
Chess Teacher

Team B4: Michael Cai, Joseph Chang, Jee Woong Choi

Use case

● Learn how to play Chess using an AI
○ Saves money

○ Social distancing

○ Customized levels depending on progress

● Play over the board with physical pieces
○ Creates a more realistic environment

○ Simulates tournament or competitive setting

● Analyze your games, showing various moves in a given turn

● Areas Covered:
○ Software Systems, Signals and Systems, Hardware Systems

Materials/Components

Logitech 270
Chessboard

FPGA

Raspberry Pi

Material Quantity Cost

FPGA 1 ECE owned

Chessboard 3 $25.43

Raspberry Pi 1 $121.89

Webcam 3 $42.39

Webcam Stand 3 $23.31

Total $395.28

Webcam Stand

Solution Approach

Image Processing

● Preprocessing
○ Convert image to grayscale

● Detect Board

○ Track pieces using initial board detection

● Background Subtraction Algorithm

○ Subtract two frames

○ Find differences in pieces

○ Update the frame

Hardware

● Parallelize legal move generation
○ 15 clock cycles, on 50MHz clock => 300 ns.

● UART Communication protocol
○ Assuming 921,600 baud rate, ~20,000 bits of

info per board state

○ ~0.022s communication latency

● Interface with on chip hard processor

system (HPS)

FPGA+HPS
● Legal Move Generation
● Maintains board state
● AI processes all the moves and

communicates with the UI

Human and computer moves
(UART)

Legal moves in the current
game state (UART)

Application/UI

● Successful indication of users’ moves and the computer’s moves

● Correct Representation of the Chessboard status

● Clear indication of timer and turns

● Simple design to make UI intuitive

Implementation Plan

● Computer Vision
○ OpenCV (Python)

● Generating Valid Moves (FPGA)
○ System Verilog

○ Stockfish AI

■ Hard Processor System

● UI
○ PyGame

○ TKinter

Testing, Verification and Metrics
Requirement Testing Strategy Metrics

Move detection Software + Visual confirmation
=> 20 unique moves

99% accuracy in move detection &
< 400 ms processing time

FPGA legal move generation Hardware testbench (ensure correct
legal moves generated)
=> 10 unique board states

100% Correct

Communication between Computer
and FPGA

Hardware testbench (analyze
packets are sent correctly)

=> 15 unique packets

Latency of < 1s &
100% data accuracy

UI Visual confirmation of representing
the board correctly => 20 unique

moves

100% accuracy in representation of
the board

Risk Factors + Mitigation

● Low latency and accuracy in detecting moves
○ Being able to detect changes in certain pieces

■ Noise: hand and lighting
● Use a chess clock mechanism to capture exactly two frames
● Have chessboard in an isolated place

● Difficulty in detecting the pieces
○ Pieces may be hard to detect in a top down view

■ Use the coordinates for each of the squares of the chessboard instead of the pieces

● Difficulty in detecting the chessboard corners
○ Use a black and whilte squares board that has a clear distinction to detect the corners correctly

● Integration of FPGA with Raspberry Pi
○ Test combination as soon as possible

■ As soon as UART implemented, test 1 packet between FPGA and RPi.

Work Distribution

CV:

● Detect pieces (Joseph & Jee Woong)
● Detect board (Joseph & Jee Woong)
● Ensure high level of correctness (Joseph)
● Detect moves (Joseph)

Game Logic/AI/UI:

● Gives player computer move (Jee Woong)
● Toggle between various move lines (Jee Woong)

FPGA:

● Legal move generation (Michael)
● Accelerates the game logic (Michael)
● Highly parallelizable on FPGA as each square can

have its own legal move generation module
(Michael)

○ Parallelize on all 64 game squares
● Learn how to communicate efficiently between the

FPGA and CPU and vice-versa via UART (Michael)
● Run Stockfish on HPS and interface between

FPGA+HPS.

Schedule

