18-500 Design Review Report: 03/17/2021

Chess Teacher

Author: Michael Cai, Joseph Chang, Jee Woong Choi: Electrical and Computer Engineering, Carnegie Mellon
University

Abstract—A system capable of teaching people how to play
chess. The system is able to play chess against a human being in
various levels and also recommend moves to help them improve
their performance. The system is built on a real chessboard with
a camera to detect its moves and the computing is done using a
Raspberry Pi and FPGA. By having a real chessboard, the system
allows for a realistic environment for the users. By playing
against an artificial intelligence, the system allows solo play.

Index Terms—Artificial Intelligence, Design, Chess, Computer
Vision, FPGA, Game Tree, Open CV, PyGame, Raspberry PI,
Real Time Board Analysis, Stockfish

I. INTRODUCTION

THE Chess Teacher is motivated from learning how to play

chess in this pandemic and the chess boom after the Netflix’s
historical drama “The Queen’s Gambit” became famous. In
the COVID era, it is hard for people to learn how to play chess
from a human coach or play over the board with others. We
wanted a way to solve this issue when people are desperate to
learn how to play chess after the boom from the Netflix
drama. Our group aims to create a Computer Vision based
Chess Artificial Intelligence (AI) which can compete against a
human player and teach various moves while a user is playing
the game.

Computer Vision based Chess Al can give the following
advantages. First, people can save money from the in-person
tutoring. Because the Chess Teacher will recommend various
moves and play against the human player, the user does not
have to learn from a human coach which can cost quite a lot.
In addition, our approach definitely helps social distancing in
the pandemic since people do not have to meet each other to
play chess. Lastly, it will be easy for the users to develop their
chess skills since we are planning to create different levels of
Chess Al which users can try competing against the Al in
different levels. Most importantly, users can play with physical
chess boards and chess pieces. There are chess games
available online, but users often feel like they are not playing
chess but some computer game. However, because our
Computer Vision chess board detector can detect changes on
the board, users can play with actual chess sets which help
them feel like they are in more competitive settings such as
tournaments.

Our goal for this project is to let people enjoy playing and
learning chess with physical chess boards and pieces without
any help from other people. In order to achieve this goal, we
need to detect the board accurately and efficiently through a
Computer Vision Algorithm. We are aiming to detect changes

on the board within 400 ms with 99 percent accuracy.
Furthermore, we would like to keep our Chess Al to generate
all possible moves in 300ns which we are planning to
minimize the latency of each move the Al makes.

1L DESIGN REQUIREMENTS

A. Move Detection

The main requirement of the move detection is split into two
parts: the accuracy and the processing time. The accuracy of
detecting the board will be done through a scene of 10 unique
moves. To test the accuracy, after 20 unique moves, we will
have the software indicate which move it is detecting by
indicating the piece, the position to and where it is moving. To
achieve 99% accuracy, we want to ensure none of the moves
are detected incorrectly, since not detecting the move will have
a significantly negative impact on the user experience. As for
the processing time, the software will also have print
statements to indicate how long it took to detect the move in
milliseconds after receiving two frames.

B. Legal Move Generation
For the main requirements of the legal move generation, we
want to ensure 100 percent correctness on all generated
moves. We will test the correctness of legal move generations
on 10 unique board states. On these 10 unique board states, we
will check all the valid moves by going through each piece
and see if all the moves have been generated correctly.

C. Transfer Protocol
The main requirements of the transfer protocol are accuracy
and speed. We want to ensure that each of the packets we send
is not corrupted and 100 percent correct. We also want to
ensure that the speed of the Transfer Protocol to be under 1
second. This is important because communication will be the
main bottleneck of the FPGA subsystem. The user should not
experience any large latency or noticeable lag after making
their move

D. User Interface
The main requirement of the user interface is its correctness.
The interface should show the correct state of the board. The
correctness will be tested through visual confirmation on
whether the board and the interface match. The test will be
conducted on 20 board states, and we want it to be correctly
representing the board state 100 percent of the time.

18-500 Design Review Report: 03/17/2021

I11. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The overall architecture is divided into two main
subsystems. The computer vision software, and the game logic
software/hardware system. These subsystems are further
divided into the following components:

OpenCV

Image Processing

Raspberry Pi

Pygame

UART Communication Protocol
FPGA Custom Hardware

Hard Processor System
Stockfish Al

TommOOwp

We will now describe in detail these components and
interconnects and demonstrate how they fit into our overall
architecture. For a full diagram of how all components work
and connect, see the appendix (Fig. 4)

A. OpenCV

We are using OpenCV for our Computer Vision part of the
project, which provides a real-time optimized Computer
Vision library and tools. Since OpenCV supports Python, it
easily soothes into our program which is mainly based on
Python. OpenCV provides conversion to HSV scale, board
detection, background subtraction, and etc. Above are some of

the functions that we need for our Computer Vision based
Chess Al

B. Image Processing

Image Processing is done using OpenCV libraries. First, we
are obtaining frames from the video sent from the webcam set
up on top of the board. As you can see from Fig 1, this figure
is the example image of the top view of a Chessboard. Then,
conversion to HSV scale is required to binarize the image and
make the image more clear to be able to detect chessboard and
changes on the board. Fig 2 is the HSV converted version of
the original Chessboard image. After HSV conversion is done,
the image is used for board corner detection and move
detection using the background subtraction algorithm.

C. Raspberry Pi

Raspberry Pi is a series of small single-board computers
which support Python, OpenCV, and various libraries which
use Python as a programming language. For our design choice,
we chose to use Raspberry Pi over a laptop computer because
it is much smaller and cheaper. Most importantly, we believe
that Raspberry Pi will give us a good enough performance on
the simple algorithms we use.

[X] Original Image

Fig 2. Chessboard image converted into HSV space and black and white

D. Pygame

Pygame is a cross platform set of Python modules designed
for writing video games. A Chess game written with Pygame
will mainly handle the user interface part of the game. The
user interface will show the status of the board, moves that the
Chess Artificial Intelligence makes, and recommendation of
moves for the user.

E. UART Communication Protocol

18-500 Design Review Report: 03/17/2021

UART will be used to communicate between the Raspberry
Pi and FPGA. We chose UART over other serial
communication protocols such as 12C or SPI because of the
ease of implementation. The FPGA has a dedicated UART to
microUSB port, thus allowing an easier time to implement the
serial communication protocol. [2C or SPI would require use
of general purpose 10 pins and possibly a very specific cable
to connect to the Raspberry Pi. Moreover, the UART protocol
is estimated to fulfill the communication latency requirements
as demonstrated in equation 1.

Assumption 1: 921, 600 baud rate
Assumption 2: 20,000 bits / board state
20,000/921,600 = 0.022s communication latency

F. FPGA Custom Hardware

The FPGA custom hardware will be computing the legal
move set for any given board state. This is the compute heavy
portion of any chess engine because of the sheer number of
squares and possible moves for any given square. However,
the task is easily parallelizable by generating legal moves for
all squares. The FPGA excels at this task as it can generate
application specific hardware for each square on the chess
board.

H. Stockfish AI

The chess engine we are using is Stockfish, which is an open
source chess engine. The majority of the engine code will run
on the FPGA’s Hard Processor System (HPS). Move
generation will be repurposed to make use of the custom
FPGA logic. Otherwise, the majority of Stockfish code base
will remain the same as its current release, Stockfish 13.

V. DESIGN TRADE STUDIES

A. Background Subtraction Algorithm

To detect the movement of the pieces, we chose to use the
background subtraction algorithm. This choice was made
because we want to have one camera with a top down view.
With a top down view, it might be hard to detect the pieces
especially because they are mostly in the same color. To
mitigate this, we simply use the background subtraction
algorithm to find out which pieces moved rather than detecting
where each piece is at every board state. This even reduces the
computation since we only need to subtract two frames rather
than try to identify what each of the pieces are in each of the
squares.

B. PyGame

We wanted to use Python to develop the User Interface
because we are also using OpenCV which is written in Python,
which makes it easier for the User Interface to interact with
the Computer Vision algorithms. There are mainly two
possible options for us to create the User Interface. First, we

can use tkinter which is a built-in Graphical User Interface
toolkit. However, tkinter only supports simple features, so we
thought it would be a good idea to use a different toolkit. The
second option was to use Pygame. Pygame is explicitly built
for creating a game using Python programming language.
Thus, it will be a better idea to use Pygame over tkinter to
create the User Interface for our Chess game.

C. FPGA

We decided to use an FPGA for move generation. This was
mainly inspired by previous chess engines which handled
move generation on FPGA. Such engines include Hydra and
Brutus. We hope that running Stockfish on the integrated HPS
system will ensure that latency costs are minimized and there
is a total compute time decrease as compared to Stockfish’s
base move generation.

D. Terasic DE-10 Standard FPGA

We chose the DE-10 Standard mainly because of its 10
capacities and its relatively simple layout and design process.
The DE-10 Nano has no switches and only 2 push buttons. We
figured there may be a possibility that we use FPGA 10 to
toggle different modes in Stockfish. The DE10-Standard has
sufficient switches and push buttons to allow for this
possibility. We also considered Xilinx Kintex-7 boards but
ultimately decided to use an Altera compatible board due to
our experience with the Altera workflow as compared to
Xilinx’s Vivado software.

E. Raspberry Pi

Needing a user interface as well as an operating system to
run the computer vision algorithm, we have decided to use the
Raspberry Pi for these two purposes. This is especially helpful
working in remote environments to allow different people to
work on the FPGA and others to work on the Raspberry Pi.
With the accessibility Raspberry Pi provides, it is easy to
connect it to a monitor as well as download the necessary
OpenCV libraries on the Raspbian operating system.

V. SYSTEM DESCRIPTION

A. Raspberry Pi

The Raspberry Pi starts the image processing through
receiving images from the camera. The images received form
the camera will be converted from a RGB image into a HSV
space. This will allow the image to be less affected by glare.
Then the algorithm will detect the board. The board detection
is done through detecting corners of each of the squares of the
chessboard. By obtaining the coordinates of the chessboard
corners, we can define each of the squares. After we define
each of the squares to its coordinates, we can place the pieces
and map each of the squares to its pieces. After all of these
steps, we can use the background subtraction algorithm on the
board to see which pieces have moved by comparing two
frames. The two frames are simplified by the fact that a game
uses a timer mechanic to signify the end of a turn. Hence, by

18-500 Design Review Report: 03/17/2021

simply comparing two relevant frames, we can achieve a
much higher accuracy. After the background subtraction
algorithm, the board keeps track of the board state to update
the board and communicate with the UI to show the new board
state.

B. FPGA + Hard Processor System

The FPGA and Hard Processor System are used to generate
the legal moves given a specific board state. The Hard
Processor System is tasked with running Stockfish, an open
source chess engine/Al, with slight modifications to make use
of the FPGA hardware. Custom logic will be described in
SystemVerilog and synthesized onto the FPGA board. This
custom logic will handle the legal move generation of a
specific board state. This will aid stockfish to make faster
decisions and also quickly verify whether or not the human
user has made a legal move.

C. User Interface

User Interface is mainly written in Pygame, which allows
the user to interact with the overall system. The user can see
recommendations of moves which are sent from the Chess Al
so that the user can learn various moves from the
recommendations. Also, the user needs to place pieces for the
Chess Al Once the AI’s turn is over and the User Interface
shows the Al’s move, the user needs to move the piece for the
Al so that the new board representation can be recognized by
the Computer Vision Algorithm. This way, the user might
cheat on the AI’s move, so we will double-check if the user
made the correct move for the Al or not.

VI. PROJIECT MANAGEMENT

A. Schedule

We have currently have been trying out the different
computer vision algorithms to figure out how to coordinate
them together. Specifically, we have worked on detecting the
chessboard corners, edge detection to figure out the squares,
and background subtraction to find the moves. Our next steps
will be to work on coordinating these Computer Vision
algorithms together as well as add some details to improve the
performance such as converting the images to HSV scale.

As we are coordinating the Computer Vision algorithms, it
is crucial to debug whether the algorithms demonstrate
expected behaviors. The main way to debug is to use board
representation from the user interface. Visualization of the
board status will give us a clear idea how the Computer Vision
algorithms are performing. So, the first step for implementing
the user interface is to show the status of the Chessboard.
After we confirm that the Chess board representation is
correct, we can move on to the next step which handles more
user interface to make the overall system intuitive.

As for the FPGA, currently we have flashed a Linux
distribution onto the HPS, and have UART communication
between PC and FPGA. This will later be integrated with the
Raspberry Pi to have UART communication between
Raspberry Pi and FPGA. Our next steps are to design a legal

move generation module in SystemVerilog and integrate the
module into Stockfish.
The schedule is included at the end.

B. Team Member Responsibilities

Joseph is in charge of the computer vision algorithms. This
includes the implementation of the background subtraction
algorithm, board recognition, and the whole chess board setup
such as each individual piece and squares to represent the
board state.

While collaborating with Joseph on computer vision
algorithms, Jee Woong will implement the user interface of the
Chess game. User interface of the game, written in Pygame, is
the main communication program for the user, which allows
the user to interact with the program, see recommendations of
moves generated by the Chess Al, and moves for the Chess
AL

Michael is in charge of the FPGA and HPS subsystem. This
includes pipelining the legal move generation, integrating
stockfish code to utilize the FPGA custom logic, and
integrating UART communication with the Raspberry Pi. The
FPGA custom logic will be designed in SystemVerilog while
modifications to Stockfish will be in C++.

Budget

Table 1 is the list of materials we have acquired so far. Since
our teammates are working from different places, we needed
three sets of Chess sets, webcams and webcam stands in order
to work individually. We have budgeted only $395.28 out of
the $600 budget, which gives us more flexibility to change
some of the components if we encounter any issues.

Material Quantity Cost
Incurred Expenses
DE10-Standard FPGA 1 ECE owned
Chess sets 3 $25.43
Webcam 3 $42.39
Webcam Stand 3 $23.31
Planned Future Expenses

Raspberry Pi 1 $121.89
Total $395.28

Table 1. Budget

C. Risk Management

One of the risk factors that we found is the coordination of
all the algorithms as well as the components. It might be easy
to detect the corners of the chessboard and also detect changes
in each board state using the OpenCV library, but it is another

18-500 Design Review Report: 03/17/2021

thing to coordinate them together. We need to identify which
piece moved through the background subtraction algorithm
and communicate with the board detection algorithm to figure
out where it moved to. We need to set up a chess system in our
code to coordinate all of these safely. To mitigate this risk, we
have set up enough time for coordination and we think it will
be enough time to coordinate them together.

Another risk factor is detection of moves when pieces are
taken. It might be easy to notice which piece has moved when
there is only one piece moving, but it might be harder to figure
out which piece has moved when one piece takes another
piece. To mitigate this, we will use the HSV color space to
reduce glare and binarize the image and then use the fact that a
piece has changed from black to white or white to black to
find which piece has been taken.

Integration of all hardware components is another risk we
must consider. The FPGA and Raspberry Pi must
communicate with each other and ensure that this
communication happens without large latency or lost packets.
We will mitigate this by beginning integration as soon as
possible and working on components that can be integrated
earlier on in our schedule. These details are specifically listed
in the Gantt chart and schedule section.

VII. RELATED WORK

There are similar projects to ours, but none of them seem to
be exactly the same as ours. One example we found was
DecodeChess. DecodeChess is a virtual chess teacher that
goes in depth about recommending what the best move would
be in each of the situations. In comparison to ours, this
environment does not give a realistic environment, but it does
give more feedback than our game because it also provides
reasoning behind each move. Another example is a Fall 2020
capstone project from the Blokus group. They simulated a
virtual environment for playing Blokus, which is also kind of
similar to our project in that they detect the moves using a
camera to upload it to a computer. The difference with ours is
that our product goes against artificial intelligence while the
Blokus group used a player to player interaction when playing
the game.

REFERENCES

[1] DecodeChess, https://decodechess.com/first-ai-chess-tutor/

[2] https://www.intel.com/content/dam/altera-www/global/en_US/portal/dsn
/42/doc-us-dsnbk-42-5505271707235-de10-standard-user-manual-sm.pd
f

[3] https://www.chessprogramming.org/Board Representation

[4] https://www.chessprogramming.org/Move Generation

https://www.chessprogramming.org/Board_Representation
https://www.chessprogramming.org/Move_Generation

18-500 Design Review Report: 03/17/2021

_‘ yeslg
WA + UOBLESAIY [BUld
woday [euld

] oung ot

uojEuasald ubisag

_ _ ‘SUOnEUBsald pUB _.__H_on__
Bupsa) Jasqn

I e ¥9d4 Jo Bugsa) peads
uojamag AD jo Bugse) peadg

_ ‘Bupsay ama

1N Y uopesSagu

LHYNIVEdS wim uonesbagu)

(ysipooIS) Iy Wi uonesGaiu)

AD wim uonesBau)

_ weeiBagu

AIEQDIU| JAS[) SZ)BUI

SSPO|Y BUWED JO SBITYD

uoleuesaidey piecg Hdulg

_ _ _ 1a0Epa1| :a:_
S@ROW PlEA Jo Buunadig

SAACH PIIEA JO UC|IEZI||BIE]

suenbg | Joj serow plEA/IGaT B1BIS SWED
SMEIS pJeog Jo yI8) Budaay
UOEIUNWWeT) | My dnies

piecg Juasaiday

_ ‘asempiey oEuG_
paads jo uopeziumdo

_ uepaslag arapy
uonaseq 998ld

uofaslag pieog

apos i ucleiBaju) BleWED
1sindwio]) yym dnjes BJeWED

BJALED 58]
BIBLIED SSEYDING
{Buyeasumoq) Buisseooud ebew)

_ _ :uplsip JEndwos _
IV URJE9SEY
VOd4 RUeasey
uo|sip, Jendwon YoIEasey
uo|SENIS|(UBld J08iidg
dn dweyswea) dniag
EYSEL

oS E/5 9zir BLiF F4Y) 4 Sir BZ/E ZZIE SLIE BIE HE
£1 4980 AR LU L1 Heap 01 H98M 6 HOOM g 4eeM L Heop ER AL 5 4eam ¥ HeeM £ HooM
Loweg eng jeuld owsp juodpy [EIE] uopejuesaig ubjseq

Fig 3. Schedule (Gantt Chart)

18-500 Design Review Report: 03/17/2021

-

b

J
alemyog
2ainog uadp
=

-

J
paubisaq
Aimapn

o

p

.

~

ﬁ pivog Juasaiday f

(r N

aurfadid
uononiauab sa1s16a1
paddow
anour [pba Ksdiiin

ﬁ s121s16a41 2101 papog g

¥odd

4

A
{Lavn)

sasow Jayndwos pue uBwnNY

autbug

YSIP201S

- SdH 4

[L¥vn) 21815 aweb
uauna ayj u saaow ebaq

uonaBIaju|

ﬁ SaAOW MOUS g

ﬁ sanop 1sanbay Q

In

asnopy/fay ﬁ S2221d §oDi[, g
)) a
) sanopy [0ba 21015 (" unpuoby)
uomosuuon gsn | | uondDIIgNS
L punoabyoog J
: * :
uoloeIayu| pJaoog 12232
asnoy ey y -
\ ﬁ aboug a[oasumoq | ,_

mﬂ@ﬁ%\

(asn)
oapiy aal

DIawiny

Fig 4. System Diagram

