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Abstract—FocusEd is a daytime driving aid that
will alert a driver if it is determined that the driver is
engaging in distracted or drowsy behavior. Based on
eye classification and head pose estimation through a
video stream, FocusEd uses several software algorithms
to detect a drowsy or distracted driver. The main hard-
ware components of FocusEd are a Jetson Xavier NX
and a Raspberry Pi Camera Module V2, in which the
Jetson is responsible for the computing power of the
system and the Raspberry Pi Camera intakes the video
of the driver. FocusEd then outputs an audio alert in
order to alert the driver that they are showing a dis-
tracted behavior, allowing the driver to refocus on the
road before another alert is given. The project focuses
on re-educating the driver on the skills that would pre-
vent distracted driving.

Index Terms—distracted driving, Eye Aspect Ratio
(EAR), eye classification, facial detection, facial land-
marking, focus timer, head pose estimation, Histogram
of Oriented Gradients (HOG), Support Vector Machine
(SVM)

1 INTRODUCTION

FocusEd serves as a way for drivers to curb their dis-
tracted day driving while simultaneously improving road
safety and their own driver education. With the increase
in distracted driving-related deaths in recent years, it is
imperative that a solution be found to help drivers fix
these habits. Much of this increase has to do with the in-
creased reliance on smartphones as technology evolves and
people feel the need to send a text or email immediately
rather than waiting. According to the NHTSA, 3,142 peo-
ple died in vehicular accident due to distracted driving [17].

Current technologies are mostly focused on the idea of
lane detection–— alerting the driver if they get too close
to another car. However, this solution focuses more on the
car than on the driver themself. If a driver is drifting into
another lane without meaning to, they can already be pos-
ing a danger to other cars around them. Thus, we want
to correct that behavior before the driver even begins to
drift and potentially cause an accident. In order to do this,
FocusEd must detect that the driver is not focusing on the
road and output an audio alert within a 3 second interval in
order for the driver to swiftly correct their behavior. Users
require a driver safety system to not hinder their driving
by not obstructing their view of the road with cumbersome
hardware and not further distracting them with excessive
alerts. Thus, our system not only determines driver behav-
ior but length of behaviors to better classify movements as
distracted versus normal.

2 DESIGN REQUIREMENTS

2.1 Face Detection

The first design requirement for this project is face de-
tection. Specifically, we narrowed our scope to strictly fa-
cial detection in daylight conditions where the individual
is not wearing any sunglasses or other eye or face obstruc-
tions, except for clear eyeglasses. This requirement is vi-
tal to the success of our project as the remainder of the
software algorithms depend on the detected image of the
driver’s face. Thus, we would like to have at least 90%
detection accuracy. We also chose this threshold because
the face detection method we chose, Histogram of Oriented
Gradients and Support Vector Machine (HOG and SVM),
was proven to be 96% accurate in a trial with 40 distinct
subjects[13] and 94.43% accurate in a trial on 26,416 im-
ages[22]. Since we are detecting with a real time video
stream where the user is moving their face in any possi-
ble direction, we are lowering our accuracy rate. To test
the HOG and SVM facial detection algorithm, we use the
datasets Labeled Faces in the Wild (LFW)[12], FACES[6],
Gourier and Crowley[10], and Closed Eyes in the Wild
(CEW)[8], in addition to testing on sampled drivers inside
a vehicle.

2.2 Head Pose Estimation

We require accurate head pose estimation to determine
if the driver is performing a regular driving movement or
a distracted driving movement. We require 85% head pose
estimation accuracy. Since we are creating this algorithm
on our own, its accuracy relies heavily on that of the facial
detection. Thus, we needed to make the accuracy slightly
smaller than that of the detection in order to account for
this. This benchmark is also derived from two research pa-
pers — one that arrived at above 80% accuracy for driving
head poses [33] and another that reached an average of 93%
for specified pose accuracy[2]. By averaging the two and
accounting for real-time estimation, we determined 85% as
the estimation accuracy appropriate for our use case. In
order to test this, we compare the actual direction of the
driver’s head to the head pose estimation output. We use
the Gourier and Crowley head pose image database for this.

2.3 Eye Classifier

Additionally, we require accurate eye classification to
determine whether the driver is falling asleep at the wheel
or not. We require our classifier to achieve a 90% accuracy.
We chose 90% because the eye landmark calculations we
hope to use, specifically the Eye Aspect Ratio (EAR), has
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been proven to be 90% accurate [28]. We use the Specs on
Faces [1], CEW, and LFW datasets to train a baseline eye
classifier as well as test it.

2.4 Focus Timers

Since there are normal movements that would make it
hard to define distracted vs normal driving movements, we
require a focus timer for both head pose and eye classifi-
cation. For example, if the driver’s eyes are closed for an
extended period of time, they are not blinking and possi-
bly drowsy. Similarly, if a driver is looking down too long,
they are likely looking at their phone. The focus timer for
eye classification is 1 second as this can separate normal
blinking from possible drowsiness. According to the Rules
of Drowsiness for driving, a person is considered drowsy
if their eyes are closed for longer than 1 second[15]. The
focus timer for distracted driving is 2 seconds since the
National Highway Traffic and Safety Administration states
that drivers should never take their eyes off the road for
more than two seconds at a time[31]. These focus timers
determine the difference between normal versus distracted
behaviors at least 90% of the time. We tested these time
cutoffs on driving individuals. These in combination with
the eye classifier and head pose estimator shall take into
consideration both positioning and timing.

2.5 Power Supply

Since the system is located in the vehicle during the
day, the power supply for the device needs to last for the
driver’s average commute. FocusEd uses a portable power
supply, and thus we test that it is powered between 8 to 10
hours to account for a driver’s commute to and from work
on an average work week.

2.6 Audio Alert

To notify the driver that they are distracted, we require
an audio alert triggered 99% of the time when a distracted
movement is detected. We aim for a 99% accuracy since
misreads could occur. We also require that the driver re-
sponds to the alert by refocusing their head position and
eyes to the road, and thus we test that our system no longer
produces an audio alert once the driver refocuses within 3
iterations of the system.

2.7 System Latency

Finally, because we want to correct the driver in real
time to prevent accidents, we need an efficient and fast
system to alert the driver. We require our system’s full
iteration to complete within 3 seconds, and we test this by
timing full iterations of our working FocusEd system in-
stalled in a parked vehicle. The iteration begins when the
driver performs a distracted behavior and ends when the
system provides the audio alert to refocus on the road.

3 ARCHITECTURE OVERVIEW

To meet the system requirements discussed in the pre-
vious section, FocusEd is an enclosed camera system, as
depicted in Fig. 1, to be placed on the dashboard of the
car. The Raspberry Pi V2 Camera Module is secured di-
rectly in front of the driver, specifically attached behind
the wheel either directly on the dashboard or on the wind-
shield. Placing the camera directly in front of the driver
ensures the highest accuracy in our software algorithms.
The camera is plugged into the Jetson Xavier NX via a 50
cm ribbon cable. The Jetson Xavier NX is placed inside
a case secured to the dashboard to ensure that the Jetson
is not damaged while driving. The positioning of this case
is near the passenger side of the dashboard, so as to not
obstruct the view the driver has on the road.

In addition, the USB Speaker that outputs an audio
alert is attached on top of the Jetson’s case. To power
the Jetson, the TalentCell 12V Battery is plugged into the
power jack of the Jetson and sits in the driver’s cup holder.
We did not secure the battery pack to the dashboard as to
allow the user to safely unplug the battery pack for charg-
ing.

Our user story is depicted in Fig. A4. First, the user
presses the power button on FocusEd to start up the sys-
tem. This begins our 1-minute welcome and calibration
sequence. In this sequence, the user is welcomed with an
audio message explaining FocusEd, which includes a warn-
ing to not perform the following calibration steps while they
are driving. Then, they are asked to look forward at the
road for 10 seconds, and then close their eyes for 10 seconds.
This is done to calibrate our eye classifier for drowsiness,
as each individual’s eye sizes are slightly different. Specif-
ically, we train an SVM model, and also have a baseline
in case the calibration step is performed incorrectly. Then,
the system informs the driver that they may begin driving,
at which point it continuously processes the following video
stream. For each inputted frame, the Jetson performs the
HOG and SVM facial detection algorithm in order to detect
the driver’s face. Following this, the algorithm for facial
landmarking runs to landmark the driver’s face for further
assessment. The system then simultaneously runs both the
eye classification and head pose estimation algorithms to
determine whether the driver of the vehicle is exhibiting
behavior of sleeping or distracted driving, respectively.

During this, the focus timers is running to actually make
this determination. We have two separate focus timers, one
for drowsiness and one for head pose. The drowsiness focus
timer runs in conjunction with our eye classification algo-
rithm, and if the eye classification determines the driver’s
eyes are closed for more than 1 second, then a signal is
communicated that the driver must be alerted. The head
pose focus timer works in conjunction with our head pose
algorithm. If it is determined that the driver’s head pose is
not facing forwards towards the road for more than 2 sec-
onds, then a signal is communicated that the driver must
be alerted.
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Figure 1: Overall System Block Diagram

To sound an alert, the USB speaker that is connected
to FocusEd’s Jetson outputs a 1 second vocal audio alert
stating “Please refocus on the road.” If the driver does not
correct their behavior within the next 3 iterations of the
system, the driver will once again be alerted with the audio
message. If the driver is not determined to have been dis-
tracted, the algorithms will continually run with the video
stream of the driver’s face so any distracted driving will be
alerted in real-time.

Since submitting the design report, we made several
changes to our system. For one, eye classification now
involves calibration with audio prompts in order to train
an SVM. Additionally, our head pose estimation calcula-
tions have shifted and head pose estimation is also using
an SVM. Moreover, since we did not want to obstruct the
driver’s view, we chose to have our camera system sepa-
rate from the rest of FocusEd, and connected via a 50 cm
ribbon cable.

4 DESIGN TRADE STUDIES

4.1 Face Detection and Landmarking Al-
gorithm

For this specification of our system, we opted to use
HOG and SVM over another facial detection algorithm

such as Haar Cascades. Our reasoning for this choice is
that HOG works well for frontal and slightly non-frontal
and works under small occlusion. Also, since we are looking
at just the driver’s face in the image, we don’t need to worry
about too small of a face for the detector. The HOG and
SVM detector is from Dlib’s Python libraries[11]. Then, for
facial landmarking, we use Dlib’s default 68 points land-
marks from their shape predictor[14][5]. The shape pre-
dictor includes landmarks of the face and around the eyes
which was beneficial for us to use in both our eye and head
pose models, instead of building a shape predictor from
scratch.

4.2 Head Pose Estimation

Initially, we thought following examples that convert
the 2D facial landmark points to 3D points would yield the
best results for head pose estimation. However, since we
are running multiple algorithms and our landmarks might
not be fully precise, we tried to use an imaginary axis over
the driver’s face, with the origin being the tip of the nose.
This was effective in determining when the driver was not
facing forward, but unfortunately this method was too sen-
sitive, as drivers need to have some flexibility from looking
directly forward. Thus, following a similar approach to the
EAR algorithm used for eye classification, a ratio based
on triangular areas of the face was developed. The first
iteration was to use triangles over the left and right cheeks
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to determine whether the driver was looking right, left
or forward. Then, to include the down direction, a third
triangular area over the chin was added to create a ratio.
This ratio subtracted the cheek areas and divided by the
lower triangle. This approach was not as effective because
there was difficulties determining forward and down or
right and down. To solve this, we realized that when the
driver is looking down, their eyes appear closed, and thus
this behavior is caught by the eye classifier. Therefore, we
removed the lower triangle. In beginning stages of testing,
it was seen that the ratio of the difference between the
two cheek areas was relative to how close the driver’s face
was to the Raspberry Pi camera module. Thus, the ratio
was adjusted to be left cheek area divided by right cheek
area. This approach is the final approach we use in our
final MVP.

Additionally, we had to decided whether to calibrate
the model in real time or use a pre-trained model for head
pose. Asking the driver to hold their face in certain po-
sitions could likely come with errors, and the harder to
distinguish the poses, meant the model would take longer
to train. Thus we opt to use a pre-trained SVM model for
head pose as there is fewer differences in people face po-
sitions as there are in their eye shapes. This reduces the
calibration time at the beginning of our system.

4.3 Eye Classifier

For classifying if the driver’s eyes are closed or not,
we are using the Eye Aspect Ratio (EAR) method [28]
and training a linear kernel SVM. Other methods include
matching an open eye template to the user’s eye to deter-
mine if the eyes are closed or not[18]. Other eye classifiers
rely on thresholding to determine the whites of the eyes
and if these white regions disappear or not. However, we
wanted an efficient eye classifier that relied on calculations
using 2D landmarks that are already outputted by our fa-
cial landmark. Thus, we chose to use EAR because of the
reduced computation time required.

4.4 Focus Timer

Initially, when we were thinking of creating a focus
timer, we struggled with determining the proper timing
to wait before alerting the driver because we would have
to distinguish between distracted driving and normal driv-
ing. During our initial design, we determined that we would
have a singular focus timer for a set period of time that was
yet to be decided upon. However, following our research we
determined that having two focus timers—–one for texting
and another for the sleeping portions of our scope–—would
suit the project best because the timing is different. As
for alerting distracted driving, we made the determination
that 2 seconds would be a sufficient time before alerting
a driver because it is generally known that a driver must
keep approximately 3-4 seconds behind the car in front of
them. So within that time of 2 seconds, alerting the driver

would still keep them a couple seconds behind the car in
front. Thus, we have two focus timers in our design, one for
drowsiness alerts and another for distracted driving alerts.

4.5 Dlib

Dlib provides various open source machine learning and
image processing algorithms. Dlib also supports GPU ac-
celeration which pairs well with the Jetson Xavier NX. This
includes the GPU accelerated HOG and SVM face detec-
tion library and the GPU accelerated 68 point shape pre-
dictor for facial landmarking [3]. Additionally, Dlib has
good documentation to reference. We opted to use Dlib
over piecing together detectors from different libraries to
ensure compatibility throughout our system.

Figure 2: Diagram of 68 facial landmarks[25]

4.6 OpenCV

OpenCV provides computer vision and machine learn-
ing libraries for Python and is used in projects in combina-
tion with Dlib for image processing of video and images.
The other library we were considering was TensorFlow.
However from our initial research, OpenCV had more doc-
umentation and examples that matched our use case, which
facilitated debugging[29][30].

4.7 Jetson Xavier NX

During our initial design, we believed that NVIDIA Jet-
son Nano would be sufficient for the computing power that
we needed for our project and that the size would be smaller
and better suited for placement directly in front of the
driver. Following our proposal presentation, our instruc-
tors expressed concern that the Jetson Nano would simply
not be powerful enough for the computations that we in-
tended to perform. Following this, we researched further
into the NVIDIA Jetson Xavier NX and determined that its
size was not much different than the Jetson Nano and was
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much more powerful, thus increasing the frames per sec-
ond which would give us a much closer “real-time” alert.
Specifically, the Jetson Nano averages about 15 fps while
the Jetson Xavier NX averages about 30 fps [32].

4.8 Raspberry Pi Camera Module V2

The Raspberry Pi Camera Module is compatible with
various NVIDIA products including the Jetson Xavier NX
and its default packages (JetPack SDK) and is recom-
mended in NVIDIA forums. Additionally, there are various
examples online for reference to consult. Most importantly,
it records live camera feeds[16].

5 SYSTEM DESCRIPTION

This project consists of both hardware and soft-
ware. The project’s hardware system consists of a Jetson
Xavier NX, Raspberry Pi Camera Module V2, TalentCell
Rechargeable 12V Battery Pack, and Mini External USB
Stereo Speaker. Fig. A5 presents the hardware block di-
agram. The software system, which runs on the Jetson
Xavier NX, consists of the processing of the Raspberry Pi
Camera Module V2’s video stream in order to determine
of the driver behaviour and signaling subsequent alerts, as
well as ensuring the system runs upon boot. This includes
facial detection, facial landmarking, eye classification, head
pose estimation, focus timing, audio alert, and the init sys-
tem. Fig. A6 presents the software block diagram.

5.1 Jetson Xavier NX

The Jetson Xavier NX serves as the processor for the
video stream it receives from the Raspberry Pi Camera
Module V2, which is plugged into port J1 on the Jet-
son Xavier NX. Upon receiving power, the Jetson be-
gins outputting the FocusEd welcome message and audio
prompts for calibration. It simultaneously processes the
video stream input and runs the facial detection and land-
marking for training the eye classifier. Following calibra-
tion, the Jetson continues processing the video stream and
performs facial detection and landmarking, eye classifica-
tion, and head pose estimation algorithms on each frame.
These algorithms are described in more detail below. Ad-
ditionally, the focus timer and any subsequent audio alerts
run as well.

5.2 Raspberry Pi Camera Module V2

Our camera of choice is the Raspberry Pi Camera Mod-
ule V2, which has a 50 cm ribbon connector that is con-
nected to the Jetson Xavier NX via port J1, which enables
use of CSI cameras. This camera has a Sony IMX219 8-
megapixel sensor and GStreamer is used to interface with
the camera using the Jetson [23]. The camera is enclosed
with a acrylic cookie wheel case that allows for flexibility
in adjusting the angle of the camera. To secure the camera

to the dashboard or windshield while also allowing for easy
removal, 3M heavy duty command strips are utilized.

5.3 TalentCell Rechargeable 12V Battery
Pack

To power the Jetson Xavier NX, we use the TalentCell
Rechargeable Battery Pack. The battery pack delivers 12V,
which satisfies the 9-20V power requirement of the Jetson
Xavier NX. The battery pack connects to the Jetson’s DC
power jack with a 2.5 mm jack pin DC connector[19].

5.4 Mini External USB Stereo Speaker

For our audio alert, we use Adafruit’s Mini External
USB Stereo Speaker. This is a USB-only speaker, and thus
is both powered and receives audio via one of the Jetson
Xavier NX’s USB ports. Because the speaker has a 46 inch
cable, we have flexibility in securing the speaker either onto
the Jetson case or anywhere else near the driver.

5.5 Facial Detection and Landmarking

Facial detection of the driver is performed using the His-
togram of Oriented Gradients and Support Vector Machine
(HOG and SVM) algorithm. HOG is a feature representa-
tion method. A HOG descriptor is first extracted from our
image frame from our video stream. Then, a SVM, which
is a supervised machine learning model, is used to train
a model to detect a face. Dlib is the library that is used
for this. Facial landmarks are sequentially obtained using
Dlib’s facial landmark detector. This estimates the location
of 68 2D coordinates[14][5].

5.6 Eye Classification

Using landmarks retrieved from facial landmarking, we
then classify whether an eye is opened or closed. This
is done by finding the proportion between the width and
height of the eye based on 6 eye landmarks. This propor-
tion is called the Eye Aspect Ratio, or EAR, which is found
using the following formula[28]:

EAR =
‖p2 − p6‖+ ‖p3 − p5‖

2 ‖p1 − p4‖
(1)

where p1, ..., p6 are 2D landmark locations provided by
Dlib’s 68-point facial landmark detector as shown in Fig. 3.
The smaller the ratio, the closer the driver’s eyelids are to-
gether, signalling that their eyes are closing. The threshold
for the EAR is determined through calibration on the user
and training of an SVM model. The SVM module used
is the linear kernel SVM from the Scikit-learn library[21].
During calibration, an audio prompt is played asking the
driver to look ahead at the road for 10 s. The prompt
counts to 10 while the user keeps their eyes steadily open.
This obtains 3-dimension feature vectors associated being
awake. Then, an audio prompt is played asking the user
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to keep their eyes closed for 10 s. The prompt counts to
10 while the user keeps their eyes steadily closed. This
obtains 3-dimension feature vectors associated with being
asleep. Then, the linear kernel SVM is trained with the
recorded feature vectors along with data obtained from the
CEW dataset. Thus, if an individual does not correctly
follow the audio prompts and is not in the frame to partici-
pate in the calibration process, then we still have a baseline
SVM to make predictions with.

Figure 3: Depiction of 2D landmark points used for EAR[4]

5.7 Head Pose Estimation

From the landmarks retrieved from the facial landmark-
ing phase, we calculate triangular facial regions of the
cheeks and chin. From the Dlib landmark vector, index 30
refers to the tip of the nose, indices 16 and 11 refer to bot-
tom right and left jaw points respectively, and indices 0 and
5 refer to the points connecting the face to ear on the right
and left sides (see Fig. 2)[25]. With these points, triangu-
lar regions are drawn. For head pose estimation, a ratio is
calculated by dividing the area of the left cheek by the area
of the right cheek. Similar to the eye classification method,
a SVM model was pre-trained with pictures of faces look-
ing forward, left and right. Using the calculated ratio and
Scikit-learn Python library, the SVM model is built using
an 80/20 train and test split. The model is trained with
the Crowley database as well as photos taken of ourselves
being distracted and not distracted in Danielle’s car. If the
driver is looking left or right, we could determine that the
driver is possibly distracted.

Figure 4: Example of non-distracted driving pose

Figure 5: Example of distracted pose (right)

5.8 Focus Timer

The focus timers for head pose and eye classification
help determine whether a driver is distracted or not. There
are normal driver movements that require the driver to not
face forward, such as checking their side and rear view mir-
rors. The timers account for these brief glances, as long as
they are less than 2 seconds, and thus limits the alerts as
to not inconvenience the driver. Additionally, the timers
check if the driver has corrected their behaviour. If the
driver has not corrected their behavior, the driver will once
again be alerted with an audio alert.

5.9 Audio Alert

To ensure that the driver is woken from their drowsi-
ness, our audio alert is a clear 1-second vocal instruction
to refocus on the road. Specifically, the alert states ”Please
refocus on the road.” In order to ensure that there is no
overlap in the audio alerts if triggered more than once,
threading using Python’s Thread library was used to run
the audio alerts. The library used for playing audio is Py-
dub. Additionally, we wanted optimal volume experienced
by the driver, so our speaker is situated facing our driver.
The volume of the alert is also loud enough to be heard over
a car radio. Furthermore, we created several other audio
prompts specifically for the calibration steps that also use
the threading and optimized volume to make the experience
for the driver better.

5.10 Init System

To ensure that FocusEd runs upon pressing the system’s
power button, we used systemd, an init system and system
manager on Linux distributions. We created a systemd ser-
vice that initializes the FocusEd components that must be
started after the Linux kernel is booted [7].
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6 TEST & VALIDATION

6.1 Results for Face Detection

We tested our face detection algorithm of HOG and
SVM on 4 databases, covering a total of 4,355 photos. We
exceeded our goal of a 90% accuracy by achieving a fa-
cial detection accuracy of 94%. The databases used were
Labeled Faces in the Wild (LFW), FACES, Gourier and
Crowley, and Closed Eyes in the Wild (CEW).

We noticed that the pictures where faces were not de-
tected were those where either the face was too small, the
face was partially covered such as with long bangs or sun-
glasses, or the photo was taken at extreme non-frontal an-
gles such as side or upward angles that do not include both
eyes in the frame. These significant results point us towards
the drawbacks of HOG and SVM, specifically being that we
trade better efficiency for higher inaccuracy for non-frontal
photos. Additionally, as stated before in 4.1, obstructions
to the face such as long bangs or sunglasses are out of scope
for this project. Finally, because our camera is placed di-
rectly in front of the driver on their dashboard, specifically
15.5 in - 20 in away from the driver’s face, we do not have
to worry about detecting small faces in our frames.

6.2 Results for Head Pose Estimation

Head pose estimation was tested with 2 databases,
Crowley and FACES, for a total of 1,451 photos. The SVM
model used 80/20 and 50/50 train/split using sklearn train
and test split function[27]. Additionally, we took advantage
of the random state variable in the sklearn function. This
variable allows us to shuffle the photos in our dataset to
test our trained model for robustness. The random state
variable iterations were 0, 15, and 42, as these were the
most common values[26]. The average of all 6 tests was
93% average with the lowest percentages occurring when
the random state variable was set to 42 as this created the
greatest difference in training versus testing images. Our
result exceeded our design specification of 85% which im-
proves the reliability of our system. This ensure that we
are able to classify driver’s head position’s well enough as
to not inconvenience the driver with unnecessary alerts.

6.3 Results for Eye Classifier

The eye classifier was tested on 3,403 photos across with
3 databases— Specs on Faces, Closed Eyes in the Wild,
and Labelled Faces in the Wild. We achieved 92% correct
classifications of eyes open or closed, which surpassed our
desired accuracy of 90%. We ensured to test upon photos
of individuals of various races and ages to obtain a holistic
accuracy that best estimated the variety of individuals that
would be using our system.

6.4 Results for Focus Timers

The focus timer was tested by running 100 trials in a
parked car on two individuals. It was tested whether or not

the system accurately detected a drowsy or distracted in-
dividual in the corresponding time frame—2s or 1s respec-
tively. The driver performed normal driving movements,
such as looking at the rear view and side mirrors for the
recommended less than 2 seconds [31], as well as distracted
movements— such as talking with a passenger and looking
at a phone at various angles— and the drowsy behaviour
of closing one’s eyes. After running 100 trials with various
driver behaviours, we achieved accurate detections 87% of
the time. Significant instances where we noticed the driver
abiding to the 2-second rule but still being classified as dis-
tracted is when the driver makes a turn on the road or is
looking backwards when in reverse.

6.5 Results for Power Supply

To test the power supply, the TalentCell power bank
was left running with our system for as long as it could.
The power bank was able to power the Jetson with our al-
gorithms running for 8.5 hours. This was within the our
goal, which was a range of 8 to 10 hours.

6.6 Results for Audio Alert

The audio alerts were tested in 30 trials. The driver
would perform a distracted behavior, whether closing their
eyes for more than 1 second or not looking forward for more
than 2 seconds to trigger the distracted alert. We deter-
mined that our system triggers the audio alert 100% of the
time.

6.7 Results for System Latency

For system latency, we wanted our system to detect and
output alerts within 3 seconds, After 30 trials, the system
detected and outputted within an average of 3.9 seconds.
This includes the 1-2 seconds that the driver is distracted
or drowsy. This was tested by timing how long our system
took to alert the driver that they were distracted. The start
time began when the user would close their eyes or look to
the side. The end time was when FocusEd would trigger
the audio alert. However, upon further testing, by reduc-
ing the size of the OpenCV window, our system latency
average reduced to 2.5 seconds.

7 PROJECT MANAGEMENT

7.1 Schedule

Fig. A1 and A2 present this project’s Gantt Chart.
This schedule has faced significant revisions since present-
ing the design stages due to the changes in our system,
such as having various iterations of our head pose model
and adding GPU acceleration, both of which had bugs that
set us back in our schedule.
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7.2 Team Member Responsibilities

All team members worked together throughout the de-
sign, development, and testing of this project. We assigned
each team member to be in charge of specific aspects of
the design. Heidi focused on implementing and testing the
facial detection, facial landmarking, and head pose estima-
tion algorithms on the Jetson Xavier. Vaheeshta focused on
implementing and testing the eye classification algorithm,
training the eye classification algorithm, and creating the
system calibration. Danielle focused on implementing the
focus timer, creating the audio alert system, and helping
with training.

7.3 Budget

The table represented by Fig. A3 presents all materials
that were purchased for the development of this project.
Out of our $600 budget, we used $509.47. This is a $50.90
increase from our proposed budget of $455.57. In the fig-
ure, items that we did not plan for in the design report but
ended up requiring are labelled as “No” in the “Planned?”
column, and items that we obtained but did not use are
labelled as “No” in the “Used?” column.

Most of our budget is used by the NVIDIA Jetson
Xavier NX Developer Kit, which totalled $399.00. We were
able to have $90.53 unused in our budget largely due to us
having 12 materials either on hand or provided by the 18-
500 inventory.

7.4 Risk Management

There are several risks we considered while planning the
project. For one, there was significant concern about our
system latency. Specifically, detection of drowsiness and
alerting the driver might not happen in the desired time
frame. While we have metrics discussed previously to de-
termine how fast we would like our system to be, until we
began our first tests of our system, we were unsure if we
can meet these metrics. Therefore, our risk mitigation was
in the form of a fallback design. Our backup plan included
performing face detection on the Jetson Xavier, then crop
out the face and send this to the cloud using AWS to per-
form the remainder of our computation. Then, the Jetson
Xavier would receive the signal from AWS of whether or not
to trigger the audio alert. Thankfully, this backup plan did
not need to implemented. With our algorithms running we
were seeing up to 8 fps. To improve this number, we added
GPU acceleration and lowered the camera resolution and
decreased the size of the image the Jetson intakes. This
resulted in our system receiving up to 17 fps.

Additionally, another risk we considered was distin-
guishing between normal movements and distracted move-
ments, and thus not detecting all distracted instances. Our
mitigation was to slightly overcorrect to ensure that we at
least detect the distracted cases. We would rather have
more false positives than false negatives, while still keep-
ing both within reason. We went through several iteration

for our head pose estimation and ensuring to test on the
Jetson as often as possible. The final head pose ratio is in-
dependent of the distance between the driver’s face and the
camera module on the car dashboard which improves the
reliability of the algorithm. To help create a more inclusive
model, we incorporated photos from established datasets
in addition to our custom dataset.

Moreover, another risk we anticipated involves our Tal-
entCell power bank not being able to power the Jetson
Xavier for 8-10 hours as our metric hoped. To mitigate
this risk we researched power specifications for the Jetson
Xavier NX, chose the 10W and 4 CPU core mode, and ran
the Jetson with the power bank for as long as it could.
Additionally we had a backup plan to use the car’s power
outlet in the event the power bank failed to perform.

A risk that we did not anticipate but ran into during the
project were dependency issues of additional libraries when
implementing audio, GPU acceleration, and threading. To
resolve this, we reflashed the SD card of the Jetson, and
lost little time due to our documentation of the installation
processes that we had taken previously.

We were also concerned about the possibility of going
over budget. However, we made use of any resources we al-
ready had, and limited our budget to purchasing products
that were essential and could not be replicated with other
resources already at our disposal.

Lastly, our final risk involved varying lighting conditions
affecting our drowsiness detection accuracy. We avoided
this risk by limiting our scope to only direct lighting condi-
tions. If we faced testing conditions where we did not have
daylight, we used a ring light instead.

8 ETHICAL ISSUES

The main ethical issue of our system is the privacy con-
cern of what we do with the video stream after the driver
turns off our system. The safety of the users privacy is
important in any system that involves recording. Since we
are observing the driver in real-time, we do not store any
video or driver data. On the physical box of our system we
include a blurb that describes how the video is used while
the driver is on the road. A possible case would be that
some adversarial subject could manipulate the code to save
the video files of the system and retrieve information about
an individual’s facial movements or driving habits. An ap-
proach to mitigate this risk would be to revoke writing per-
missions to the specific scripts and physically protecting the
hardware by removing it from the vehicle when the driver is
not using it. Also, blocking or removing additional unused
USB or HDMI ports could protect the system. Another
approach could be to add a software case check to examine
if any additional system is plugged into the Jetson, and if
so, to not power on.

Another ethical issue would be ensuring that users are
not driving during the calibration step of our system as this
would pose a danger to the driver and those around them.
We currently have an audio warning in our system to warn
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the driver to not perform calibration while driving. A fu-
ture mitigation technique for this issue would be to include
an accelerometer to ensure that the car is at 0 mph during
calibration. If the car is not at 0 mph, then the system will
stop asking the driver to calibrate and instead proceed to
detection while using the baseline eye classification model.

9 RELATED WORK

Many solutions for distracted driving tend to focus on
the vehicle itself, such as the use of lane detection and au-
tomatic breaking, or on the phone with cell phone blocking.
However, there exists several solutions to distracted driving
that are similar to our project, FocusEd, and use cameras
to assess the driver’s distracted behavior.

One such commercial solution is the device, GoFleet.
GoFleet’s scope is rather larger than ours and uses audio
alerts when the driver is “texting, eating, micro-sleeping,
holding a phone, yawning” and also uses infrared LEDs for
night detection [9]. Another solution that is slightly dif-
ferent than ours was created at the University of Texas at
Austin by a group of researchers that used deep learning to
create a distracted driving solution. Their project trained
using the State Farm distracted driving data and combined
that data with image augmentation to effectively predict
the distracted behavior [20]. Finally, another solution uses
similar hardware – a Raspberry Pi Camera Module along
with a Raspberry Pi – and HAAR Cascades to detect yawn-
ing and the likes, as well as alcohol consumption [24].

10 SUMMARY

Overall, our system met the majority of our design spec-
ifications. The design specification that we did not meet
was our focus timer detecting drowsy or distracted driv-
ing at least 90% of the time. Our system is limited to
being used in ideal lighting conditions and does not ac-
count for other distracted behaviors besides falling asleep
or looking away from the road that is directly in front of
the driver. Additionally, we attempted to account for the
driver looking at their side mirrors by adding the focus
timer. However, on the road we observed that when the
driver is making turns or reversing, they may be turned
away from the forward position for longer, but this is not
a distracted movement as their eyes are still on the road.
To improve this we could have an additional measurement
that works within our system to determine if the driver is
making a turn. This could be implemented with an inter-
nal vehicle compass and if the driver’s direction changes
more than 45 degrees then this would indicate a turn and
the system would not trigger a distracted alert if the driver
is facing the direction of the turn. Additionally, in our
welcome message we advise the user to not calibrate while
driving, but to ensure this we could add an accelerometer
to our hardware to design thus ensuring that the vehicle is
stationary during calibration.

10.1 Lessons Learned

To groups who want to explore distracted driving in
the future we recommend that they add additional cases to
better categorize distracted versus normal behavior. Addi-
tionally, we would recommend to utilize fine-tuning if the
driver does not properly perform calibration. Moreover, we
would recommend to ensure that files required for the sys-
temd service are not located in a directory that require sudo
permissions for editing access. Also, initially we wanted to
have a vibration motor attached to the driver’s seat to alert
that they were distracted rather than using an audio alert
that could possibly be grouped with other audio alerts such
as GPS notifications. We recommend to explore this op-
tion.
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Appendix A

Figure A1: Gantt Chart, February - March

Figure A2: Gantt Chart, April - May
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Figure A3: Bill of Materials
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Figure A4: User Story
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Figure A5: Hardware Block Diagram

Figure A6: Software Block Diagram


