



Team B4: Michael Cai, Joseph Chang, Jee Woong Choi

#### Use case

- Learn how to play Chess using an AI
  - Saves money
  - $\circ \quad \ \ \text{Social distancing}$
  - Customized levels depending on progress
- Play over the board with physical pieces
  - Creates a more realistic environment
  - Simulates tournament or competitive setting
- Analyze your games, showing various moves in a given turn
- Areas Covered:
  - Software Systems, Signals and Systems, Hardware Systems





FPGA

Chessboard



#### Raspberry Pi



Logitech 270



Webcam Stand

### Materials/Components

| Material     | Quantity | Cost      |  |  |  |
|--------------|----------|-----------|--|--|--|
| FPGA         | 1        | ECE owned |  |  |  |
| Chessboard   | 3        | \$25.43   |  |  |  |
| Raspberry Pi | 1        | \$121.89  |  |  |  |
| Webcam       | 3        | \$42.39   |  |  |  |
| Webcam Stand | 3        | \$23.31   |  |  |  |
| Total        |          | \$395.28  |  |  |  |

### **Solution Approach**



#### **Image Processing**

- Preprocessing
  - Convert image to grayscale
- Detect Board
  - Track pieces using initial board detection
- Background Subtraction Algorithm
  - $\circ$  Subtract two frames
  - Find differences in pieces
  - Update the frame



#### Hardware

- Parallelize legal move generation
  - 15 clock cycles, on 50MHz clock => 300 ns.
- UART Communication protocol
  - Assuming 921,600 baud rate, ~20,000 bits of info per board state
  - ~0.022s communication latency
- Interface with on chip hard processor system (HPS)

#### FPGA+HPS

- Legal Move Generation
- Maintains board state
- AI processes all the moves and communicates with the UI

Legal moves in the current game state (UART)

Human and computer moves (UART)

# Application/UI

- Successful indication of users' moves and the computer's moves
- Correct Representation of the Chessboard status
- Clear indication of timer and turns
- Simple design to make UI intuitive



#### **Implementation Plan**

- Computer Vision
  - OpenCV (Python)
- Generating Valid Moves (FPGA)
  - System Verilog
  - Stockfish Al
    - Hard Processor System
- UI
  - PyGame
  - TKinter









## **Testing, Verification and Metrics**

| Requirement                                | Testing Strategy                                                                          | Metrics                                                   |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Move detection                             | Software + Visual confirmation<br>=> 20 unique moves                                      | 99% accuracy in move detection & < 400 ms processing time |  |  |  |
| FPGA legal move generation                 | Hardware testbench (ensure correct<br>legal moves generated)<br>=> 10 unique board states | 100% Correct                                              |  |  |  |
| Communication between Computer<br>and FPGA | Hardware testbench (analyze<br>packets are sent correctly)<br>=> 15 unique packets        | Latency of < 1s & 100% data accuracy                      |  |  |  |
| UI                                         | Visual confirmation of representing<br>the board correctly => 20 unique<br>moves          | 100% accuracy in representation of the board              |  |  |  |

## **Risk Factors + Mitigation**

- Low latency and accuracy in detecting moves
  - Being able to detect changes in certain pieces
    - Noise: hand and lighting
      - Use a chess clock mechanism to capture exactly two frames
      - Have chessboard in an isolated place
- Difficulty in detecting the pieces
  - Pieces may be hard to detect in a top down view
    - Use the coordinates for each of the squares of the chessboard instead of the pieces
- Difficulty in detecting the chessboard corners
  - Use a black and whilte squares board that has a clear distinction to detect the corners correctly
- Integration of FPGA with Raspberry Pi
  - Test combination as soon as possible
    - As soon as UART implemented, test 1 packet between FPGA and RPi.

### **Work Distribution**

#### CV:

- Detect pieces (Joseph & Jee Woong)
- Detect board (Joseph & Jee Woong)
- Ensure high level of correctness (Joseph)
- Detect moves (Joseph)

#### Game Logic/AI/UI:

- Gives player computer move (Jee Woong)
- Toggle between various move lines (Jee Woong)

#### FPGA:

- Legal move generation (Michael)
- Accelerates the game logic (Michael)
- Highly parallelizable on FPGA as each square can have its own legal move generation module (Michael)
  - Parallelize on all 64 game squares
- Learn how to communicate efficiently between the FPGA and CPU and vice-versa via UART (Michael)
- Run Stockfish on HPS and interface between FPGA+HPS.

### Schedule

|                                      | Design Presentation |     |      | Ethics |        | Midpoint demo |        |         | Final Due |         |         |                   |
|--------------------------------------|---------------------|-----|------|--------|--------|---------------|--------|---------|-----------|---------|---------|-------------------|
|                                      | Week 3              |     |      | Week 6 | Week 7 | Week 8        | Week 9 | Week 10 | Week 11   | Week 12 | Week 13 |                   |
|                                      | 3/1                 | 3/8 | 3/15 | 3/22   | 3/29   | 4/5           | 4/12   | 4/19    | 4/26      | 5/3     | 5/10    |                   |
| Tasks                                |                     |     |      |        |        |               |        |         |           |         |         | Michael           |
| Set up Teams/Ramp up                 |                     |     |      |        |        |               |        |         |           |         |         | Joseph & Jee Woon |
| Project Plan Discussion              |                     |     |      |        |        |               |        |         |           |         |         | Joseph            |
| Research: Computer Vision            |                     |     |      |        |        |               |        |         |           |         |         | Jee Woong         |
| Research: FPGA                       |                     |     |      |        |        |               |        |         |           |         |         | Everyone          |
| Research: Al                         |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Computer Vision:                     |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Image processing (Downscaling)       |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Purchase Camera                      |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Test Camera                          |                     |     |      |        |        |               |        |         |           |         |         |                   |
|                                      |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Camera Setup with Computer           |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Camera Integration with Code         |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Board Detection                      |                     | 1   |      |        |        |               |        |         |           |         |         |                   |
| Piece Detection                      |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Move Detection                       |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Optimization of Speed                |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Game Hardware:                       |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Represent Board                      |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Set up UART Communication            |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Keeping track of Board Status        |                     | Q   |      |        |        |               |        |         |           |         |         |                   |
| Game State Logic/Valid moves for 1 S | quare               | 1   |      |        |        |               |        |         |           |         |         |                   |
| Parellization of Valid Moves         | 1                   |     |      |        |        | -             |        |         |           |         |         |                   |
| Pipelining of Valid moves            |                     |     |      |        | 14.    |               |        |         |           |         |         |                   |
| User Interface:                      |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Simple Board Representation          |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Choices of Game Modes                |                     |     |      | -      |        |               |        |         |           |         |         |                   |
| Finalize User Interface              |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Integration:                         |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Integration with CV                  |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Integration with AI (Stockfish)      |                     |     |      |        |        |               |        |         | 1         |         |         |                   |
| Integration with FPGA/UART           |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Integration with UI                  |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Metric Testing:                      |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Speed Testing of CV Detection        |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Speed Testing of FPGA                |                     |     |      |        |        |               | -      |         |           |         |         |                   |
| User Testing                         |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Report and Presentations:            |                     |     |      |        |        |               |        |         |           |         |         | -                 |
| Design Presentation                  |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Midpoint Demo                        |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Final Report                         |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Final Presentation + Demo            |                     |     |      |        |        |               |        |         |           |         |         |                   |
| Break                                |                     |     |      |        |        |               |        |         |           |         |         | -                 |