of the chessboard. If the lighting source
is not from the top of the chessboard, then the chess pieces
cast a shadow on the chessboard. Then, when moving the
chess piece, the shadow carries over with the chess piece. In
these cases, the chess system occasionally detect the move
of the shadow rather than the actual move, which is adja-
cent to the actual move. The second requirement is for the
board to not have the same color as the chessboard. This
problem was initially a major problem for us because the
camera was not able to distinguish the board color from the
color of the chess pieces. Hence, we have resorted to using
red and blue pieces for our chess game, which corresponds
to white and black pieces respectively.

There are some parameters that is tuned in order to
meet the requirement of 100 percent. The first parameter
is the threshold of converting the frame we obtain from the
background subtraction algorithm to binary values. After
subtracting two frames, in order to convert them to binary
values, we had to threshold the difference. After trying
different values, we found 45 to be the best value as the
threshold. 45 keeps the most of the subtraction of the two
frames. If the value is too low, then there is too much
noise to be handled by the blob detection algorithm. If the
value is too high, then the differences that the background
subtraction is just turned into black pixels. This situation
is particularly true for red pieces moving to green squares.
Since the values of the red and green values do not differ
by much, the change is subtle for the camera to recognize.
The next figures show the different results from different
thresholds. Figure 13 shows the different out comes of dif-
ferent thresholds during the conversion to binary values.
The top left image is the outcome of threshold at 10. As
you can see, there is too much noise, and the white circles
are hard to identify. The top right image is the out come
of threshold at 45. This is the final threshold we went for
with the best accuracy. The difference is barely cut off
which can be handled by the blob detection. The bottom
left image is threshold at 60. Here, we start to see slight
problems, the middle part where the top part of the pawn
is shown is slightly turned to black most likely due to glare.
In addition, most some parts of the pawn are cut off as well.
The blob detection sometimes does not handle this well, so
we did not use this threshold. On 32 of the opening moves,

it was not able to detect 4 times, resulting in 87.5 percent
accuracy. The bottom right image is threshold at 100. As
you can see, almost all of the difference are cut off, so we
did not use this threshold.

Figure 13: Four different thresholds

Another parameter that is tuned is the circularity. The
circularity is critical for chess pieces such as a knight. Other
than the two knights, every other chess piece has a circle
shape. However, from a top down view, the knight has its
back of head and the front of the head sticking out to aban-
don its circle shape. To account for this, we have tested few
different parameters for minimum circularity parameter of
the blob detection. Figure 14 shows the accuracy of move
detection from the different values of minimum circularity.
The accuracy of move detection was tested on 32 different
board states. We can see from the trend of the graph that
the accuracy is improved as the minimum circularity pa-
rameter is reduced. The error in the move detection were
mostly attributed the knight pieces not being able to be
detected.

Figure 14: Circularity vs Accuracy
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The last parameter that was tuned is the convexity pa-
rameter. This parameter was tuned after the circularity
parameter because the circularity parameter alone could
not reach. The chess pieces sometimes can have abnor-
mal convexity due to the angle that the camera is viewing
in. Hence, different convexity parameters helped accom-
modate for these cases. Changing the convexity parameter
also helped fixing detecting the knight pieces that were hard
to detect before. Figure 15 shows the accuracy of move de-
tection from the different values of minimum convexity.

Figure 15: Convexity vs Accuracy

After the parameters were tuned, 40 board states were
tested as mentioned on the design requirements. This was
tested on a normal game up to 40 turns and seeing if they
worked every time. We were able to achieve 100 percent
accuracy.

The goal of having move detection latency under 400ms
was achieved by mainly using our own background subtrac-
tion algorithm. The OpenCV algorithm has steps such as
Gaussian Blur to remove noise in a real-world scenario, but
since our chessboard only takes in two frames and does not
have much noise to our frames, we get rid of steps such as
this. Hence, we only find the difference between the pixels
of the two frames, get the absolute values of the frames
and make the pixel values binary to only find the useful in-
formation. We were able to achieve 22ms average in total,
which was tested on 40 board states and were averaged.
The timing was from the start of the background subtrac-
tion algorithm to the end of blob detection algorithm.

6.2 UART Communication and FPGA
subsystem

UART serial communication ends up being the bottle-
neck latency of our system. On average over the course
of 15 tests where packets of 4 bytes (the average chess
move encoded in long algebraic form) were sent from PC to
FPGA and a return packet was sent back stating whether
the move was legal or illegal. We calculated this time using
python’s time library. By simply adding a call to python’s
time function we can measure the time between sending
the packet using PySerial and receiving the return packet

using PySerial. Over the course of these 15 tests we got an
average round-trip-time of 542ms. A possible bottleneck
for the communication is that after sending a packet from
the PC, the PC must not immediately read the packet it
had just sent out. This means we must use a sleep of half a
second which ends up being the majority of the time taken
in our round-trip-time. The actual move generation took
just 3-4 ms and was measured in a similar fashion on the
FPGA simply using python’s time library to measure the
time to compute the result.

6.3 User Interface

We tested whether the UI could correctly represent var-
ious board states. This test was conducted on 20 board
states, and we confirmed that the user interface correctly
represents the board states 100 percent of the time. Specif-
ically, we tested multiple scenarios of the board states.
First, we tested whether the user interface is behaving cor-
rectly on regular moves. Second, we also confirmed the
case when a piece takes another piece. Third, we prevented
users from cheating to make multiple moves at a single time
and making a invalid move with a piece by showing ”Illegal
Move” message to the users. Thus, by testing with mul-
tiple scenarios, we have confirmed that the user interface
can represent boards in different cases.

7 PROJECT MANAGEMENT

7.1 Schedule

There were slight changes to our schedule from the pre-
vious version. In particular, we were able to finish our in-
dividual components to start integrating earlier than what
we proposed in the previous schedule. In addition, the in-
tegration actually took longer than what we expected it to
take because there were some details that we did not really
account for would take longer than what we expected. For
the integration, everyone worked together, but Joseph and
Drew mainly worked on integrating the computer vision
component and the user interface together, while Michael
worked on the integration between the computer and the
FPGA. The full schedule that we adhered to is included at
end.

7.2 Team Member Responsibilities

Michael was in charge of the FPGA and HPS sub-
system. This includes pipe-lining the legal move genera-
tion, integrating Stockfish code to utilize the FPGA custom
logic, and integrating UART communication with the PC.
The FPGA custom logic will be designed in SystemVerilog
while modifications to Stockfish will be in C++.

Joseph was in charge of the chess system being able to
use the computer vision algorithms correctly and detect-
ing moves. This involves implementing background sub-
traction algorithm, choosing the right parameters for the
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blob detection as well as testing them to have high accu-
racy, making sure the chess system is able to see the board
correctly from the moves it is detecting and testing the
robustness of chessboard system.

While collaborating with Joseph on computer vision al-
gorithms, Jee Woong implemented the user interface of the
Chess game. User interface of the game, written in Pygame,
is the main communication program for the user, which al-
lows the user to interact with the program, see recommen-
dations of moves generated by the Chess AI, and moves for
the Chess AI.

7.3 Budget

Table 1 is the list of materials we have used for our
product. Most of the materials were used for the product
only, but for some of them, we did not end up using them
in our product because the purpose was for all of us to
work parallel on the product since we were working from
different places. We eventaully ended up buying a main
chessboard and pieces to avoid having the issue of chess-
board and the chess pieces having the same color. We have
budgeted $346.33 for our complete product.

7.4 Risk Management

The risk factors we had in our project can be divided
into two parts. The edge cases in a chess system that we
could encounter and the integration of the subsystems.

There were three main edge cases in our chess system.
The first edge case was not being able to detect the chess
pieces on the board because they would have the same color
as the board. We were able to handle this problem by us-
ing red and blue chess pieces instead of white and black
chess pieces. Even though the red pieces were still simi-
lar to the black squares of the chessboard, we were able to
resolve this risk by finding an ideal threshold after our back-
ground subtraction to separate the piece from the square
it is on. Another edge case was not being able to detect
knights through blob detection because they were did not
have circle shapes from a top down view compared to other
pieces which did. These pieces were able to be detected
from having ideal values for the circularity and the con-
vexity parameter of the blob detection. The last edge case
was detecting the correct move when pieces are taken. If a
piece takes another piece, we were not sure how to figure
out which piece took which because the pieces were merely
circles from the view of the camera. To handle this risk, we
used the fact that we know whose turn it is to know which
piece took which. We know the positions of each piece, so
we know which piece is the white piece and which piece is
the black piece. Based on the turn the system recognizes,
it will make the piece that is appropriate take the other
piece.

There were two big risk factors in integrating our chess
system. The first risk factor was integrating all the algo-
rithms through a chess system. Detecting corners of the
chessboard and the blob detection being able to detect the

moving piece is one thing, but it is another thing to co-
ordinate them together. We need to identify which piece
moved through the background subtraction algorithm and
communicate with the board detection algorithm to figure
out where it moved to. We need to set up a chess sys-
tem in our code to coordinate all of the algorithms. To
mitigate this risk, we were able to finish our subsystems
earlier to have enough time for coordination. The other
risk factor was integration of all the hardware components.
The FPGA and PC must communicate with each other and
ensure that this communication happens without large la-
tency or lost packets. We have also mitigated this risk by
beginning integration as soon as possible and working on
components that can be integrated earlier on in our sched-
ule. These details are specifically listed in the Gantt chart
and schedule section.

8 ETHICAL ISSUES

An ethical issue that could arise from our product is
teaching people wrong chess moves. If our product does
not work as intended, people are going to learn chess in a
wrong way, and our product is going to make people have
poor chess skills. Not only that, it will waste people’s time
and money using our product. To mitigate this issue, we
need to make sure our product has great accuracy in com-
municating with the Stockfish engine system and displaying
the moves. The system should also be ideally reviewed by
professional chess players to make sure the chess moves are
optimal.

Another ethical issue that could arise from our product
is that people could lose their jobs. In particular, chess
tutors could lose their jobs because our product is cheaper
than their tutoring expenses. To mitigate this, we could
hire chess tutors to improve our product. The chess tutors
have experience in tutoring for a long time. Their experi-
ence could be valuable in knowing what each person needs
to learn at a certain level of experience. Hence, the tutors
should be hired to improve the features of our product.

The last ethical issue we have found is violating people’s
privacy with camera. Since our product has a camera and
a computer, with a computer’s networking capabilities, our
clients’ privacy could be violated by a malicious insider who
develops our product and adds a capability on the product
to share the video with the malicious insider. To mitigate
this product, we should remove all networking capabilities
in our product. Without networking capabilities, the prod-
uct would not be able to share anything. In addition, our
product does not require networking capabilities because
all the software could be pre-installed. We could also have
a switch to turn on and off networking capabilities for a
possible software patch.
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Table 1: Bill of materials

Description Manufacturer Quantity Cost @ Total
DE10-Standard FPGA Terasic 1 ECE Owned $0.00
Macbook Air 2020 Apple 1 Personally Owned $0.00
Chess Sets JAOK 3 $25.43 $76.29
Webcam Logitech 3 $42.39 $127.17
Webcam Stand Pipishell 3 $23.31 $69.93
Black and White chessboard ASNEY 1 $35.99 $35.99
Red and Blue Chess Pieces House of Staunton 1 $36.95 $36.95

$346.33

9 RELATED WORK

There are similar projects to ours, but none of them
seem to be exactly the same as ours. One example we found
was DecodeChess. DecodeChess is a virtual chess teacher
that goes in depth about recommending what the best move
would be in each of the situations. In comparison to ours,
this environment does not give a realistic environment, but
it does give more feedback than our game because it also
provides reasoning behind each move. Another example is
a Fall 2020 capstone project from the Blokus group. They
simulated a virtual environment for playing Blokus, which
is also kind of similar to our project in that they detect the
moves using a camera to upload it to a computer. The dif-
ference with ours is that our product goes against artificial
intelligence while the Blokus group used a player to player
interaction when playing the game.

10 SUMMARY

As we have shown, we believe we achieved the design
specification we originally planned. A small limitation we
have is that the AI can only recommend one move at a
time. If we had more time to implement our project, we
would have made our system to recommend various moves
in a given turn. It would have also been cool if we had
some way of automation to have the moves of the artificial
intelligence move on its own.

10.1 Future Work

There are two directions for expanding our product.
The first approach builds on our approach, and the other
approach changes the whole subsystems of our product.

The first approach is to build upon our approach to
make a p2p multiplayer chess game. Allowing users to com-
pete with other users on the web application would have
made out Chess Teacher much more interesting since users
can use their skills learned from Chess Teacher to compete
with others.

The second approach is getting rid of the computer vi-
sion aspect of our product. For this product to be commer-
cialized, we would want the environment get in the way of
the functionality of our product. Our whole setup of our
product is hard. We need a camera directly on top of the

chessboard, with having pieces that are not the same color
as the chessboard. The environment could also be a factor
in the performance of our product. If there is no light-
ing, our product would simply not work. If we abandoned
the whole computer vision aspect of the project and sim-
ply used magnets with sensors to show which piece moved
to where, it could have ignored the environment fully. I
believe this could be a better approach as it removes the
whole necessity of having a monitor and a computer too
which makes the product cheaper.

Another possible approach would be to fully integrate
the system onto FPGA. Building a UI which the FPGA can
run would be the main task as well as implementing some
features such a full chess engine on FPGA fabric similar to
that of Hydra as referenced earlier.

10.2 Lessons Learned

We learned that system integration is often the most dif-
ficult part of the project. Although certain features were
difficult to implement on their own, integrating all features
together tended to be the most difficult task. Hence, we
recommend for any future projects that more time is left
to integration of all components.

Glossary of Acronyms

• HSP - Hard System Processor, an on FPGA CPU
tightly integrated with FPGA custom fabric.

• HSV – Hue-Saturation-Value, type of color presenta-
tion.

• P2P – Peer to Peer, meaning computer systems of
peers connected through the internet
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