
Chess Teacher

Team B4: Michael Cai, Joseph Chang, Jee Woong Choi 



Use case

● Learn how to play Chess against an AI
○ Not having to play with a human coach

■ Saves money from in-person tutoring
■ Social distancing

○ Customized levels depending on progress

● Play over the board with physical pieces rather than on computer
○ Creates a more realistic environment
○ Simulates tournament or competitive setting

● Analyze your games, showing various moves in a given turn
● Areas Covered:

○ Software Systems, Signals and Systems, Hardware Systems



Requirements (Game)

● Gameplay mechanics:
○ Human must wait until his move is registered on UI and computer responds
○ UI shows computer move, human must move for computer
○ UI is able to recommend a move if user desires

● One player plays at a time
● Camera has to be set up on top of the board with a clear view
● Camera has to recognize the board setup before the game
● Only valid moves will be accepted
● A move cannot be changed once placed



Requirements (Computer Vision)

● Use camera and computer vision to track:
○ Board
○ Pieces
○ Moves

● Can detect changes in board state when new pieces are placed within 400ms 
○ Includes piece differentiation

● Move detection accuracy of 99 percent 
● Decrease processing time by downscaling the image 
● Avoids complex circuitry and hardware which would be embedded into board



Requirement (Hardware/FPGA)

● Parallelize the generation of all possible moves
○ Process all possible moves within 15 clock cycles, on 50MHz clock => 300 ns.

● Provide information back to CPU using UART communication. 
○ Moves encoded in algebraic notation

○ IO communication of 20000bits/per board state

○ Using baud rate of 460800, 23 sets of moves can be sent each second



Requirements (User Interface)

● Easy to visualize moves for users

● Successful indication of users’ moves and the computer’s moves

● Correct Representation of the Chessboard status

● Clear indication of timer and turns

● Simple design to make UI intuitive

○ Buttons can toggle between analysis and non-analysis



Technical challenges (Computer Vision)

● Processing time of image to detect moves

● Coordinating the components together, FPGA, screen, and camera

● Transferring the CV data to the UI 

● Accuracy of the move detection

○ Position of the camera could affect the accuracy

○ Camera has to handle noise 

○ Resample image if move is detected incorrectly



Technical challenges (FPGA)

● Parallelizing of the overall system

● Pipelining legal move generation to fit within clock period

● Efficient communication between FPGA and system

○ Keep response time low

○ IO is the bottleneck and efficient UART is needed

○ Must support high baud rate to offset IO bottleneck



Solution Approach



Testing, Verification and Metrics
Requirement Testing Strategy Metrics

Move detection Software + Visual confirmation 99% accuracy in move detection 
&

< 400 ms processing time

FPGA legal move generation Hardware testbench (ensure 
correct legal moves generated)

100% Correct 

Communication between 
Computer and FPGA

Hardware testbench (analyze 
packets are sent correctly)

Latency of < 1s &
100% data accuracy

UI Visual confirmation 100% accuracy in representation 
of the board



Tasks and Division of Labor

CV:

● Detect pieces (Joseph & Jee Woong)
● Detect board (Joseph & Jee Woong)
● Ensure high level of correctness (Joseph)
● Detect moves (Joseph)

Game Logic/AI/UI:

● Gives player computer move (Jee Woong)
● Toggle between various move lines (Jee Woong)

FPGA:

● Legal move generation (Michael)
● Accelerates the game logic (Michael)
● Highly parallelizable on FPGA as each square can 

have its own legal move generation module 
(Michael)

○ Parallelize on all 64 game squares
● Learn how to communicate efficiently between the 

FPGA and CPU and vice-versa via UART (Michael)



S
c
h
e
d
u
l
e


