
1
18-500 Final Project Report: 05/14/2021

FarmFresh Design Review Report

Ishita Kumar, Ishita Sinha, Kushagra Sharma
Electrical and Computer Engineering, Carnegie Mellon University

{ikumar, isinha, kushagrs} @andrew.cmu.edu

Abstract- It is important to separate rotten fruits and
vegetables early in the food distribution process to prevent
healthy fruits and vegetables from getting spoiled. It is
essential that this is done before more monetary value is
added through packaging and transportation. Thus,
FarmFresh, a food produce quality evaluator and sorter,
can help save energy and resources as well as help prevent
food wastage. Our solution uses computer vision to
autonomously sort and separate healthy and rotten fruits
and vegetables, thus preventing human error. It can save
hours of manual labour for farmers so they can utilise
their time to work on other value-adding tasks that can’t
be automated.

Index Terms- Computer Vision, Fruit classification,
Machine Learning, NVIDIA Jetson Nano, OpenCV

I. INTRODUCTION

The saying, one rotten apple spoils the barrel is quite
literally true. If not separated, rotten fruits and vegetables can
spoil fresh ones and wreak havoc in the food distribution
industry. It is also important to separate rotten food produce as
early as possible before more monetary value is added through
packaging and transportation. Thus, to save energy and
resources and prevent food wastage, it is necessary for farmers
to accurately separate rotten produce before further
distribution. This task must be automated to prevent human
error and save farmers’ time. Although food produce sorting
machines exist, they are very expensive. As 91% of US
farmers are small farmers, there is a vital need for a more
affordable yet autonomous solution [1]. This is why we
introduce FarmFresh: a low-cost food produce quality
evaluator and sorter. Our solution uses computer vision to
quickly and autonomously sort and separate healthy and rotten
fruits and vegetables. This prevents human error and can save
hours of manual labor. This saved time can instead be spent on
other more value-adding tasks that cannot be automated.

FarmFresh aims to be highly accurate in sorting rotten and
fresh produce. Our project will work with bananas and carrots.
We plan to achieve rotten produce detection with false
negatives less than 2% and false positives less than 5%. Our
solution is meant to be integrated into existing conveyor belt
systems, so FarmFresh will be built to accommodate the
typical conveyor belt speed of 5 cm/s with produce spaced at
least 0.2 cm apart. Our product will take pictures in uniformly
bright lighting to mimic factory settings and achieve
consistency. FarmFresh will be powered to work for 8 hours at
a time so it can last a typical working day.

II. DESIGN REQUIREMENTS

To ensure that FarmFresh is useful to farmers, we
considered numerous requirements from the farmer’s
perspective. These requirements also ensure that our product is
competitive in the market space, and offers something new
that the alternatives lack. A list is presented below:

● Support multiple fruits and vegetables. We want to be
able to support bananas and carrots.

● Needs to be compatible with a majority of conveyor
belt architectures.

● Needs to be easy to install and portable. To validate
this requirement, we built our own conveyor belt
system, and made sure FarmFresh is fully compatible
with it.

● Needs to quickly sort fruits, and needs to be able to
work on existing conveyor belt speeds of 5 cm/s. No
fruit should be missed.

● Needs to have a false negative rate of less than 5%.
This is to ensure that we rarely categorize rotten
fruits as fresh since that can potentially be
catastrophic. To get a better understanding of
accuracy metrics, we found several papers online. In
“A Survey on Computer Vision Technology for Food
Quality Evaluation”, the author was able to achieve
97% accuracy classifying cracked eggs using edge
detection [2]. In a more recent paper, the authors
were able to achieve 89% accuracy correctly
predicting rotten vegetables such as carrots and bell
peppers [3]. This is why we chose a high
classification accuracy.

● Needs to have a false positive rate of less than 15%.
We define a false positive as follows: a fruit is
predicted as being rotten, when it is not actually
rotten. This is a less severe case. We do lose value
from the misclassified fruit, but at least it doesn't
impact the rest of the fruits. This is why we want our
product to have stringent requirements when it comes
to detecting rotten fruits, at the cost of potentially
increased false positives.

● Needs to be able to support a typical 9-5 day, so the
battery should last at least 8 hours.

● Needs to cost less than $600 so that it is cost
effective.

Fruits are usually separated from each other at intervals of
around 20 cm on a typical conveyor belt, though our product
can handle fruits spaced as little as 0.2 cm apart. With the
conveyor belt operating at 5 cm/s, our product can detect when
a fruit is in frame 100% of the time without using much

https://www.researchgate.net/publication/312494475_A_Survey_on_Computer_Vision_Technology_for_Food_Quality_Evaluation
https://www-sciencedirect-com.proxy.library.cmu.edu/science/article/pii/S0924224403002711

2
18-500 Final Project Report: 05/14/2021

computation, so we use a live video stream to detect fruits in
frame, avoiding unnecessary computation (thus saving battery
life), while not missing any fruits.

The main considerations when designing the mechanical
aspects (conveyor belt) were the following:

● The width of the conveyor belt needs to be large
enough to support placing fruits.

● The length of the conveyor belt needs to be large
enough to support placing multiple fruits (at least 3)
so that we can perform stress tests and simulate the
process better.

These two considerations allowed us to set the width of the
conveyor belt at 10 inches (the average width of a banana is 2
inches), and the length at 26 inches, so that we can place more
than 3 fruits at any given time at intervals of 20 cm (7.8
inches).

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The architecture of FarmFresh consists of two major
components - the conveyor belt design, which is the
mechanical component, and the rest of the system, which
constitutes the hardware and software parts of the product.
This can be seen in our block diagram in Figure 5.

As part of this split, we must note that the conveyor belt
setup itself does not depend on any part of the product, and
vice versa. Our product is designed to be integrated into
existing conveyor belt systems that meet our speed
specifications. As a result, the product is independent of the
conveyor belt, so the two components can be built separately,
and they operate separately as well. The functioning of our
product would not impact the conveyor belt, and vice versa.

Figure 1 provides an overview of how our product is
designed to work with the conveyor belt system. As a fruit or
vegetable comes along, the cameras capture an image of the
fruit. Once this image has been captured, it is sent to the
NVIDIA Jetson Nano. The board runs our classification
algorithm on the images of the fruit and determines whether it
should be classified as rotten or good. It passes a signal to the
gate controller, and accordingly the gate controller rotates the
gate so that the fruit or vegetable is deflected into the
appropriate basket.

The entire system has the base computer as the NVIDIA
Jetson Nano. To the Jetson Nano, we have connected two USB
webcams, which correspond to the cameras shown in Figure 1.
Once the system starts, the cameras capture a live video
stream of the conveyor belt. Once the image of the fruit has
been captured by both cameras, it is sent to the NVIDIA
Jetson Nano. On the NVIDIA Jetson Nano board, we have our
classification algorithm. The algorithm receives both of the
images, resizes them, and then analyses the frames using
Gaussian blurring and Canny edge detection to see if a fruit or
vegetable is in the frame, entering it, leaving it, or is not in the
frame. If a fruit is detected in the frame, the images are passed
into the image segmentation and pixel classification algorithm.

Fig 1. System picture

We have a white background for the fruits on the conveyor
belt so that image segmentation can be performed with ease on
the images captured. We used controlled white lighting so that
all of the images can be classified more easily, since they’d all
have similar brightness. The classification algorithm begins by
converting the image to the HSV colour space. Post that, it
performs image segmentation to isolate the fruit or vegetable
from the background, obtaining the good and rotten masks for
the produce. For a banana, the good mask would correspond to
capturing the yellow and light brown parts of the fruit, while
the rotten mask would capture the darker brown and black
parts of the fruit. Once this has been achieved, we can pass the
image into our classification algorithm that uses percentage
thresholding in order to determine whether the fruit is rotten or
not. We built 2 classifiers in order to see which one worked
best. The first one involved performing a pixel by pixel
analysis of the fruit in order to obtain the percentage of pixels
corresponding to rotten parts of the fruit. We used a threshold
to identify what percentage of the area must be rotten in order
to classify the produce as rotten versus good. An alternative
algorithm involved using neural networks (AlexNet) in order
to predict the rottenness of the fruit based on a classifier that
we developed and trained on several images. To perform all of
this computation, we have used the OpenCV and Scikit-image
libraries provided by Python.

Once the classification has been performed, the result is
passed along to the servo driver. The servo driver is integrable
with the Jetson Nano, so it receives the signal from the
algorithm and facilitates communication between the Adafruit
servo controller and the servo motor itself. Once the Adafruit
shield receives the signal, it sends along the signal to the servo
motor so that the gate can be rotated the appropriate amount in
the appropriate direction in a specified amount of time. Based
on the result of the classification, the gate rotates so as to put
the produce in one of two baskets - the good one, or the rotten
one, depending on the result of classification.

This entire product is designed to be integrated into an
existing conveyor belt system. Our conveyor belt setup

3
18-500 Final Project Report: 05/14/2021

consists of electrical as well as mechanical components. The
electrical components include the RC motor speed controller
board and a 12 V DC Gear Motor for moving the conveyor
belt at the appropriate speed. The mechanical components that
are involved in building the conveyor belt are discussed in
Section V.

This entire system is powered by a 5 V power supply. We
need this entire system to last a regular 8-hour working day for
the farmer, so based on the use case requirements, we have
used a 25000 mAh power bank as our power source since it
lasts for the requisite amount of time.

IV. DESIGN TRADE STUDIES

Hardware

A. Fruit Sorting Mechanism
For the final design of our fruit sorting system, we
decided to use a servo motor to control a gate which
can turn and direct the fruit into the appropriate
basket. This is different from our initial design which
involved pistons pushing fruit off a platform and into
the right basket. We decided against the latter design
because when we researched pistons, they were too
slow to meet our required speeds. We looked into
solenoid pistons as well, which were faster than the
other types of pistons, but these were expensive. In
addition, pistons were hard to configure since our
team lacked the mechanical knowledge required.
Furthermore, none of the pistons we researched had
the necessary reach to push the fruit far enough to
make it fall over the side of the conveyor belt. On the
other hand, we all have experience working with
servo motors and the gate system seemed to be a
simpler design that met our requirements better.
Thus, we chose the servo controlled gate system as
our fruit sorting mechanism since it is faster and
more easily configurable.

B. Fruit Platform
It was important for us to decide on a good system
for placing our fruit as our image segmentation
algorithm for fruits would be strongly affected by this
choice. Our initial design involved a white rotating
plate on which the fruit would be placed. We would
then take pictures periodically as the fruit rotated.
This would be good for image segmentation and we
would only require one camera for this design.
However, this design was not easily integratable with
a conveyor belt system, which is our intended end
goal. We also needed to test if our design would work
with a conveyor belt, which was not accurately
possible without moving the fruit in some way. Thus,
we decided to build a conveyor belt and place fruits
on it, as our end-user would, rather than using a
rotating platform. This would provide a more realistic
environment for our project. We cover the base on

which the fruit is placed with a white material to still
get the benefits for image segmentation. We still
wanted to be able to access all sides of the fruit
though, which led us to incorporate multiple cameras
in the new design so that the fruit is captured from
multiple angles. Earlier, we were thinking of using a
PCB circuit in order to design the speed controller for
our conveyor belt motor. However, we found a motor
speed controller that was quite inexpensive and fit
our needs very well, so we decided to go with that.

C. Hardware Platform Placement
Our design requires a platform to place the camera(s)
for taking fruit pictures and the Jetson Nano for
computation. We decided to use wooden planks on
either side of our conveyor belt system to place our
cameras since the height of these planks is easily
adjustable, thus allowing us to configure the camera
height properly with respect to the rest of our
conveyor belt system. The conveyor belt has a motor
attached to it that needs to be mounted on a platform
so that it’s held by something. Having the wooden
planks on either side ensures that the motor is well
supported. Lastly, we needed our conveyor belt to be
lifted so that the material of the belt does not touch
the surface it’s placed on. The wooden planks are
very useful here as well since they help support the
conveyor belt above the surface. Earlier, we were
thinking of building a shed to hold our cameras and
the Jetson Nano, along with housing the light source.
However, we realized that mounting the cameras in
the shed could be quite complicated, and since our
current cameras have tripod stands, this ensures that a
shed is not required. Our design involves placing the
cameras on either side of the belt to capture different
angles of the fruit. We decided a 2 camera system
placed on planks worked better than a single camera
since it’s much easier to integrate with a conveyor
belt. The single camera system would have had the
fruit rotating, so we would have had to stop the
movement of the fruits, which is not ideal. The Jetson
Nano is placed next to the conveyor belt. A uniformly
bright white light source is held in position using a
stand above the belt for consistency in our pictures.

D. Computer
We decided to use an NVIDIA Jetson Nano for our
computer vision algorithms. This is because the
Jetson Nano has a quad core A57 @ 1.43 GHz
processor and a dedicated 128-core Maxwell GPU.
This works well for our design as it has the
computation power required for our algorithm to run
quickly as well as to capture a live video stream. It
offers a dedicated GPU for processing fruit images
and computer vision. We also looked into using the
Raspberry Pi but we did not think it would provide a

4
18-500 Final Project Report: 05/14/2021

computational power good enough for our project
needs as it does not have a dedicated GPU. We chose
Jetson Nano A02 over the newer B01 model (which
has 2 CSI camera ports) because we wanted our
design to be scalable to 4 cameras if we needed to
capture more angles of the fruit to meet our accuracy
metrics.

E. Cameras
The cameras are an important part of our design since
we use them to capture a live video stream of the
conveyor belt, capturing frames of the fruit as it
moves on the conveyor belt. These images are then
analyzed to detect whether a fruit is rotten or not. The
cameras we’d select would also be connected to our
computer, the Jetson Nano board. Thus, we needed a
camera that could take good quality pictures and
could be connected to the Jetson Nano. Initially, we
had decided on using two Raspberry Pi cameras
(configured via the camera multiplexer) for the needs
of our project since the Jetson Nano actually has
dedicated slots for these cameras and they are
connected directly to the GPU. However, when we
captured images using the Raspberry Pi camera
modules, we noticed that a lot of the images were
quite dark and did not have a picture quality good
enough for our purposes. Thus, we decided on using
USB cameras since they offered a much better picture
quality. They, too, could be connected to the Nano
directly, and the process of setting them up wasn’t
complicated either, making them an optimal choice.
Thus, although the USB cameras were much more
expensive than the Raspberry Pi cameras, they were a
better fit for us since our entire algorithm was
centered around the images captured.

F. Servo Controller
Earlier, we were planning on using the Raspberry Pi
to control the working of our servo. However, that
would mean that the Jetson Nano would have to send
a signal to the Raspberry Pi, which would then be
processed and sent to the servo to make the servo
rotate the appropriate angle in the appropriate
direction in a given amount of time. This was quite
complicated since it had several parts involved.
Latency was key to our entire system since we had to
ensure that the servo received the signal at the
appropriate time to rotate the gate. However, we were
unsure if this would be achievable given the
communication involved. As a result, when we found
a servo driver that could control the servo and was
compatible with the Jetson Nano, that mitigated this
concern and made our work much easier. It was much
more convenient to use the servo driver and it was
also relatively inexpensive. Moreover, since we were
not dealing with multiple parts, this mitigated our

concern of the gate not rotating in the given span of
time. In addition to this, earlier, we were planning on
resetting the gate back to its initial position so that it
was always in the center once the fruit had been
processed. However, we realized that a lot of power
was wasted in moving the gate back to its original
position, especially if the next fruit or vegetable
coming along the belt had the same rottenness.

Software
A. Live Stream Capturing

Currently, both of our cameras are programmed to be
capturing a live stream of the images. These images
are then resized and analysed using a frame analyzer.
The frame analyzer uses Gaussian blurring and
Canny edge detection. Once the edges in the frame
have been detected, the frame analyzer checks if the
fruit is in the frame, is entering, is leaving, or is not in
the frame. We have set a high enough number of
pixels as a threshold to ignore cases where there is a
crease in the conveyor belt cloth or some other minor
edge present. The frame analyzer works very well in
our stress test with 50 bananas-- it did not miss any
bananas. This entire algorithm takes only around 0.01
seconds to run. Earlier, we planned on programming
the cameras to capture an image every 4 seconds.
Since typical conveyor belts run at 5 cm/s and fruits
are usually spaced around 20 cm apart, this was a
good time bound. However, we also wanted to
account for some error in placing the fruits properly.
If the fruit spacing would have even a small error,
this system would have been susceptible to missing
the fruit or detecting it incorrectly. Moreover, if no
fruit was in the frame at a given point in time, the
cameras would still pass the image along to the image
segmentation algorithm. Using a live stream instead
of capturing images every 4 seconds worked well for
us. This is because our system provides an additional
benefit that even if fruits are spaced as much as 0.2
cm apart, our algorithm will be sure to capture it.
This ensures that no fruit will be missed, even if
there’s some human error in placing the fruits.
Moreover, if a fruit is not in the frame, the frame
analysing algorithm would recognise that and would
not send the image along to the image segmentation
algorithm, thus saving the program from performing
unnecessary computation.

B. Image Segmentation
We are using OpenCV’s HSV color thresholding for
image segmentation. This works a lot better than
RGB thresholding as it is difficult to capture the
exact RGB colors a fruit has, especially since the
exact RGB color value can vary slightly from fruit to
fruit and also within the fruit. As a result, if we tuned
our good versus rotten masks to a specific fruit, it is

5
18-500 Final Project Report: 05/14/2021

very likely that the algorithm would not work on
another fruit of the same kind, or that it wouldn’t
work even on the same fruit even sometime later. On
the other hand, HSV image segmentation separates
the color information (hue) into its own channel
which can help us capture a range of colors
associated with the fruit independent of saturation or
visibility values. Through HSV image segmentation,
we can be sure to capture the masks accurately for a
wide range of fruits since the HSV colour space
would not vary from fruit to fruit as much as the
RGB colour space since parameters like the hue and
saturation are usually similar for a given class of
fruits, and the visibility is something that would
remain constant once the light source has been fixed
and all fruits are captured in a similarly lit
environment.

C. Fruit Quality Evaluation
The fruit quality evaluation system is the backbone of
our project as this is the algorithm that will decide on
the classification of fruit as fresh or rotten. After
segmenting the fruit from the image, we perform a
pixel by pixel analysis of the good and rotten masks
to detect the percentage of rotten parts based on a
fixed HSV color threshold for the same. We
developed a neural network based algorithm (using
AlexNet) for rotten fruit classification. We wanted to
compare both methods and pick the best one rather
than making a tradeoff decision without results for
both methods. The AlexNet classifier took much
longer to classify the fruit than our pixel
classification algorithm. The AlexNet classifier took
up to around 8 seconds to classify the image.
Moreover, it did not produce an accurate output a
large number of times. However, accuracy was
crucial to us since the intention of our system is to
provide an accurate fruit sorting product. Our pixel
classification produced a much better accuracy and
ran in just 0.03 seconds on average. We tested our
algorithm on a large dataset [4] consisting of 1962
good bananas and 2754 rotten ones. Our algorithm
classified the good bananas accurately 97.86% of the
time and it classified the rotten bananas accurately
99.2% of the time. As a result, this algorithm
performed much better not only in terms of speed, but
also in terms of accuracy, so it was the obvious better
choice for us.

V. SYSTEM DESCRIPTION

In this section, we present the block diagram from Figure 5
in greater detail. We will go over all the subsystems
individually. Our overall design is composed of 3 main
subsystems: 1) software for classifying fruits 2) hardware to
take pictures, and coordinate the control mechanism for
sorting 3) mechanical conveyor belt system which integrates
the software and hardware parts.

A. Software subsystem
This subsystem is the green box named classification

algorithm and the gate controller module inside the block
diagram. The purpose of this subsystem is to take an image as
an input and produce a single output that classifies the fruit in
the image as either good or rotten, and to communicate that
decision to the servo driver.

1. HSV conversion
The first step in processing the images is to convert
the image from RGB space to HSV space. We tried to
process the images using the RGB space, but found it
difficult to accurately differentiate between pixels
based on color alone. The exact color threshold was
hard to capture even after trying to adjust the bounds
for a while. After researching, we found HSV space
to fit our needs much better since it separated the hue
into a separate channel independent of saturation or
lightness. Hence, we converted the image to HSV
space. This resulted in a significant increase in
accuracy during segmentation.

2. Image segmentation
Once the image was converted to HSV space, we
were able to accurately segment the image and isolate
the fruits based on hue (e.g yellow for banana). To
accomplish this, we kept adjusting the hue, saturation
and brightness bounds. Then we realized a better
method would be to graph the HSV colors prominent
in a fruit. With that data, we were able to create a
mask that segmented the fruit from the background.
One challenge we anticipated was that lighting levels
fluctuate depending on the time of day but we
accounted for this by hanging a fixed and uniform
light source above our fruit.

3. Image classification
Finally, we classify the fruit in the image as being
good or rotten. We decided to analyze discolored
areas inside the fruit since those symbolize decay in
the fruits and vegetables we planned to tackle,
bananas and carrots. Depending on the size and
frequency of these discolored areas, we categorize the
fruit as good or rotten. We do this by manually
creating HSV masks for the rotten parts of the fruit or
vegetable by researching how rotenness presents
itself in the produce in question. Then, with the help

6
18-500 Final Project Report: 05/14/2021

of the mask we made for the whole produce in the
image segmentation phase, we check what fraction
the rotten parts are of the whole produce. We ran our
algorithm on a training dataset [4] for rotten and fresh
bananas and observed the percentages of rotten parts
the rotten bananas had and decided on a threshold for
rotenness. Then we used the testing dataset [4] which
contained 1962 good banana images and 2754 rotten
bananas to test our algorithm and rotenness threshold.
Accuracy was key to our product, so we wanted to
ensure we had a contingency plan in order to pick the
best possible classifier for our algorithm. Our
alternative solution was to use a neural network based
approach. Our second classifier used AlexNet owing
to its success at classifying images. This approach
had several challenges since it was not easy to code
accurately, and it took a very long time to train the
model. The images we had from the dataset [4] were
not all very similar to our real life scenarios since
they had varying backgrounds, so it was hard to train
the classifier well. Even after training it, it took quite
a long time to run on each image, and would not meet
our speed requirements. Moreover, its accuracy
wasn’t great either.

4. Gate controller
Once the classification algorithm makes a decision
about the quality of the fruit, a signal is sent to the
gate controller system. The purpose of this system is
to communicate the classification decision with the
Adafruit servo driver, so that the driver can move the
servo motor and thus the diverter gate appropriately.

B. Hardware subsystem
This subsystem is responsible for coordinating the different

moving parts of the design, and controlling the flow of
information. It consists of the NVIDIA Jetson Nano 2 GB,
camera subsystem, the Adafruit servo controller, the 5 V DC
servo motor, and the 25000 mAh Krisdonia power bank.

1. NVIDIA Jetson Nano 2 GB
We used the NVIDIA Jetson Nano 2 GB as the
central hub for all hardware related tasks. It was used
to coordinate all the other pieces. For a discussion of
why we picked this particular model, refer to the
earlier tradeoffs section.

2. Camera subsystem
Initially, we wanted the camera subsystem to consist
of 2 Raspberry Pi camera modules V2, and the
arducam multi camera adapter module V2.2. The
multi camera module had support for upto 4 cameras,
which is why we went with this method since we
wanted to mitigate the risk of not having enough
angles and pictures of the fruit. That is, we wanted
our design to be scalable to 4 cameras in case we
needed more angles of the fruit to meet the accuracy
metrics. However, we found that two cameras were
more than sufficient, and we were able to meet the
accuracy requirements comfortably. Thus, we
abandoned the initial design in favor of two tripod
mounted USB cameras, which can be seen in the final
setup picture. We chose USB cameras over the CSI
cameras because the former had better resolution;
since we were replacing 4 cameras with 2, we needed
the two cameras to be of good quality.

3. Adafruit 16-channel 12-bit PWM/Servo Driver
The main purpose of this system is to facilitate
communication between the Jetson Nano and the
servo motor that will control the gate sorting
mechanism once the classification algorithm section
produces an output. We need this module since it’s
not possible to control the servo motor directly from
the Nano. A schematic for installation is shown
below. This is what ended up building.

Fig 2. Adafruit Servo Controller & Jetson Nano Interface [5]

7
18-500 Final Project Report: 05/14/2021

4. Sorting mechanism
The sorting mechanism consists of the servo motor
and the 3D printed gate that is attached directly to the
shaft of the motor. The idea is that as the fruits come
down the conveyor belt, the gate will block their
movement and direct them to the appropriate basket.
More details can be found in Figure 1.

5. Power
We used the 25000 mAh krisdonia power bank to
power the entire system. We chose this so that we can
power the Jetson Nano for upwards of 8 hours, which
is one of our requirements. We also used this power
bank to power the Adafruit servo motor shield.

C. Mechanical subsystem
The mechanical subsystem consists of the conveyor belt.

The system is divided into 2 parts, the mechanical side, which
is the actual belt, and the electronics side which is the system
that drives the belt. The 12 V DC gear motor is the point of
contact between the 2 subsystems.

1. Mechanical
The conveyor belt system consists of 2 pieces of
wood that act as side panels, and a laminated piece of
wood that goes inbetween. The side panels are
exactly one inch longer than the laminated wood,
which lets us place the rollers (PVC pipes of 1 inch
diameter) in between the side panels of wood, tangent
to the central piece of laminated wood. An image of
this partial setup is presented below.

Fig 3. Partially Completed Conveyor Belt System

The motor is connected to the 3D printed shaft
coupler and attached to one of the rollers. The belt
goes on top of the rollers. This completes the
mechanical portion of the conveyor belt. A finished
image is presented in Figure 4.

Fig 4. Top View of Completed Conveyor Belt System

Note that the above image includes the motor
controller. A more detailed version of the setup can
be found in Figure 1. A discussion of the dimensions
of the conveyer belt and why we chose them can be
found in Section 2. Other necessary miscellaneous
parts (and their dimensions) required to complete the
belt can be found in the budget and parts list later in
the report.

2. Electronic
The electronics subsection consists of just the RC
motor speed controller board (not depicted in the
images above, but available in the budget section).
This board lets us control the speed of the motor and
achieve the required 5 cm/s. Note that this board is
powered separately (not using the power bank), since
we want to maintain independence between the
mechanical system and the hardware/software
systems. Since conveyor belts aren’t connected to
batteries in farms, any appropriate power source is
sufficient. We wanted to try this method before our
plan B method, which was to assemble the PCB seen
in the image above, since this method is easier and
cheaper. If the RC motor controller board had not
worked, we would have made the PCB using the 555
speed controller chip. We had the appropriate
schematic of the PCB (and the appropriate gerber
files), and the components that needed to be soldered
on.

8
18-500 Final Project Report: 05/14/2021

VI. TESTING AND VALIDATION

In this section, we describe the different tests we performed
in order to verify that we were meeting the requirements we
had set out to meet in our specification. The requirements here
are listed in order of importance.

A. Accuracy
For our purposes, we define false negatives as rotten
bananas that were classified as good, and false
positives as good bananas that were classified as
rotte. We had set out to achieve an accuracy such that
the false negatives were less than 5% and the false
positives were less than 15%. We prioritised
achieving a lower percentage of false negatives than
false positives because it’s not so harmful if some
part of the good produce gets classified as rotten.
This is because good produce classified as rotten
results in a loss in some of the profits, so while it
should be mitigated, it is not as much of an issue as
rotten produce being classified as fresh. This is
because if rotten produce is misclassified as good, it
could cause all of the good produce to rot as well,
resulting in a much greater loss. We tested our
algorithm on a large dataset [4] that consisted of 1962
good banana images and 2754 rotten banana ones.
Our algorithm produced only 0.8% false negatives
and only 2.14% false positives, which was much
better than the accuracy targets we had set out to
meet. When we tested our algorithm classification on
fruits moving on the conveyor belt whose images
were captured by the cameras, our algorithm had a
classification accuracy of 100%.

B. Speed
Typical conveyor belts run at 5 cm/s, so our goal was
to ensure that our algorithm runs at a speed that can
match these conveyor belt speeds. Since fruits are
typically placed approximately 20 cm apart on a
typical conveyor belt, we wanted our algorithm to
take at most 4 seconds to classify the produce
appropriately. Our algorithm took an average of
merely 0.04 seconds to classify each fruit. It took
0.01 seconds to send the signal to the servo driver,
and an additional 0.2 seconds for the gate to rotate to
the appropriate angle. As a result, our entire
algorithm completed processing for a given fruit in
just around 0.25 seconds, which was much better than
the goal we had set out to accomplish. Moreover, our
algorithm can perform well even with varying
conveyor belt speeds. We tested our algorithm by
varying the speed of the motor controller and noticed
that even with varying conveyor belt speeds, our
algorithm processed the fruit in time for the gate to
divert it in the appropriate direction.

C. Fruit Spacing
We wanted our product to be able to handle fruits
spaced at a gap of 20 cm, with an error of 5 cm, to
simulate the spacing of fruits on a typical conveyor
belt system. In order to test this, we mimicked the
spacing requirements by placing bananas on the
conveyor belt every 2 seconds. We placed the fruit
every 2 seconds instead of placing it every 4 seconds
like a typical conveyor belt system because we want
to ensure that our system could perform well even at
goals that were much harder to achieve than real life
settings. We stress tested this with 50 fruits, placing a
fruit every 2 seconds, and the algorithm performed
accurately on all of them.

D. Produce Detection
It was important for us to ensure that our algorithm
accurately detected all of the fruits so that no fruit
was missed. This is crucial since if the algorithm
accidentally missed even a single fruit, it could result
in a rotten fruit being misclassified. As a result, all of
the good produce could get ruined owing to the
misclassification of a single fruit. In order to ensure
we met this requirement, we stress tested our product
with 50 fruits. The algorithm accurately detected all
of the fruits and the gate deflected each one of them
in the appropriate direction based on the output that
the classification algorithm produced.

E. Ease of Installation
Our goal was for our system to be easily integrable
with existing conveyor belt systems. We wanted our
fruit sorting solution to be inexpensive in order to
meet the use case requirements for small scale
farmers. As a result, we did not want farmers to need
to purchase conveyor belt systems specifically for
using our system since they’re quite expensive. As a
result, we designed a system that is independent of
the conveyor belt. In order to ensure that this was the
case, we tested our system with a conveyor belt we
built. The algorithm was on the Jetson Nano and the
diverter received a signal independent of the
conveyor belt system being used. Moreover, since our
algorithm completed processing a given fruit in just
0.25 seconds, we know that our algorithm would be
quick enough to be integrable with any existing
conveyor belt system, irrespective of its speed since
typical conveyor belts don’t run at speeds high
enough to render our algorithm slow.

F. Battery Life
We wanted to ensure that our product can last a
typical working day for the farmer. For a typical
working day, which is usually from 9 am to 5 pm, we
would require that the entire product be powered for
approximately 8 hours. We tested this by using our

9
18-500 Final Project Report: 05/14/2021

25000 mAh Krisdonia power bank to power the
system for 8 hours. The power bank managed to
successfully keep the system running for 8 hours,
thus ensuring we met our use case requirements well.

VII. PROJECT MANAGEMENT

A. Schedule
The first five weeks of the semester were spent in finalising

the project idea, developing a well thought out design for it,
and finalising our parts list. After that, Ishita Kumar started
looking into image segmentation methods. In the meantime,
Kushagra worked on understanding how the NVIDIA Jetson
Nano works and Ishita Sinha worked on developing an edge
detector to detect fruits in frame and developed the rottenness
classifier. After the image segmentation had been completed,
Ishita Sinha integrated the image segmentation with the pixel
classification algorithms and tested the pixel classification
algorithm, tuning the parameters as necessary. Post that, the
team worked on setting up the conveyor belt and testing how
well the algorithm performed on real fruits for the interim
demo.

After that, Ishita Kumar worked on developing a frame
analyser while Ishita Sinha worked on the algorithm for fruit
detection. After this, the team met to set up the product. Next,
Ishita Sinha integrated the software onto the Jetson Nano, and
then, the team tested the product. Once this was done, we
conceptualised the idea for our diverter and went through
several prototypes before finalising one that worked. Then,
Kushagra automated the servo rotation using the servo driver,
followed by which Ishita Sinha performed final code
integration. After this, we performed several tests to ensure we
met our requirements. Then, we worked on our stretch goals
which included adding carrots to the model and checking
whether the AlexNet classifier worked better or the custom
pixel classifier did. The schedule is included in Figure 6.

B. Team Member Responsibilities
While each team member had a role in every task to ensure

that everyone had a holistic understanding of the working of
the entire product, we split responsibilities on the basis of
who’ll be leading the task. The primary and secondary
responsibilities of each team member are shown in the chart
below:

Team Member Primary
Responsibility

Secondary
Responsibility

Ishita Kumar Image
segmentation

Frame analyser

Ishita Sinha Rottenness
classifiers

Code integration

Kushagra Sharma Conveyor belt
setup

Servo driver setup

C. Budget
Our budget and parts list has been included in Figure 7. The

main hardware tools we used include an NVIDIA Jetson
Nano, 2 USB web cameras, a servo motor and the servo
driver, and the parts needed to construct the gate. The
mechanical component we built is the conveyor belt, so we
have also included costs corresponding to parts needed to
build it. We had purchased a Raspberry Pi camera module and
the Arducam

D. Risk Management
As part of the project, one of our biggest risks with respect

to meeting the use case requirements was ensuring we met the
accuracy targets we had set out to accomplish. Our accuracy
targets were to achieve a false negative rate less than 5% and a
false positive rate less than 15%. We needed to be more
contrite about the false negatives versus the false positives. In
order to meet our accuracy targets, we designed multiple
classification algorithms so that we weren’t dependent on a
single software approach, and kept the option open for
installing more cameras if we needed more angles of the fruit.

Next, another major risk was if we could not meet the
conveyor belt speed or if we missed fruits. Our product is
designed to be integrated into existing conveyor belt systems,
assuming they work at a speed of 5 cm/s. We were assuming 4
seconds to process a given fruit, so the distance between 2
fruits would be around 20 cm. However, we wanted to ensure
we didn’t miss a fruit if the speed is too high, or classify the
same fruit twice if the speed is too low, or if there are spacing
issues. Initially, our algorithm was taking around 5 seconds to
run from start to finish, so we were quite concerned about it
meeting speed requirements. However, we made several code
optimisations and were finally able to meet our requirements.

Another great risk we were facing was with respect to
building a conveyor belt. None of us have ever built anything
mechanical, so it was possible we wouldn’t be able to build it,
or it would not meet our system requirements. Since the actual
product needs to be integrated into existing conveyor belt
systems, a conveyor belt isn’t really part of the product itself,
so even if we couldn’t build a conveyor belt well, it shouldn’t
affect the performance of our product. To mitigate this risk, we
planned on using a treadmill as a backup conveyor belt, and
also included building the conveyor belt in an earlier stage in
our schedule, so we had time to build it and know if we
needed to use a treadmill or not. Thankfully, it worked out
well.

Lastly, we were running quite on the clock with having our
gate still pending in the last week since we did not have a
good prototype earlier. As a result, we were concerned about
completing the project in time. However, I’m happy we were
able to. This was due to the slack time we had accounted for in
our plan. Since we had several moving parts, we ran the risk
of not being able to integrate all of the different parts of the
project in a smooth fashion, but it all worked out in the end.

10
18-500 Final Project Report: 05/14/2021

VIII. ETHICAL ISSUES

FarmFresh aims to serve as an affordable and value-adding
tool for farmers. The product is especially targeted towards
small-scale farmers who may not have been able to afford the
expensive alternative fruit sorting machines such as by
TOMRA. Although we have tested on bananas and carrots, the
algorithm can also be adapted to other fruits and vegetables.
However, there are some ethical points to think about. Since
our product looks at only discolored rotten areas on produce
right now, it may miss other types of deformation on fruits and
vegetables that make produce unsuitable for markets. It would
be a waste of money to transport such unsuitable produce to
markets to be rejected later on, so it is important we clearly
specify the use case for FarmFresh to farmers which is
detecting if produce is rotten primarily through discoloration.
In other instances, certain produce rots without showing much
discoloration and rather shows more deformation. However,
FarmFresh is biased towards the former type of rotting and so
farmers who deal with the latter type of produce will not be
able to avail the benefits of autonomous produce quality
sorting. While FarmFresh makes this clear in its design
specification, it is important to think about who is being left
out of advantages through new technology. This gap can be
filled by others in the food produce sector with new and
cheaper innovation or even our group in the future by
extending our algorithm to work on deformation using edge
detection and other computer vision techniques.

It is also important for FarmFresh to not only be accurate--
for which we have tested-- but also robust in real world
conditions, such as the conveyor belt systems in farms. Its
breakdown would be very disadvantageous and distressing to
farmers, especially our target customer base of small-scale
farmers who may not have the resources at hand to recover
from such failure. So, it is important for us to test our product
in real farms before we deploy our solution.

IX. RELATED WORKS

In this section, we detail some other projects and products
that are similar to FarmFresh. One of the biggest companies
currently operating in the market for sensor based sorting
solutions is the Japanese company TOMRA. TOMRA has
several high end products that automatically sort fruits and
vegetables. One such product is Blizzard, which is a
multi-purpose optical food sorting machine.

The importance of automated food sorting technology is
increasing as an increasing number of farms adopt automated
picking and harvesting mechanisms, as these picking
machines cannot distinguish good fruits from bad fruits.
Recently, Abundant Robotics created an automated apple
picker system [6], and one way to increase efficiency of the
system might be to install an automated sorting mechanism
within the picking stage. This would save time, energy and
money, and is an area of further research.

There has also been research done in algorithms to detect
rotten parts in a wide variety of different fruits and vegetables.
One particularly interesting paper by Nossier et. al utilises
KNN and SVM models [7]. The paper was able to distinguish
between 4 different fruits, detect rotten fruits consistently,
while maintaining high accuracy rates. The paper achieved
this by applying numerous K-Nearest Neighbors algorithms
(e.g fine, medium, coarse, cosine).

Finally, there has been extensive research done in the field
of CNNs and their use in image classification. In “Pure-CNN:
A framework for fruit images classification”, Kausar et. al did
a particularly thorough treatment of the subject [8]. The CNN
model they developed could be an area of further research.

11
18-500 Final Project Report: 05/14/2021

X. SUMMARY

Our system was able to meet the requirements comfortably;
we had a higher than expected accuracy rate in classifying
both good and rotten fruits. We were also able to meet the
speed of conveyor belt requirements since we used the motor
speed controller. This gave us flexibility to finetune the speed
and overcome any limitations due to friction between belt and
wood or belt and rollers. We had carefully picked the power
source, so that metric was satisfied. Finally, we tested our
algorithms and hardware on an actual conveyor belt setup to
demonstrate ease of installation. Hence, we were able to meet
all our goals for the MVP. With the added time, we were able
to incorporate additional fruits as well.

One of the major limitations of the system was the jitter in
conveyor belt speed as a result of uneven friction across
surfaces. Given enough time, we would definitely address this,
and make sure the speed of the belt doesn’t fluctuate too
much. The reason for this potential jitter was the stitched point
in the fabric, which often got stuck momentarily. Given more
time, we would make the joint seamless. Another very simple
improvement we could make to mitigate this would be to buy
a more powerful motor (one with more torque).

Apart from starting early, the biggest advice to future teams
is to plan extensively with your teammates. It really helps
when all team members are on the same page, and there is
fluid communication. Planning early also allows prototyping,
and enables finding areas to improve the design, and come up
with easier designs.

REFERENCES

1. https://www.nass.usda.gov/Publications/AgCensus/20
07/Online_Highlights/Fact_Sheets/Farm_Numbers/s
mall_farm.pdf

2. https://www.researchgate.net/publication/312494475
_A_Survey_on_Computer_Vision_Technology_for_F
ood_Quality_Evaluation

3. https://www-sciencedirect-com.proxy.library.cmu.edu
/science/article/pii/S0924224403002711

4. https://www.kaggle.com/sriramr/fruits-fresh-and-rotte
n-for-classification

5. https://www.arducam.com/docs/camera-for-Jetson-N
ano/multiple-cameras-on-the-Jetson-Nano/arducam-
multi-camera-adapter-on-the-Nano/

6. Simonite, Tom. “Apple-Picking Robot Prepares to
Compete for Farm Jobs.” MIT Technology Review,
MIT Technology Review, 3 May 2017,
www.technologyreview.com/2017/05/03/152012/appl
e-picking-robot-prepares-to-compete-for-farm-jobs/.

7. no, Ann & Ahmed, Seif. (2019). Automatic
Classification for Fruits’ Types and Identification of
Rotten Ones Using k-NN and SVM. International
Journal of Online and Biomedical Engineering
(iJOE). 15. 47. 10.3991/ijoe.v15i03.9832.

8. A. Kausar, M. Sharif, J. Park and D. R. Shin,
"Pure-CNN: A Framework for Fruit Images
Classification," 2018 International Conference on
Computational Science and Computational
Intelligence (CSCI), 2018, pp. 404-408, doi:
10.1109/CSCI46756.2018.00082.

12
18-500 Final Project Report: 05/14/2021

Fig 5. Block Diagram

13
18-500 Final Project Report: 05/14/2021

Fig 6. Schedule Gantt Chart

14
18-500 Final Project Report: 05/14/2021

Fig 7. Budget and Parts List

