
1
18-500 Final Project Report: 03/17/2021

FarmFresh Design Review Report

Ishita Kumar, Ishita Sinha, Kushagra Sharma

Electrical and Computer Engineering, Carnegie Mellon University
{ikumar, isinha, kushagrs} @andrew.cmu.edu

Abstract- It is important to separate rotten fruits early in
the food distribution process to prevent healthy fruits from
getting spoiled and before more monetary value is added
through packaging and transportation. Thus, FarmFresh,
a fruit quality evaluator and sorter, can help save energy
and resources as well as help prevent food wastage. Our
solution uses computer vision to autonomously sort and
separate healthy and rotten fruits, thus preventing human
error. It can save hours of manual labour for farmers so
they can utilise their time to work on other value-adding
tasks that can’t be automated.

Index Terms- Computer Vision, Fruit classification,
Machine Learning, NVIDIA Jetson Nano, OpenCV

I. I​NTRODUCTION
The saying, one rotten apple spoils the barrel is quite

literally true. If not separated, rotten fruits can spoil fresh
fruits and wreak havoc in the food distribution industry. It is
also important to separate rotten fruits as early as possible
before more monetary value is added through packaging and
transportation. Thus, to save energy and resources and prevent
food wastage, it is necessary for farmers to accurately separate
rotten fruits before further distribution. This task must be
automated to prevent human error and save farmers’ time.
Although fruit sorting machines exist, they are very expensive.
As 91% of US farmers are small farmers, there is a vital need
for a more affordable yet autonomous solution​1​. This is why
we introduce FarmFresh: a low-cost fruit quality evaluator and
sorter. Our solution uses computer vision to quickly and
autonomously sort and separate healthy and rotten fruits. This
prevents human error and can save hours of manual labor for
farmers. This saved time can instead be spent on other more
value-adding tasks that cannot be automated.

FarmFresh aims to be highly accurate in sorting rotten and
fresh fruits. Our project will work with bananas, apples, and
oranges. We plan to achieve rotten fruit detection with false
negatives less than 5% and false positives less than 15%. Our
solution is meant to be integrated into existing conveyor belt
systems, so FarmFresh will be built to accommodate the
typical conveyor belt speed of 5 cm/s and specific fruit
spacings by taking pictures of fruit every 4 s. Our project will
take pictures in uniform bright lighting to mimic factory
settings and achieve consistency. FarmFresh will be powered
to work for 8 hours at a time so it can last a typical work day.

1https://www.nass.usda.gov/Publications/AgCensus/2007/Onli
ne_Highlights/Fact_Sheets/Farm_Numbers/small_farm.pdf

II. D​ESIGN​ R​EQUIREMENTS
To ensure that FarmFresh is useful to farmers, we

considered numerous requirements from the farmer’s
perspective. These requirements also ensure that our product is
competitive in the market space, and offers something new
that the alternatives lack. A list is presented below:

● Support multiple fruits. We want to be able to support
bananas, apples, and oranges.

● Needs to be compatible with a majority of conveyor
belt architectures.

● Needs to be easy to install and portable. To validate
this requirement, we will be building our own
conveyor belt system, and making sure FarmFresh is
fully compatible with it.

● FarmFresh needs to quickly sort fruits, and needs to
be able to work on existing conveyor belt speeds of 5
cm/s. No fruit should be missed.

● Needs to have a false negative rate of less than 5%.
This is to ensure that we rarely categorize rotten
fruits as fresh since that can potentially be
catastrophic. To get a better understanding of
accuracy metrics, we found several papers online. In
“A Survey on Computer Vision Technology for Food
Quality Evaluation”, ​the author was able to achieve
97% accuracy classifying cracked eggs using edge
detection​2​. In a more recent paper, the authors were
able to achieve 89% accuracy correctly predicting
rotten vegetables such as carrots and bell peppers​3​.
This is why we chose a high classification accuracy.

● Needs to have a false positive rate of less than 15%.
We define a false positive as follows: a fruit is
predicted as being rotten, when it is not actually
rotten. This is a less severe case. We do lose value
from the misclassified fruit, but at least it doesn't
impact the rest of the fruits. This is why we want our
product to have stringent requirements when it comes
to detecting rotten fruits, at the cost of potentially
increased false positives.

● Needs to be able to support a typical 9-5 day, so the
battery should last at least 8 hours.

● Needs to cost less than $600 so that it is cost
effective.

2https://www.researchgate.net/publication/312494475_A_Surv
ey_on_Computer_Vision_Technology_for_Food_Quality_Eva
luation
3https://www-sciencedirect-com.proxy.library.cmu.edu/scienc
e/article/pii/S0924224403002711

https://www.researchgate.net/publication/312494475_A_Survey_on_Computer_Vision_Technology_for_Food_Quality_Evaluation
https://www-sciencedirect-com.proxy.library.cmu.edu/science/article/pii/S0924224403002711

2
18-500 Final Project Report: 03/17/2021

To simplify some of the design decisions later on, we assume
that fruits are evenly separated from each other at intervals of
around 20 cm. This assumption is based on the fact that the
fruits are collected/pre-sorted at even intervals, which means
that most farm systems would not need to change their
existing infrastructure much to accommodate this. This lets us
establish how often we need to take pictures. With the
conveyor belt speed operating at 5 cm/s, and fruit spacing at
20 cm, if we take a picture every 4 s, we can avoid
unnecessary computation (thus saving battery life), while not
missing any fruits.

The main considerations when designing the mechanical
aspects (conveyor belt) were the following:

● The width of the conveyor belt needs to be large
enough to support placing fruits.

● The length of the conveyor belt needs to be large
enough to support placing multiple fruits (at least 3)
so that we can perform stress tests and simulate the
process better.

These two considerations allow us to set the width of the
conveyor belt at 4 inches (the average width of a banana is 2
inches), and the length at 26 inches, so that we can place 3
fruits at any given time at intervals of 20 cm (7.8 inches).

III. A​RCHITECTURE​ ​AND​/​OR​ P​RINCIPLE​ ​OF​ O​PERATION
The architecture of FarmFresh consists of two major

components - the conveyor belt design, which is the
mechanical component, and the rest of the system, which
constitutes the hardware and software parts of the product.
This can be seen in our block diagram in Figure 6 in the
Appendix on page 8.

As part of this split, we must note that the conveyor belt
setup itself does not depend on any part of the product, and
vice versa. Our product is designed to be integrated into
existing conveyor belt systems that meet our speed
specifications. As a result, the product is independent of the
conveyor belt, so the two components can be built separately,
and they operate separately as well. The functioning of our
product would not impact the conveyor belt, and vice versa.

Figure 1 provides an overview of how our product is
designed to work with the conveyor belt system. As a fruit
comes along, the camera modules capture an image of the
fruit. Once this image has been captured, it is sent through the
camera multiplexer to the NVIDIA Jetson Nano which saves it
on disk. The board runs our classification algorithm on the
images of the fruit and determines whether it should be
classified as rotten or good. It passes a signal to the gate
controller, and accordingly the gate controller rotates the gate
so that the fruit is pushed into the appropriate basket.

The entire system has the base computer as the NVIDIA
Jetson Nano. To the Jetson Nano, we have connected two
Raspberry Pi camera modules (connected via the arducam
module), which correspond to the cameras shown in Figure 1.
As fruits come along the conveyor belt, the cameras will be
programmed to automatically capture a picture every 4 s. The
cameras capture the picture of the fruit and save it to disk.

Fig. 1. System picture

Once the image of the fruit has been captured by both
cameras, it is sent to the NVIDIA Jetson Nano. On the
NVIDIA Jetson Nano board, we would have our classification
algorithm. This algorithm begins by converting the image to
hsv space. Post that, it performs image segmentation to isolate
the fruit from the background. We plan on having a white
background for the fruits on the conveyor belt so that the
images can be captured with ease. We also plan on building a
shed using the wall mounts so that it could hold the cameras
and the NVIDIA Jetson Nano in a fixed position. Further, we
plan on having controlled lighting in this shed so that all of the
images can be classified more easily. Once the fruit has been
segmented from its background, and appropriate noise
filtering is applied, this image would be passed through an
edge detection algorithm. Using this algorithm, we would be
able to determine the boundary of the fruit in the image. Once
this has been achieved, we can pass the image into our
classification algorithm in order to determine whether the fruit
is rotten or not. We plan on building 2 classifiers in order to
see which one works best. The first one would involve
performing a pixel by pixel analysis of the fruit in order to
obtain the percentage of pixels corresponding to rotten parts of
the fruit. We could obtain a threshold that would indicate
above what percentage of the area would be classified as
rotten, and using this, the classifier could classify the fruit
based on whether it is rotten or good. An alternative classifier
would involve using neural networks (Alexnet) in order to
predict the rottenness of the fruit based on a classifier that
we’ll develop and train on several images. To perform all of
this computation, we’re using the OpenCV and Scikit-image
libraries provided by Python.

Once the classification has been performed, the result is
passed along to the gate controller. The gate controller
facilitates communication between the Adafruit servo
controller and the servo motor itself. Once the Adafruit shield
receives the signal, it sends along the signal to the servo motor
controller so that the gate can be rotated the appropriate
amount in the appropriate direction in a specified amount of
time. Based on the result of the classification, the gate will
rotate so as to put the fruit in one of two baskets - the good

3
18-500 Final Project Report: 03/17/2021

one, or the rotten one, depending on the result of
classification.

This entire product is designed to be integrated into an
existing conveyor belt system. Our conveyor belt setup
consists of electrical as well as mechanical components. The
electrical components include the RC motor speed controller
board and a 12 V DC Gear Motor for moving the conveyor
belt at the appropriate speed. The mechanical components that
are involved in building the conveyor belt are discussed in
Section V.

This entire system is powered by a 5 V power supply. We
need this entire system to last a regular 8-hour working day for
the farmer, so based on the use case requirements, we have
decided to use a 25000 mAh power bank as our power source
since we believe it should last for the requisite amount of time.

IV. D​ESIGN​ T​RADE​ S​TUDIES
Hardware

A. Fruit Sorting Mechanism
For the final design of our fruit sorting system, we
decided to use a servo motor to control a gate which
can turn and direct the fruit into the appropriate
basket. This is different from our initial design which
involved pistons pushing fruit off a platform and into
the right basket. We decided against the latter design
because when we researched pistons, they were too
slow to meet our required speeds. We looked into
solenoid pistons as well, which were faster than the
other types of pistons, but these were expensive. In
addition, pistons were hard to configure since our
team lacked the mechanical knowledge required.
Furthermore, none of the pistons we researched had
the necessary reach to push the fruit far enough to
make it fall over the side of the conveyor belt. On the
other hand, we all have experience working with
servo motors and the gate system seemed to be a
more simple design that met our requirements better.
Thus, we chose the servo controlled gate system as
our fruit sorting mechanism due to it being faster and
more easily configurable.

B. Fruit Platform
It was important for us to decide a good system for
placing our fruit as our image segmentation algorithm
for fruits would be strongly affected by this choice.
Our initial design involved a white rotating plate on
which the fruit would be placed. We would then take
pictures periodically as the fruit rotated. This would
be good for image segmentation and we would only
require one camera for this design. However, this
design was not easily integratable with a conveyor
belt system, which is our intended end goal. We also
needed to test if our design would work with a
conveyor belt, which was not accurately possible
without moving the fruit in some way. Thus, we

decided to build a conveyor belt and place fruits on it,
as our end-user would, rather than using a rotating
platform. This would provide a more realistic
environment for our project. We plan to cover the
base on which the fruit is placed with a white
material to still get the benefits for image
segmentation. We still wanted to be able to access all
sides of the fruit thought, which naturally led us to
incorporate multiple cameras in the new design.

C. Hardware Platform Placement
Our design requires a platform to place the camera(s)
for taking fruit pictures and the Jetson Nano for
computation. We decided to use wall mounts on
either side of our conveyor belt system to place our
cameras. Our design involves placing the cameras
diagonally across from each other so as to get
different angles of the fruit, including front and back.
We decided a 2 camera system placed on mounts
worked better than a single camera as it is
integratable into a conveyor belt system. The single
camera system would have had the fruit rotating and
so we would have had to stop the movement of the
fruits which is not ideal. The Jetson Nano will be
placed on the top of a shed, directly above the
conveyor belt. This shed will also have a uniform and
bright lighting attached to it for consistency in our
pictures. We decided the shed system would be best
for placing the Nano as we would also need it for the
lighting.

D. Computer
We decided to use an NVIDIA Jetson Nano for our
computer vision and machine learning algorithms.
This is because the Jetson Nano has a quad core A57
@ 1.43 GHz processor and a dedicated 128-core
Maxwell GPU. This works well for our design as it
has the computation power required for our algorithm
to run quickly as well as take live pictures quickly.
We would also prefer a dedicated GPU for processing
fruit images and computer vision. We also looked
into using the Raspberry Pi but we did not think it
would provide good enough computational power for
our project needs as it does not have a dedicated
GPU. We chose Jetson Nano A02 over the newer
B01 model (which has 2 CSI camera ports) because
we wanted our design to be scalable to 4 cameras if
we needed to introduce more angles of the fruit to
meet our accuracy metrics. This meant using the
arducam camera module regardless of whichever
model we went for. Thus, we chose the cheaper
version.

4
18-500 Final Project Report: 03/17/2021

E. Camera
The camera is an important part of our design since
we use it to take live pictures of fruit as it moves on
the conveyor belt. These images are then analyzed to
detect whether a fruit is rotten or not. The camera
would also be connected to our computer. Thus, we
need a camera that takes good quality pictures and
can be connected to the Jetson Nano. We decided on
using two Raspberry Pi cameras (configured via the
camera multiplexer) for the needs of our project since
the Jetson Nano actually has dedicated slots for these
cameras and they are connected directly to the GPU.
The Raspberry Pi Camera Module v2 contains a
8-megapixel sensor, which is high enough resolution
for our need to capture detailed fruit images along
with any rottenness present. In addition this camera is
easy to program as there is significant documentation
on how to configure it with the Jetson Nano. We also
looked into using USB cameras but decided against it
because they would connect to the CPU instead and
the costs were similar enough that the USB cameras
did not save us much money either. On the other
hand, there were certain USB cameras with much
better camera quality, but those were much more
expensive. Since the Raspberry Pi cameras fit our
needs already, we decided to use them for our project
rather than the USB cameras.

Software
A. Image Segmentation

We are using OpenCV’s HSV color thresholding for
image segmentation. This works a lot better than
RGB thresholding as it is difficult to capture the
exact RGB colors a fruit has especially since the
exact RGB color value can vary slightly from fruit to
fruit and also within the fruit. On the other hand,
HSV separates the color information (hue) into its
own channel which can help us capture a range of
colors associated with the fruit independent of
saturation or lightness values.

A. Fruit Quality Evaluation
The fruit quality evaluation system is the backbone of
our project as this is the algorithm that will decide on
the classification of fruit as fresh or rotten. After
segmenting the fruit from the image, we use edge
detection to get the boundary. Next, we do a pixel by
pixel analysis within the boundary of the fruit to
detect the percentage of rotten parts based on a fixed
HSV color threshold for the same. We also plan to
have a neural network based algorithm (e.g AlexNet)
for rotten fruit classification. We want to compare
both methods and pick the best one rather than
making a tradeoff decision without results for both
methods.

V. S​YSTEM​ D​ESCRIPTION
In this section, we present the block diagram discussed

earlier in greater detail. We will go over all the subsystems
individually. Our overall design is composed of 3 main
subsystems: 1) software for classifying fruits 2) hardware to
take pictures, and coordinate the control mechanism for
sorting 3) mechanical conveyor belt system which integrates
the software and hardware parts

A. Software subsystem
This subsystem is the green box named classification

algorithm and the gate controller module inside the block
diagram. The purpose of this subsystem is to take an image as
an input and produce a single output that classifies the fruit in
the image as either good or rotten, and to communicate that
decision to the Adafruit servo controller.

1. HSV conversion
The first step in processing the images is to convert
the image from RGB space to HSV space. We tried
to process the images using the rgb space, but found
it difficult to accurately differentiate between pixels
based on color alone. The exact color threshold was
hard to capture even after trying to adjust the bounds
for a while. After researching, we found HSV space
to fit our needs much better since it separated the hue
into a separate channel independent of saturation or
lightness. Hence, we converted the image to HSV
space. This resulted in a significant increase in
accuracy during segmentation.

2. Image segmentation

Once the image was converted to HSV space, we
were able to accurately segment the image and isolate
the fruits based on hue (e.g yellow for banana). To
accomplish this, we kept adjusting the hue, saturation
and brightness bounds. Then we realized a better
method would be to graph the HSV colors prominent
in a fruit. With that data, we were able to create a
mask that segmented the fruit from the background.
One challenge we anticipate is that lighting levels
will fluctuate depending on the time of day but we try
accounting for this by hanging a fixed and uniform
light source above our fruit. We can also add an extra
step to correct for the ambient brightness. This will
most likely be in the form of taking a few pictures
before starting the classification process and
calibrating the brightness.

3. Noise filtering

We realized we needed this step when we were trying
to classify the fruit images as rotten or good. The
black area on the outside of the fruit (left over as a
result of image segmentation) was being taken into
account as rotten areas within the fruit. This is
important to remove as it will lead to fruits being

5
18-500 Final Project Report: 03/17/2021

mistakenly classified as rotten when they are good,
driving up the false positive rates. To fix this, we plan
to add noise filtering as an intermediary step and use
an edge detection algorithm so as to only analyze
pixels within the fruit. To accomplish noise filtering,
we will apply a Gaussian blur before the edge
detection. However, we can’t be too aggressive with
the blur either as that will blur areas within the
banana too that shouldn’t be removed. So, it’s a
balancing act (removing extraneous parts outside the
fruit while not removing the ‘good’ parts inside the
fruit) that we will need to get right.

4. Image classification

Finally, we classify the fruit in the image as being
good or rotten. We have not implemented this step
yet, but our plan is to analyze localized groups of
pixels that are a different hue and brightness than
their neighbours based on a fixed HSV threshold that
signifies rottenness. We will analyze darker areas
inside the fruit since those symbolize decay.
Depending on the size and frequency of these darker
areas, we will categorize the fruit as good or rotten.
Since this is significantly more difficult than the other
steps, we have prepared a contingency plan in case
we are unable to achieve our designed accuracy
metrics: we will use a neural network based solution.
Our current plan B consists of using AlexNet for its
success at classifying images. This approach has its
own challenges, namely requiring a large amount of
input data. Having said that, there is a lot of support
available for neural networks on the Jetson Nano, so
we are confident we can be successful with this
approach. We will test this on our MVP fruit, banana,
and then pick the approach with the best results for
our other fruits.

5. Gate controller
Once the classification algorithm makes a decision
about the quality of the fruit, a signal is sent to the
gate controller system. The purpose of this system is
to communicate the classification decision with the
Adafruit servo driver, so that the driver can move the
servo motor appropriately.

B. Hardware subsystem
This subsystem is responsible for coordinating the different

moving parts of the design, and controlling the flow of
information. It consists of the NVIDIA Jetson Nano 2 GB,
camera subsystem, the Adafruit servo controller, the 5 V DC
servo motor, and the 25000 mAh Krisdonia power bank.

1. NVIDIA Jetson Nano 2 GB
We will be using the NVIDIA Jetson Nano 2 GB as
the central hub for all hardware related tasks. It will
be used to coordinate all the other pieces. For a
discussion of why we picked this particular model,
refer to the earlier tradeoffs section.

2. Camera subsystem
The camera subsystem consists of 2 Raspberry Pi
camera modules V2, and the arducam multi camera
adapter module V2.2. The multi camera module has
support for upto 4 cameras, and accesses them in a
time multiplexed way (access is not simultaneous).
The Nano will be issuing commands to the camera
multiplexer which will take pictures using each of the
attached cameras and save them on the disk. We have
been able to install one camera directly (without the
camera multiplexer) successfully on the Nano and
use it to take pictures; the next step is to incorporate
the full camera subsystem. As mentioned in the
design tradeoffs, we chose this design primarily to
mitigate the risk of not having enough angles (and
thus enough data) of the fruit. We want our design to
be scalable to 4 cameras in case we need more angles
of the fruit to meet the accuracy metrics. The
installation of the camera multiplexer (showcasing 4
cameras) is shown below.

Fig 2. Camera Subsystem & Jetson Nano Interface​4
The multiplexer is connected to both the GPIO pins
of the Nano, and to the CSI port. Note that this is not
our setup (we have not implemented this); this is a
setup we found online.

3. Adafruit 16-channel 12-bit PWM/Servo Driver
The main purpose of this system is to facilitate
communication between the Jetson Nano and the
servo motor that will control the gate sorting
mechanism once the classification algorithm section

4https://www.arducam.com/docs/camera-for-Jetson-Nano/mult
iple-cameras-on-the-Jetson-Nano/arducam-multi-camera-adap
ter-on-the-Nano/

6
18-500 Final Project Report: 03/17/2021

produces an output. We need this module since it’s
not possible to control the servo motor directly from
the Nano. A schematic for installation is shown
below. This is what we will be building.

Fig 3. Adafruit Servo Controller & Jetson Nano Interface​5

Note once again that this is not our current setup (we
have not yet implemented this). We found this online.
The servo driver also uses GPIO pins. It is possible to
have contention between the servo driver and the
camera multiplexer since they both use GPIO pins,
but there are enough pins on the Nano so that this
shouldnt be a problem.

4. Sorting mechanism
The sorting mechanism consists of the servo motor
and a piece of metal attached directly onto the shaft.
The long piece of metal directs the fruit in the
appropriate basket by physically blocking it. More
detail can be found in Figure 1 of Section 3.

5. Power
We will be using the 25000 mAh krisdonia power
bank to power the entire system. We chose this so
that we can power the Jetson Nano for upwards of 8
hours, which is one of our requirements. We will also
be using this power bank to power the arducam
camera multiplexer and the Adafruit servo motor
shield.

C. Mechanical subsystem

The mechanical subsystem consists of the conveyor belt.
The system is divided into 2 parts, the mechanical side, which
is the actual belt, and the electronics side which is the system
that drives the belt. The 12 V DC gear motor is the point of
contact between the 2 subsystems.

1. Mechanical

The conveyor belt system consists of 2 pieces of
wood that act as side panels, and a laminated piece of
wood that goes inbetween. The side panels are
exactly one inch longer than the laminated wood,

5https://www.arducam.com/docs/camera-for-Jetson-Nano/mult
iple-cameras-on-the-Jetson-Nano/arducam-multi-camera-adap
ter-on-the-Nano/

which lets us place the rollers (PVC pipes of 1 inch
diameter) in between the side panels of wood, tangent
to the central piece of laminated wood. An image of
this partial setup is presented below.

 Fig 4. Partially Completed Conveyor Belt System​6
The motor is connected to the 3D printed shaft
coupler and attached to one of the rollers. The belt
goes on top of the rollers. This completes the
mechanical portion of the conveyor belt. A finished
image is presented below:

Fig 5. Top View of Completed Conveyor Belt System​7
Note that we have not built either of the designs
above ourselves; both of these images were found
online. We will be building these designs in the
coming weeks. A discussion of the dimensions of the
conveyer belt and why we chose them can be found
in Section 2. Other necessary miscellaneous parts
(and their dimensions) required to complete the belt
can be found in the budget and parts list later in the
report.

2. Electronic
The electronics subsection consists of just the motor
speed controller board (not depicted in the images
above, but available in the budget section). This will
let us control the speed of the motor and achieve the
required 5 cm/s. Note that this board will be powered
separately (not using the power bank), since we want
to maintain independence between the mechanical
system and the hardware/software systems. Since
conveyor belts aren’t connected to batteries in farms,
any appropriate power source is sufficient. We do
have a plan B in case the RC motor controller board
doesn’t work. We will use a motor controller PCB
using the 555 speed controller chip. We found the
appropriate schematic of the PCB (and the
appropriate gerber files), and the components that
need to be soldered on online.

6 https://www.youtube.com/watch?v=o7VVmtX7SKs&t=216s
7 https://www.youtube.com/watch?v=o7VVmtX7SKs&t=216s

7
18-500 Final Project Report: 03/17/2021

VI. P​ROJECT​ M​ANAGEMENT

A. Schedule
The first five weeks of the semester were spent in finalising

the project idea, developing a well thought out design for it,
and finalising our parts list. Post that, Ishita Kumar started
looking into image segmentation methods to segment out
fruits and separate them from their background. In the
meantime, Kushagra worked on understanding how the
NVIDIA Jetson Nano works, and integrating it with a
Raspberry Pi camera module. After the image segmentation
has been completed, Ishita Sinha plans on writing up code for
edge detection. This would be required for us to be able to
identify the rotten parts of the fruit v/s the good ones. This
could be followed by developing the rottenness classifiers,
while Kushagra would be working on the conveyor belt.

Post this initial setup phase with the primary algorithm
being done, we’ll all come together to work on a physical set
up for the product. Next, we will work on automating the
process and moving into testing and improving the MVP in
the second week of April. Once the MVP has been finalised,
we plan on updating our product to include apples and oranges
as well, after which we plan on having all-inclusive tests.
Once our product is working, we have kept around a week for
recording the video and working on the final report and
presentation. We have accounted for more than a week of
slack, as can be seen in our schedule, since it ends on May
2nd. Our schedule is in Figure 7 in the Appendix on page 9.

B. Team Member Responsibilities
While each team member will have a role in every task to

ensure that everyone has a holistic understanding of the
working of the entire product, we have split responsibilities on
the basis of who’ll be leading the task. The primary and
secondary responsibilities of each team member are shown in
the chart below:

C. Budget
Our budget and parts list has been included in Figure 8 in

the Appendix on page 10. The main hardware tools we’ll be
using include an NVIDIA Jetson Nano, 2 Raspberry Pi camera
modules, arducam camera multiplexer, adafruit servo
controller, and the hardware needed to construct the gate. The
mechanical component we’ll be building is the conveyor belt,
so we have also included costs corresponding to parts needed
to build it.

D. Risk Management
As part of the project, one of our biggest risks with respect

to meeting the use case requirements would be ensuring we
meet the accuracy targets we have set. Our current accuracy
targets are to achieve a false negative rate less than 5% and a
false positive rate less than 15%. We need to be more contrite
about the false negatives versus the false positives. This is
because having a rotten fruit classified as a good one (false
negative) would lead to all of the good fruits potentially
getting spoilt, while classifying a good fruit as rotten (false
positive) would lead to a loss incurred only due to that single
fruit. In order to meet our accuracy targets, we plan on
designing multiple classification algorithms so that we aren’t
dependent on a single software approach, and are keeping the
option open for installing more cameras if we need more
angles of the fruit.

Next, another major risk would be if we cannot meet the
conveyor belt speed or if we miss fruits. Our product is
designed to be integrated into existing conveyor belt systems,
assuming they work at a speed of 5 cm/s. We’re assuming 4
seconds to process a given fruit, so the distance between 2
fruits would be around 20 cm. However, we want to ensure we
don’t miss a fruit if the speed is too high, or classify the same
fruit twice if the speed is too low, or if there are spacing
issues. For the same, we plan on experimenting with different
speeds to see which speed gives us the most optimal output,
while ensuring we don’t miss a single fruit.

Another great risk we’re facing is building a conveyor belt.
None of us have ever built anything mechanical, so it’s
possible we won’t be able to build it, or it may not meet our
system requirements. Since the actual product needs to be
integrated into existing conveyor belt systems, a conveyor belt
isn’t really part of the product itself, so even if we can’t build
a conveyor belt well, it shouldn’t affect the performance of our
product. To mitigate this risk, we plan on using a treadmill as
a conveyor belt, and have also included building the conveyor
belt in an earlier stage in our schedule, so we have time to
build it and know if we need to use a treadmill or not.

Lastly, we run the risk of not being able to integrate all of
the different parts of the project in a smooth fashion since it
has several components and we haven’t built a product from
scratch earlier. Moreover, we do run the risk of falling short of
time. To account for this, we have provided for more than a
week of slack time. We’re all going to work on all parts so
that we understand how everything works. We’re updating the
schedule regularly and holding each other accountable.

Team Member Primary
Responsibility

Secondary
Responsibility

Ishita Kumar Image
segmentation

Automating
cameras to click
pictures every 4
seconds

Ishita Sinha Edge detection Automating gate
rotation to ensure
the gate rotates
the appropriate
amount in the
right direction

Kushagra Sharma Hardware
component setup

Conveyor belt
setup

8
18-500 Final Project Report: 03/17/2021

Fig. 6. Block Diagram

9
18-500 Final Project Report: 03/17/2021

10
18-500 Final Project Report: 03/17/2021

Fig. 8. Budget and Parts List

