
TEAM B3: FARMFRESH
Ishita Kumar, Ishita Sinha, Kushagra Sharma



Application Area

- Millions of $$ wasted yearly packaging and transporting rotten fruit
- Manual labor and time of farmers separating rotten fruit. 



FarmFresh: Solution Approach

FarmFresh
- An AI tool to sort and mechanically separate rotten fruit and fresh fruit.
- Works on multiple fruits: bananas, apples, and oranges. 

Existing Solution
- TOMRA has multiple machines for sorting foods
- Usually very expensive ($ 10,000 - $ 25,000)
- Not feasible on small scale, which is our target market.

Our Solution
- Cheaper
- Multi-fruit

Blizzard sorting machine by TOMRA



System Specification: Diagrams



System Specification: Design Overview

- Hardware platforms: Raspberry Pi, NVIDIA Jetson Nano 2GB
- RPi camera V2 and USB Camera 
- Stepper motor and gate (to direct fruits in right basket)
- Conveyor belt parts and motor 
- 2 baskets (for collecting rotten/good fruit)
- Light to control brightness
- Wall mounts/shed for placing camera and Nano
- 6600 mAh Li-on battery 
- Dataset: Google images, manual pictures
- Libraries: Scikit-image, OpenCV



Implementation: Software + Hardware

Software
- Using cv2 library for image segmentation
- Using cv2 library for object detection for fruits 
- Color analysis by pixels to detect rottenness
- Train model to classify fresh vs. rotten fruits using scikit-learn
- Dataset: Google images and manual pictures
- Program gate motor for sorting mechanism

Hardware
- Ordered Jetson Nano and the camera modules 
- Download jetpack sdk and sd card image
- Program cameras to take pictures every 4s and save on disk
- Send signal to gate controller motor for sorting mechanism



Implementation - Mechanical

Mechanical components of Building a Conveyor Belt:



Metrics and Validation
Requirements Metrics Verification

Easy to install Should work with existing belt 
infrastructure

Test with the conveyor belt system we built.

Meet the conveyor belt speed Be able to take picture every 4 s. Gate 
should fire before fruit passes through it

Simulate the process by putting new fruits quickly. 
No deadline should be missed.

Accuracy False Negatives < 5%
False Positives < 15%

Run a test with 50 fruits. Should meet classification 
metrics.

Battery life Battery should last 8 hours (typical 
working day)

Run the setup (camera + gate system) until battery 
runs out.

Fruit spacing Handle fruits spaced at a distance of 20 
cm ± 5 cm. 

Test the extremes (25 cm and 15 cm). No deadlines 
should be missed.

No fruit should be missed No fruit should be missed Perform a stress test with 50 fruits. 



Risk assessment
Metric / Design Risk Mitigation

Building a conveyor belt None of us have ever built anything 
mechanical. Possible we can’t build it

If we can’t build the conveyor belt, use a treadmill to 
simulate the process. 

Meet the conveyor belt speed Possible we miss taking pictures of fruits if 
speed is too high, or classify same fruit 
twice if speed too low

Experiment with different speeds, since we are 
building a variable speed conveyor belt.

Accuracy False Negatives < 5%
False Positives < 15%

Design multiple classification algorithms. Don’t rely 
on one one software approach. 

Integration Not able to integrate different parts 
(hardware, software, mechanical) before 
time runs out

Leave time in gantt chart for integration. 
Update schedule regularly and hold teammates 
accountable. 



Tasks and Division of Labor
Ishita Kumar 

● Image segmentation

● Object classification

● Rotten fruit classification

● Train and test models

● Automate picture taking 

● Building the physical setup 

Ishita Sinha
● Color analysis by pixels

● Rotten fruit classification

● Train and test models

● Programming Jetson Nano

● Raspberry Pi + gate

● Building the physical setup

Kushagra Sharma

● Programming Jetson Nano

● Automate picture taking

● Raspberry Pi + gate

● Building the physical setup



Schedule 

 



Schedule

 


