
1
18-500 Design Review Report: 03/17/2021

Smart Wardrobe
Author: Henry Lin, Sung Hyun Back, Yoo Joon Lee,

Electrical and Computer Engineering, Carnegie Mellon
University

Abstract
The main goal of this project is to create an integrated

clothing management system that manages your clothes and
helps you choose outfits. The software will suggest outfit
ideas to users based on what clothes the user owns and the
user’s preferences. Online outfit images will be displayed to
visualize the outfit ideas. Once the user chooses an outfit, the
outfit will be delivered to them automatically via a rotating
hanger design.

Index Terms —Design, Neural Network, Web Scraping, Outfit,
Automation, Clothing Recognition

I. INTRODUCTION

Picking the right outfits and managing clothes can be an
arduous task, yet it’s something we deal with everyday. There
are many variables that go into choosing our outfits like what
our plans for the day are, what the weathers like, and most
importantly, what clothes match well together. More often than
not, we find these good matches through trial and error,
training a clothing matching algorithm within our own brain
over years with our clothes. As with most things human, our
implicit matching algorithm is flawed. For one, it’s difficult to
visualize what an outfit might look like without trying it on in
the first place. There might be a good outfit in there, we just
don’t see it. Another flaw is that our outfit choices are directly
related to if we can find them and how dirty they are.
However, as we own more and more clothes, they become
increasingly difficult to keep track of. There are some products
on the market that aim to solve these problems, but none are
well-integrated (more details in related work).

We propose a new integrated solution, Smart Wardrobe, that
provides better outfit visualization for better outfit suggestions
and a well-integrated hardware solution to outfit management
via a clothing storage and retrieval system. The visualizer will
use trending outfit ideas from online as inspiration for the user
to pick optimal outfits. All outfits displayed will include
clothing articles that the user already owns and will also take
the user’s preferences into account. Once the user is sure of
their outfit, their choices will be sent to the retrieval system
that will deliver the outfit directly to them. In order to have
good visualizations, the images we find online must match the
user’s own clothes with a high accuracy and the suggestions
must be 100% accurate with the user’s preferences. The
retriever on the other hand should deliver clothes within 5 cm
of the desired dropoff position and it should be able to deliver
each article of clothing within 5 seconds.

II. DESIGN REQUIREMENTS

Our requirements can be broken down into two large
subsystems: the visualizer and retriever.

A. Visualizer

TABLE I. VISUALIZER REQUIREMENTS

ID Requirement Metric

R1 Online Images to User’s
Clothes Accuracy

color: 90% top-5
clothing category: 90% top-5
other: 50% top-5

R2 User Feedback direct - 100%

R3 Accurate Images Found 10 per outfit

R4 Runtime 10 seconds max

R5 Disk Less than 1 GB

R1 and R2 relate directly to our project goals. We use top-5
accuracy instead of standard top-1 because some labels are
difficult even for humans to distinguish or could be
multi-categorical, eg. magenta vs purple, jean-shorts. 90%
accuracy is what’s reasonably achievable based on research
papers on clothing classification[1]. For feedback, any direct
feedback (not inferred) should be correct 100% of the time,
eg. If a user rates blue jeans white t-shirt positively, the outfit
will be recognized as a positive outfit. It is not a requirement
to have high estimated preferences, eg. a user might like blue
jeans black t-shirt because they like blue jeans, but it is an
important metric to strive for. R3 relates to how we are going
to supply trending outfits to the user. By collecting a wide
range of photos the user can determine what it will look like
and whether they like it. R4 comes from a usability study[2]

and R5 is a reasonable size for laptop applications.

B. Retriever

TABLE II. RETRIEVER REQUIREMENTS

ID Requirement Metric

R6 Clothes Tracking 100% accurate

R7 Number of Clothes 20

R8 Distance from User 5 cm

R9 Runtime 5 seconds per article

The system should be able to know what clothes are
currently hung in the rack, where they are, and how many
times it's been worn 100% of the time (R6). Smart Wardrobe
should be able to hang at least 20 articles of clothes. We chose
20 to limit the scope of our project while still providing a good
amount of clothes. Because we need to deliver clothes to the
user, R8 defines how accurate our system needs to be. R9 is
based on the same study[2] as R4, but because we need to
deliver two articles, the time is halved for each.

2
18-500 Design Review Report: 03/17/2021

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 1. Software Block Diagram

TABLE III. SOFTWARE INTERFACE DESCRIPTION

Label Interface Description

v1a setFilter(f) user-inputted specs like jeans-only or
black top

v1b getMatches() returns images of the best outfits that
meet user specs.

v1c setRating(p, outfit) User-inputted rating of a specific
outfit combination

v2 getRating(outfit) returns best estimate of what user’s
rating of a specific outfit

v3 getOutfitImgs(labels, num) returns num outfit images that best fit
given labels

v4

userInput(type of action,
clothes)

updateDatabase()

userInput: it will take in the type of
action (remove, take, return, add) that
the user decides, and it will take in
what clothes that the user has decided
to remove, take, return, or add
updateDatabase: it updates the
database after the user removes,
takes, returns, add clothes from/to the
rack

v5a scrapeOutfits(labels, num) finds and returns num outfit images
that best fit given labels online

v5b scrapeSite(site) returns all the images on that
website

v5c getLabels(img) returns labels of img for both top and
bottom

v5d getAttributes(img, bbox) gets secondary attribute labels and
color

v6 getStoredClothes() sends existing clothes in the database
to matching API and visualizer API

When the user wants to take clothes from the Smart
Wardrobe, it will be facing the user interface screen with four
options, which will be take, return, add, remove clothes. After
the user selects “take clothes”, the user interface will make an
API call to the matching API, which is requesting information
about all the clothes that are currently in the rack. Then the
user can set filters on specific clothes he wants (v1a). After
setting filters,s users can request a recommended combination
of clothes’ images to the matching API (v1b). Then the

3
18-500 Design Review Report: 03/17/2021

matching API will account for the user preference by
communicating with the user preference model (v2) and
determine optimal combinations and request the images for
these combinations to the visualizer API (v3). After the
visualizer API receives information about the clothes that the
user wants to see, it will request the clothing web scraping
API to scrape the web for images (V5a). Then the clothing
web scraping API will scrape the web for the clothing images
(v5b). After the API scrapes the web for multiple images, it
will validate the image, whether the image contains the correct
information of clothes we are looking for (v5c, v5d). Once this
process is done, it will display the image to the user interface,
and out of the displayed options, the user selects the
combination it likes the most. The user selection will be
passed into the Retriever API (v4) and then the angle of
rotation would be passed into the servo.

Fig. 2. Hardware Block Diagram

After the user retrieves the clothes, it will tell the smart
wardrobe that the process is complete. Then the user interface
will deliver this information back to the Retriever API and
will update the database (v4). Update database is necessary
because if the Retriever API updates the database based on the
userInput, there might be an edge case where the clothes are
not delivered, but the database is updated. The
updateDatabase() will prevent such discrepancy. The final step
after updateDatabase() will be the Retriever API letting other
APIs know about the updated database (v6).

4
18-500 Design Review Report: 03/17/2021

IV. DESIGN TRADE STUDIES

A. Clothing Pictures and Attributes Storage
Because we have both a speed requirement (R4) and a disk

requirement (R5), we need to balance our storage subsystem
to minimize system runtime and disk space. The following
table shows the maximum scope of our system. Assume all
images will be sized down to 100 KB.

TABLE IV. MAXIMUM STORAGE SCOPE

Maximum Clothing Articles 20

Maximum Outfit Combinations = 10 tops * 10 bottoms = 100 outfits

Maximum Images Required = 10 photos * 100 outfits = 1000 images

Maximum Storage Required = 100 KB * 1000 images = 1MB

This analysis shows that under current requirements, we can
effectively store all images necessary for the scope of our
system without coming close to our R5 disk requirement. It’s
even possible to cache the images in memory as typical
laptops have gigabytes of memory. Thus, we do not need to
worry about the tradeoff between disk and speed as even with
the fastest solution we can have, we aren’t close to hitting our
storage requirements.

B. Clothing Recognition Model
The most important tradeoff for the clothing recognition

model is accuracy vs speed. We have both an accuracy
requirement (R1) as well as a runtime requirement (R4) that
we need to fulfill. A big differentiator for this tradeoff is the
architecture we use. There are many state-of-the-art object
detection algorithms that offer varying levels of accuracy and
speed. Figure 3 shows the performance trade-off of popular
state-of-the-art object detectors on the COCO dataset.

Fig. 3. Performance Graph[3]

Because the figure’s definition of accuracy is very different
from ours and we’re using a different dataset, we will need to
train our own models to make an informed decision. At this
stage, we are looking at training a YOLOv4 model and an
EfficientDet model. We will benchmark the models on the
DeepFashion dataset to determine which model we will
ultimately be using. We will not be using PP-YOLO as the
architecture is not built on tensorflow or pytorch, making the

tradeoff between engineering effort and model efficiency not
worth it.

C. Outfit Retriever Hardware
When first starting our hardware designs we brainstormed

multiple methods of clothing retrieval. Our three initial ideas
for retrieval were a rotational hangar, roomba retrieval, and a
claw arm. The roomba would navigate to the clothes and then
use a vertical actuator to pick up the clothes then bring it to the
user. The claw arm would be mounted overhead and grab the
clothes like a claw machine and bring it to the user. In order
to determine which to use , we looked at degrees of freedom,
complexity, budget concerns, and other factors before we
chose a design to use.

One of the main reasons we chose not to go with the claw
machine was the complexity and budget issues that arose from
needing 3 degrees of freedom. The claw machine would need
to freely move on the x, y, and z axises requiring 3 actuators to
be used. In addition to creating a claw machine we would need
to construct a sturdy frame, probably out of metal, that would
not move despite all three servos on top moving. Maintaining
accuracy of 5 cm (R8) with a frame that had three moving
would require construction skills outside of our expertise. In
addition the budget concerns rise because we now need three
servos and the materials for a sturdy frame.

The roomba did address some of the problems of the claw.
Although this solution also required 3 degrees of freedom the
roomba was able to provide 2 by itself, and since the roomba
was a preexisting material it saved on the budget. This would
also only require one vertical actuator placed on top of the
roomba. Although we would still need a frame on top of the
vertical actuator to retrieve clothing it would not need to be as
large or sturdy as the one for the claw as it only moved on one
axis. The main drawback came when maintaining the 5 cm
accuracy rating (R8). Because the roomba comes with no error
correction software in order to eliminate accumulating error
we would need to write our own error correction software.
This would require training another image recognition model
for the roomba on top of the already complex clothing
recognition model we were creating. Because of this
unnecessary complexity we chose to go with the rotating
hanger.

The rotating hanger had one degree of freedom so it
removed many of the problems that came with the other
designs. In addition the servos we used could detect what
angle they were currently at allowing our system to error
correct without need to create another image recognition
model. We would need a frame but it would be much simpler
than the claw machine’s frame that would require 3 moving
actuators on top of it.

TABLE V. HARDWARE DESIGN TRADEOFFS

Idea Degrees of
Freedom Actuators Error

Correction
Complex
Frame

Rotational 1 1 Built in No

Roomba 3 1 Image
Detection No

Claw 3 3 Built in Yes

5
18-500 Design Review Report: 03/17/2021

V. SYSTEM DESCRIPTION AND VALIDATION

A. User Interface
When the user first interacts with the Smart Wardrobe,

he/she will be guided through a selection screen of the type of
action the user would like to perform. The options would be to
take clothes, to return clothes, to add clothes, and to remove
clothes. User will select the “take clothes” option, when he/she
wants to wear clothes that are currently hung on the rack.
After the user selects the option, it will lead to the next page,
which will contain all the existing clothes that are currently in
the Smart Wardrobe. After seeing the existing clothes in the
Smart Wardrobe, users can select filters based on the features
of clothes. After selecting filters, the user will see a visual
description of clothing options that the system has
recommended from the Matching API. Then the user can
finalize their selection of clothes and the User Interface will
send the according request to the Retriever API.

User will select the “return clothes” option when he wants
to return clothes that the user has taken. One of the
requirements of the “return clothes” option is the clothes that
the user would like to return had to be taken from the smart
wardrobe. After the user selects this option, it will lead to the
next page, which will contain all the clothes that are in the
database, but not currently in the rack. User will then select
clothes that he is intending to return. After this, the user
interface will send the location of the clothes that he is
intending to return to the Retriever API.

User will select the “add clothes” option when he/she just
bought new clothes and would like to add this to his collection
of clothes. If there is no more space left in the rack, the user
will get an error message, that he cannot add additional clothes
to the system. If there is space, then the system will ask the
user detailed information about the clothes he would like to
add. After inputting the details, the user interface will send
these information to the Retriever API.

User will select the “remove clothes” option when he
doesn’t want to wear certain clothes anymore and would like
to completely get rid of the clothes. After selecting the
“remove clothes” option, it will lead to the page, which will
contain all the information about existing clothes. User will
then choose the piece of clothing he would like to remove and
this request will be sent to the Retriever API.

After performing one of these four choices, it will lead into
the final screen which will say “Did you finish the process”.
User will select yes when he/she is done with the action,
which will be adding or removing clothes to/from the rack. If
the action that the Smart Wardrobe just performed is “return
clothes”, it will lead to an additional screen, which will have
an input box, asking for user feedback.

The most basic validation method for user interface is
clicking through each of the options and making sure that the
page changes according to the user input. For example, we
will ensure with our human eyes that the starting page, there
will be 4 options that the users can choose from, and when we
set filters, the list of clothes that will be given matches the
selected filters. In addition, before connecting the User
Interface with Retriever API and Matching API, we will
connect the User Interface with a testing API, that will print

out all the function calls it has received, to ensure that the
correct function calls are being delivered.

B. Matching API
The matching API is divided into two main functionalities;

letting the user filter for clothes they want and the matching
API giving suggestions based on the user preferences model.
When the user would like to take clothes from the Smart
Wardrobe, the user is first given a list of clothes that are
currently in the rack. Users can then set filters for specific
clothes they would like to wear that day by the setFilter()
option, which the user can select for eg) blue jeans, black
shirt. After the user selects what he wants, we should narrow
the combinations down to around 10 per page. In order to do
this the matching API will query the user preferences model,
to find the top 10 combinations for the user. After this, the
matching API will call the visualizer API for images. If the
user is not satisfied with the top 10 combinations, it can query
the user preferences model which will give the next 10
combinations.

In order to validate the matching API, we can call setFilter()
and see if all the clothes that are returned based on setFilter
actually satisfies the filter conditions.

C. Clothing Pictures and Attributes Storage
Searching for images that meet the specified labels could be

quite a time consuming task. Each image needs to be parsed
by our web scraping API and labelled using our recognition
model. The entire process needs to be repeated until enough
images are found. Despite a long runtime requirement of 10
seconds (R4), we still want to minimize this as much as
possible. If the user simply adds an extra filter condition to
their search, it should not take another 10 seconds. We thus
have a subsystem to store clothing attributes and images. In
design trade studies, we determined that disk space is not an
issue for our project’s scope, thus the design will be simple.
Just write new images to disk and retrieve them from disk if
necessary. We do not anticipate disk I/O to have a significant
impact on runtime, but if it is we will cache images in memory
as well.

To validate this component, we will try storing the
maximum amount of images necessary (1000) and time how
long disk I/O takes.

D. Clothing Web Scraping API
The web scraping API is meant to provide enough outfit

pictures to be able to satisfy 10 images per outfit (R3). In
order to do this we are using the Selenium Webdriver with
Chromium to search through trending outfit databases,
including Pinterest, Tumblr, and fashion sites. The main
keywords in looking for these databases are outfits, trending,
and fashionable. The images found will be then sent to the
clothing recognition model to determine the clothing
components of the outfit.

If the outfit consists of components the user has it will be
registered as a success case and stored until 10 images per
outfit are found. In the case where our outfit databases do not
have enough photos we can use specific query Google image
searches, for example black shirt blue jeans male outfit. We
will then parse those results until we fill the quota or have

6
18-500 Design Review Report: 03/17/2021

searched 100 photos to determine we have reached a time
limit.

The most important metric for the clothing web scraping api
is the quantity of outfit photos we can find. We want 10 photos
per possible outfit (R3). Since this api can be run beforehand
the runtime concerns can be alleviated and the focus can be
placed on quantity. To ensure the quality of outfits we will use
trending outfit databases first to find the best quality outfits.
We will resort to specific outfit queries on Google in the cases
where enough photos can’t be found in these databases.

In order to ensure we are finding enough images to meet our
requirement we are going to work with small sample sizes to
check. This will involve using combinations of 2 tops 1
bottom, 1 top 2 bottoms, and 2 tops 2 bottoms and checking
the amount of images generated manually to check we reached
the quota of 10 images per outfit (R3). We will check 3
variations of clothes for the 3 combinations to make sure it
works on a variety of clothing.

E. Clothing Recognition Model
The purpose of this subsystem is to classify clothing articles

so that we can provide users with visualizations of outfits they
can make with their own clothes. Because our visualizations
use images from online, we need to make sure the outfits
consist of clothing that the user owns. The clothing
recognition model will use a state-of-the-art object detector to
create bounding boxes over clothing articles and categorize it
as well e.g. romper, hoodie, t-shirt. There will be 46 categories
as that’s the number of distinct categories in the DeepFashion
dataset.

We also want to augment the categorization with attributes
for a better representation of the user’s clothes (R1). There are
1000 secondary attributes labelled in DeepFashion, so to avoid
cluttering our object detector, attribute classification will be
done with a secondary classifier model. Because the object
detector will already create bounding boxes for each article.
Unfortunately, DeepFashion does not have colors labelled.
Instead, we will average the pixels within the bounding box to
get the average color. If this method does not produce an
accurate representation because of the background color in the
bounding box, we will use mask-RCNN to remove the noise.

To validate our model, we will divide the DeepFashion
dataset into a training set (75%), a validation set (15%), and a
testing set (10%). The testing accuracy must meet the
accuracy requirements of R1. Then, we will perform
integration testing on our clothing recognition model with our
web scraping API. We will ask the API to find 10 images for
each random outfit combination we feed it. We will then
manually validate the images if the classification is correct.
Although web scraped images could be noisier than
DeepFashion, we do have the flexibility to ignore lossy
images and find other images the model is more confident in.
By incorporating this aspect, we should be able to achieve
higher accuracy so we should be able to meet, or even exceed,
R1.

F. User Preferences Model
As users use our program they will like and dislike different

outfits we are showing them. We want to ensure that if a user
dislikes an outfit they will never see that variation of outfit

again (R2). In order to do this we must take user feedback
about each outfit and modify the user preference model based
on that.

The mechanism in which this will happen is when the user
selects an outfit they will have 3 preference options, like,
neutral, and dislike. By choosing like, similar outfits to that
will be prioritized in the user interface, and the opposite for
dislike. Choosing neutral will not affect the preference of the
outfit.

After a few dislikes, neutrals, and likes the model should be
able to determine which clothing articles from the outfit are
disliked and liked. For example, if the user dislikes a red shirt
with blue jeans and a red shirt with black jeans but likes an
outfit with blue jeans and chooses neutral for another with
black jeans we can set a low priority for the red shirt and not
the jeans.

In order to validate this model we can use manual tests
where we like, neutral, and dislike 10 outfits each. After each
dislike test we can confirm that the object is not suggested and
do a similar test for the likes. For the neutrals we can check to
make sure that their position in the queue does not change
after.

G. Retriever API
Retriever API receives input from the user interface,

interprets the request, searches through the database for the
location of the clothes, and sends this angle of rotation to the
servo. The Retriever API database will be programmed via
object oriented programming. Each piece of clothing will be
an object which will have information about type of clothing,
color, whether it is currently in the rack, and the location.
Every time the user adds clothes, a new object will be created
in the database. Every time the user removes clothes, the
existing object will be removed from the database. Every time
the user takes clothes, the currently_in_rack property will be
set to False, and when the user returns clothes, the
currently_in_rack property will be set to True.

In order to validate the Retriever API, we will be manually
inputting consecutive commands of userInput() and
updateDatabase(), after which we can print out the database to
verify the database is being updated accordingly. In addition,
we can also see the rotation of the servos, and verify with our
eyes that the servo is rotating to the correct position.

H. Outfit Retriever Hardware
This is the mechanism that is meant to deliver the clothes to

the user after they choose an outfit. What we chose was a
rotational rack that rotates the clothes of choice to the user.
The rotational rack is mounted on a turntable bearing which is
then mounted onto a base to support its weight. Under the
turntable bearing we are attaching two gears, one attached to
the rotating rack and other attached to the servo, as seen in the
figure below.

7
18-500 Design Review Report: 03/17/2021

Fig. 4. Rotational Rack Servo Mechanism Displayed Flipped

In order to determine the minimum strength of servo needed
we did torque calculations based on our projected load of 35
kg from R7 which can be seen in the table below.

TABLE VI. TORQUE CALCULATIONS

Weight(kg) 35

static friction coefficient 0.01

radius (m) 0.3

torque (Nm) 1.029

torque (oz-in) 145.7064

torque (kg-cm) 10.49198554

Using these calculations we decided to use a 30 kg-cm 360
degree servo to account for error, ensure we can spin the rack
a full rotation, and ensure sufficient acceleration to meet our
runtime needs. For the gears we have decided on a 1:1 gear
ratio because our servo can already turn 360 degrees and we
need our rack to turn 360 degrees as well. Additionally, torque
should not be a problem.

In order to ensure compliance with our standards of runtime
and accuracy we will be performing validation tests to ensure
both. Runtime tests will simply involve manually timing runs
to ensure the 10 second requirement of R9. For accuracy
testing we have determined that the desired clothing should
remain within 3° of the pickup location on each side. This
degree is translated from the 5 cm of R8 and the 36 in
diameter of the clothing rack. We want to ensure that this error
doesn’t accumulate over runs so to test we will run 100 back
to back tests using tape to mark boundaries to ensure accuracy
and a timer for runtime.

VI. PROJECT MANAGEMENT

A. Schedule

Fig. 5. Milestones

8
18-500 Design Review Report: 03/17/2021

B. Team Member Responsibilities

Team Member Primary Responsibility Secondary Responsibility

Yoo Joon
-Assemble Hardware
-Web Scraping API
-User Preferences Model

-Create Design
-Order Parts
-Software Debugging

Henry - Recognition Model
-Img & Attr Storage

-Create Design
-Integration

Sung Hyun
-Hardware Drivers
-Matching API
-User Interface

-Create Design
-Hardware Debugging

C. Bill of Materials
Bill Of Materials

Part Price Provider
Order Form
Sent

Turntable Bearing 24.63 Amazon Y

Metal-Metal Epoxy 6.99 Amazon Y

Metal Ring 170 Amazon Y

Servo 26 Amazon Y

Power Supply 49.9 Amazon Y

5 mm Screws 9.49 Amazon

5 Wood Board (1 in x 12 in x 3 ft) 58.8 Home Depot

Gear 13.58 Amazon Y

Total Price 359.39

We will be writing our software in Python, pytorch for our
computer vision, AWS to train our neural net, Selenium
Webdriver for web scraping, and github for version control.

D. Risk Management
One risk is our servo choice. The servo needed to have

enough power while also being able to rotate 360 degrees. In
order to mitigate this risk we did calculations for friction and
torque on available constants to ensure the servo we chose
would have enough power. However, we recognize that our
calculations can only be so accurate and there can also be
discrepancies between servo torque listed and how much they
can actually generate with load. To mitigate this, our design
allows for multiple servos to drive the load at the same time.
We also scheduled in a way that allows the member working
on hardware to change to a software problem while the new
part is ordered. This scheduling allows us to be flexible and
not waste time while waiting for a part to arrive.

Another risk moving into the future is the method we are
planning to attach our gears to the rotating rack in order for it
to spin. We are currently planning on using metal-metal epoxy,
a strong glue, to bind the two together. While it does have a
strong tensile strength it may not be enough to withstand the
pressure of our design. In order to mitigate this risk we have
decided on a back up plan of 3d printing parts and gears that
allow us to securely attach the two parts. Since this will
require more time to implement we have added leeway into
our schedule to account for these kinds of problems arising.

In terms of software, the greatest risk is that our ML models
trained on DeepFashion will not be accurate enough when it
comes to live data. As previously mentioned in our validation
plan, we can improve the accuracy of our prediction by
removing lossy results as we are free to choose what images
we label or not. Regardless, if we can’t meet the accuracy we
will identify what makes live-images difficult and try to
augment our training set to take these differences into account
either through data augmentation techniques or by labelling
difficult images ourselves. There is plenty of time planned in
case we need to do this.

VII. RELATED WORK

The Smart Closet app allows you to input your favorite
outfits into a LookBook and plan your outfits for each day of
the week. However, it doesn’t provide a good visualization of
the outfits, nor is it well integrated physically with your closet.
Tailor is a better tool that offers outfit management through
RFID tags as well as outfit suggestions. It doesn’t offer good
visualization, only having pictures of the clothes stacked on
top of each other, and although the RFID idea is novel, it’s a
hassle to attach an RFID chip into each article of clothing and
it doesn’t make physically finding the clothes any easier.

REFERENCES

[1] L. Ziwei, L. Ping, Q. Shi, W. Xiaogang, T. Xiaoou. DeepFashion:
Powering Robust Clothes Recognition and Retrieval with Rich
Annotations. 2016.

[2] Jakob Nielsen, Usability Engineering. 1993.
[3] L. Xiang, D. Kaipeng, W. Guanzhong, Z. Yang,D. Qingqing, G. Yuan,

S. Hui, R. Jianguo, H. Shumin, D. Errui, W. Shilei. PP-YOLO: An
Effective and Efficient Implementation of Object Detector. 2020.

