
Chess Teacher

Team B4: Michael Cai, Joseph Chang, Jee Woong Choi 



Application Area

● Learn how to play Chess using an AI
○ Saves money 

○ Social distancing

○ Customized levels depending on progress

● Play over the board with physical pieces
○ Creates a more realistic environment

○ Simulates tournament or competitive setting

● Analyze your games, showing various moves in a given turn

● Areas Covered:
○ Software Systems, Signals and Systems, Hardware Systems



Solution Approach



Hardware Setup



Complete Solution
<Chess Game Example>

Button to press when your 
turn is over

Timer shows each player’s 
time left

Click to show 
recommendations of moves



Complete Solution
Pseudo-legal move digital circuit:

● Grid of comparators to determine board 
state

● Knights cannot move to square containing 
piece of same color

● Queens cannot move to or past square of 
same color nor past square of other color

● All other pieces move like some subset of 
queen moves

Move by Knight being recognized by background 
subtraction and blob detection



Complete Solution FPGA

FPGA connected to PC via UART 

communication

Module described in previous slide 

interfaced using HPS

Module pipelined to meet clock 

requirements, 3 stages

Figure: UART output of all legal moves



Image Processing Metrics
Requirement Test Inputs Metrics Target Output Actual Output

Accurate Chess 
Board Detection

5 Different Chess 
Board Images

Accuracy in 
Detecting the 
Corners of the 
Chessboard 

Correctly

100% 100%

Accurate Move 
Detection

20 Chess Move Pair 
of Frames

Accuracy in Move 
Detection 

99% 100%*

Move Detection 
Latency 

20 Chess Move Pair 
of Frames

Processing Time < 400 ms ~18 ms

*based on perfect environment



Correctness Metrics
Requirement Testing Strategy Metrics Actual Output

Move detection Software + Visual confirmation
=> 20 unique moves 

99% accuracy in move 
detection &

< 400 ms processing time

20/20 Moves correctly 
detected

FPGA legal move 
generation

Hardware testbench (ensure correct 
legal moves generated)
=> 10 unique board states

100% Correct 10/10 Board states 
correctly analyzed

Communication 
between Computer 

and FPGA

Hardware testbench (analyze packets 
are sent correctly)

=> 15 unique packets 

Latency of < 1s &
100% data accuracy

15/15 unique packets 
from PC to FPGA.

FPGA to PC currently 
bugged

UI Visual confirmation of representing the 
board correctly => 20 unique moves

100% accuracy in 
representation of the board

20/20 Moves correctly 
represented



Latency Metrics
Requirement Testing Strategy Target Metrics Actual Output

Move detection Software + Visual confirmation
=> 20 unique moves 

99% accuracy in move 
detection &

< 400 ms processing time

~18ms

FPGA legal move 
generation

Hardware testbench (ensure 
correct legal moves generated)

=> 10 unique board 
states

< 500 ms 2 pipelined clock 
cycles, BRAM write 

and read: 
actual = ~3-4 ms

Communication between 
Computer and FPGA

Hardware testbench (analyze 
packets are sent correctly)

=> 15 unique packets 

Latency of < 1s &
100% data accuracy

Round Trip time 
bugged



Trade-offs
1. Pygame vs Tkinter

1.1. Pygame is a package designed to allow to create games in Python
■ Pygame is better at developing games

1.2. Tkinter is a simple Tk GUI toolkit
■ Tkinter is easy to use but do not support various effect in User Interface

2. Budget vs Time
2.1. Using original black and white chess pieces

■ Natural to have black/white chess pieces (but, it’s harder to detect -> needs more work)
2.2. Buying a new red and blue chess pieces

■ Might be little awkward to have red/blue pieces(but, it’s easy to detect -> less work)

3. Real-Time vs Turn-Based
3.1. Implementing a game in real-time provides much smoother experience for the users

■ However, the game may become slow and laggy
3.2. Implementing a game in turn-based needs the user to do extra work

■ When user gets used to it, the game becomes much faster



Project
Management


