
18-500 Design Report - March 17, 2021 Page 1 of 11

B1: FocusEd
Authors: Heidi Batres, Vaheeshta Mehrshahi, Danielle Kakish: Electrical and Computer Engineering, Carnegie Mellon

University

Abstract—FocusEd is a daytime driving aid that will
alert a driver if it is determined that the driver is engag-
ing in distracted behavior – sleeping or texting. Based
on facial detection, facial landmarking, eye classifica-
tion, and head pose estimation through a video stream,
FocusEd will use several software algorithms to detect
a sleeping or texting driver. The main components of
FocusEd are a Jetson Xavier NX and a Raspberry Pi
Camera Module V2, in which the Jetson will be re-
sponsible for the computing power of the system and
the Raspberry Pi Camera will intake the video of the
driver. FocusEd will then output an audio alert in order
to alert the driver that they are showing a distracted
behavior, allowing the driver to correct before another
alert is given. The project focuses on re-educating the
driver on the skills that would prevent distracted driv-
ing.

Index Terms—distracted driving, Eye Aspect Ratio
(EAR), eye classification, facial detection, facial land-
marking, focus timer, head pose estimation, Histogram
of Oriented Gradients (HOG), Support Vector Machine
(SVM)

1 INTRODUCTION

FocusEd serves as a way for drivers to curb their dis-
tracted day driving while simultaneously improving road
safety and their own driver education. With the increase
in distracted driving-related deaths in recent years, it is
rather imperative that a solution be found to help drivers
fix these habits. Much of this increase has to do with the in-
creased reliance on smartphones as technology evolves and
people feel the need to send a text or email immediately
rather than waiting.

Current technologies are mostly focused on the idea of
lane detection – alerting the driver if they get too close to
another car. However, this solution focuses more on the
car than on the driver themself. If a driver is already drift-
ing into another lane without meaning to, they can already
be posing a danger to other cars around them. Thus, we
want to correct that behavior before the driver even begins
to drift and potentially cause an accident. In order to do
this, FocusEd must detect a distraction and output an au-
dio alert within a 2 second interval in order for the driver
to swiftly correct their behavior.

2 DESIGN REQUIREMENTS

2.1 Face Detection

The first design requirement for this project is face de-
tection. This is important as the rest of the algorithms de-

pends on the smaller image of the driver’s face so we would
like to have at least 90% detection accuracy with an upper
bound of 1% for false negatives and 9% for false positives.
To test our Histogram of Oriented Gradients and Support
Vector Machine (HoG and SVM) facial detection algorithm,
we plan to use the Labeled Faces in the Wild (LFW) face
data set in addition to testing on sampled drivers inside a
vehicle.

2.2 Facial Landmarking

Secondly, we require accurate facial landmarking to be
able to determine head poses and 2D eye landmarks for eye
classification. Our device requires landmarking as close to
the true points as possible, thus we required a maximum
10 pixel radius difference between our algorithm detected
points and the true points of the driver. To test this, we will
be calibrating our algorithm with different angles of head
poses to determine the landmarks of different individuals
and compare detected points with trained points to create
a more precise algorithm.

2.3 Head Pose Estimation

Building off of facial landmarking, we also require head
pose estimation to determine if the driver is performing a
regular driving movement or distracted. We require 85%
head pose estimation accuracy. Since we are creating this
algorithm on our own, its accuracy relies heavily on that
of facial landmarking and the facial detection. Thus, we
needed to make the accuracy slightly smaller than that of
the detection and landmarking in order to account for this.
However, the focus timer dedicated to head pose estimation
and the additional case of drowsiness will help to determine
more of the distracted driving behaviors. In order to test
this, we will compare the actual direction of the driver’s
head to the head pose estimation output.

2.4 Eye Classifier

Additionally, we require eye classification to determine
whether the driver is falling asleep at the wheel. We re-
quire our classifier to achieve 90% accuracy with an upper
bound of 2% for false negatives and 8% for false positives.
To test we will be using a custom training set to determine
the threshold for the Eye Aspect Ratio (EAR) algorithm
that works with different eye shapes and test our calibra-
tion used with head pose estimation as well. We plan to
calibrate before the user begins driving.

18-500 Design Report - March 17, 2021 Page 2 of 11

2.5 Focus Timers

Since there are normal movements that would make it
hard to define distracted vs normal driving movements, we
require a focus timer for both head pose and eye classi-
fication. For example, if the driver’s eyes are closed for
an extended period of time, they are not blinking and are
probably drowsy. Similarly, if a driver is looking down too
long, they are likely looking at their phone. The focus
timer for eye classification will be 1 second as this can clas-
sify between normal blinking and possible drowsiness. The
focus timer for head pose will be 2 seconds since this allows
for the periodic checks of the driver’s mirrors. These focus
timers will determine the difference between normal versus
distracted behaviors at least 90% of the time. We will be
testing these time cutoffs on a sample of average drivers
and make any adjustments accordingly. These in combina-
tion with the eye classifier and head pose estimator shall
take into consideration both positioning and timing.

2.6 Power Supply

Our system will be located in the vehicle during the
day, hence the power supply for the device needs to last for
the driver’s average commute. We will be using a portable
power supply and testing that it is powered between 8 to 10
hours to account for a driver’s commute to and from work
on an average work week. To notify the driver that they
are distracted, we require an audio alert triggered 99% of
the time when a distracted movement is detected. We also
require that the driver responds to the alert by refocusing
their head position and eyes to the road, and thus we will
test that our system no longer produces an audio alert once
the driver refocuses within 3 iterations of the system.

2.7 System Latency

Finally, because we want to correct the driver in real
time and prevent accidents, we need an efficient and fast
system to alert the driver. We will require our system’s full
iteration to complete within 2 seconds and we will test this
by timing each algorithm separately, at phased integration
and at the final integration.

3 ARCHITECTURE OVERVIEW

To meet the system requirements discussed in the previ-
ous section, we will be creating an enclosed camera system
to be placed directly in front of the driver on the dashboard
of the car as depicted in Fig. 1. Placing the system directly
in front of the driver will ensure a higher accuracy in our
software algorithms. The Jetson Xavier NX will be placed
inside a case to ensure that the Jetson is not damaged will
driving.

In constructing the system, the Raspberry Pi V2 Cam-
era Module will be plugged into the Jetson Xavier with
an opening in the enclosure for the Camera to view the

driver. In addition, the USB Speaker that will output an
audio alert will also have an opening in order to alert the
driver with a loud enough sound, since the sound would
be muted otherwise. The TalentCell Battery will also be
plugged into the power jack of the Jetson to serve as the
power source.

Our user story is depicted in Fig. 8. First, the user will
turn on FocusEd to begin the process. Then, the Rasp-
berry Pi V2 Camera module will intake a video stream of
the driver’s face, and then subsequently send this video
stream to the Jetson. The Jetson will then perform the
facial detection algorithm in order to detect the driver’s
face. Following this, the algorithm for facial landmarking
will run to landmark the driver’s face for further assess-
ment. The system will then simultaneously run both the
eye classification and head pose estimation algorithms to
determine whether the driver of the vehicle is exhibiting
behavior of sleeping or texting, respectively.

During this, the focus timers will be running to actually
make this determination. We will be having two separate
focus timers, one for drowsiness and one for head pose.
The drowsiness focus timer will run in conjunction with
our eye classification algorithm, and if the eye classifica-
tion of the driver’s eyes are closed for more than 1 second,
then a signal will be communicated that the driver must
be alerted. The head pose focus timer will work in con-
junction with our head pose algorithm. If it is determined
that the driver’s head pose is in the negative quadrant of
an imaginary axis for longer than 2 seconds, then a signal
will be communicated that the driver must be alerted.

The USB speaker that is connected to the Jetson of Fo-
cusEd will then output a 1.5 second vocal audio alert that
we will record in order to tell the driver to refocus on the
road. If the driver does not correct their behavior within
the next 2 seconds, the driver will once again be alerted
with an audio alert. If the driver is not determined to have
been distracted in the beginning, the algorithms will con-
tinually run with the video stream of the driver’s face so
any distraction will be alerted in real-time.

18-500 Design Report - March 17, 2021 Page 3 of 11

Figure 1: Overall System Block Diagram

4 DESIGN TRADE STUDIES

4.1 Face Detection Algorithm

For this specification of our system we opted to use
HoG plus SVM over Haar Cascades. Our reasoning for this
choice was that HoG works well for frontal and slightly non-
frontal and works under small occlusion. Also, since we are
looking at just the driver’s face in the image, we don’t need
to worry about too small of a face for the detector. The
HoG and SVM detector is from Dlib’s Python libraries.[3]

4.2 Facial Landmarking Algorithm

We will use Dlib’s default 68 points landmarks from
their shape predictor but will eventually remove unneces-
sary points so that it can run faster. For example, we will
not need eyebrows in our points for eye classification or
head pose estimation.[4][2]

4.3 Head Pose Estimation

Initially, we thought following examples that convert
the 2D facial landmark points to 3D points would result
the best for head pose estimation. However, since we are
running multiple algorithms and our landmarks might not

be fully precise, we opted to use an imaginary axis over the
driver’s face, with the origin being the tip of the nose.

4.4 Eye Classifier

For classifying if the driver’s eyes are closed or not, we
are using the Eye Aspect Ratio (EAR). Other methods in-
clude matching an open eye template to the user’s eye to
determine if the eye is closed or not[6]. Moreover, other
eye classifiers rely on thresholding to determine the whites
of the eyes and if these white regions disappear or not.
However, we wanted an efficient eye classifier that relied
on calculations using 2D landmarks that are already out-
putted by our facial landmarker. Thus, we chose to use the
EAR because of the reduced computation time required.

4.5 Focus Timer

Initially, when we were thinking of creating a focus
timer, we struggled with determining the proper timing
to wait before alerting the driver because we would have
to distinguish between distracted driving and normal driv-
ing. During our initial design, we determined that we would
have a singular focus timer for a set period of time that was
yet to be decided upon. However, following our research we
determined that having two focus timers – one for texting

18-500 Design Report - March 17, 2021 Page 4 of 11

and another for the sleeping portions of our scope would
suit the project best because the timing is different. Ac-
cording to the Rules of Drowsiness for driving, a person is
considered drowsy if their eyes are closed for longer than 1
second.[5] As for the texting, we made the determination
that 2 seconds would be a sufficient time before alerting
a driver because it is generally known that a driver must
keep approximately 3-4 seconds behind the car in front of
them. So within that time of 2 seconds, alerting the driver
would still keep them a couple seconds behind the car in
front. Thus, we have two focus timers in our design, one
for drowsiness and another for head pose estimation.

4.6 Dlib

Dlib provides various open source machine learning and
image processing algorithms. Additionally has good docu-
mentation to reference. Dlib also supports GPU accelera-
tion which pairs well with the Jetson Xavier NX.[1]

4.7 OpenCV

OpenCV provides computer vision and machine learn-
ing libraries for Python and is used in projects in combina-
tion with Dlib for image processing of video and images.

4.8 Jetson Xavier NX

During our initial design, we believed that NVIDIA Jet-
son Nano would be sufficient for the computing power that
we needed for our project and that the size would be smaller
and better suited for placement directly in front of the
driver. Following our proposal presentation, our instruc-
tors expressed concern that the Jetson Nano would simply
not be fast or powerful enough for all of the computing that
we intended to perform. Following this, we researched fur-
ther into the NVIDIA Jetson Xavier NX and determined
that its size was not much different than the Jetson Nano
and was much more powerful, thus increasing the frames
per second which would give us a much closer ”real-time”
alert.

4.9 Raspberry Pi Camera Module V2

The Raspberry Pi Camera Module is compatible with
various NVIDIA products including the Jetson Xavier and
its default packages (JetPack SDK) and is recommended in
NVIDA forums. Additionally, there are various examples
online for reference to consult. Most importantly, it records
live camera feed.

5 SYSTEM DESCRIPTION

This project consists of both hardware and soft-
ware. The project’s hardware system consists of a Jetson
Xavier NX, Raspberry Pi Camera Module V2, TalentCell
Rechargeable 12V Battery Pack, and Mini External USB

Stereo Speaker. Fig. 2 presents the hardware block di-
agram. The software system, which runs on the Jetson
Xavier NX, consists of the processing of the Raspberry Pi
Camera Module V2’s video stream in order to determine
of the driver is distracted and signaling subsequent alerts.
This includes facial detection, facial landmarking, eye clas-
sification, head pose estimation, focus timing, and the au-
dio alert. Fig. 3 presents the software block diagram.

5.1 Jetson Xavier NX

The Jetson Xavier NX will serve as the processor for
the video stream it receives from the Raspberry Pi Camera
Module V2, which is plugged into port J1 on the Jetson
Xavier NX. Upon receiving power, the Jetson will begin
processing the video stream input and running the facial
detection, facial classification, eye classification, and head
pose estimation algorithms on each frame.These algorithms
are described in more detail below.

5.2 Raspberry Pi Camera Module V2

Our camera of choice is the Raspberry Pi Camera Mod-
ule V2, which has a ribbon connector that is connected to
the Jetson Xavier NX via port J1, which enables use of
CSI cameras. This camera has a Sony IMX219 8-megapixel
sensor and GStreamer is used to interface with the camera
using the Jetson.

5.3 TalentCell Rechargeable 12V Battery
Pack

To power the Jetson Xavier NX, we will be using the
TalentCell Rechargeable Battery Pack. The battery pack
delivers 12V of power, which satisfies the 9-20V power re-
quirement of the Jetson Xavier NX.

5.4 Mini External USB Stereo Speaker

For our audio alert, we will be using Adafruit’s Mini
External USB Stereo Speaker. This is a USB-only speaker,
and thus is both powered and receives audio via one of the
Jetson Xavier NX’s USB ports, which are J6 and J7. Be-
cause the speaker has a 46 inch cable, we have flexibility in
securing the speaker onto our dashboard.

18-500 Design Report - March 17, 2021 Page 5 of 11

Figure 2: Hardware Block Diagram

5.5 Facial Detection and Landmarking

Facial detection of the driver will be performed using
the Histogram of Oriented Gradients and Support Vector
Machine (HoG and SVM) algorithm. HoG is a feature rep-
resentation method. A HOG descriptor is first extracted
from our image frame from our video stream. Then, a SVM,
which is a supervised machine learning model, is used to
train a model to detect a face. Dlib and OpenCV are the
libraries that will be used for this.

Facial landmarking will be obtained using Dlib’s facial
landmark detector. This estimates the location of 68 2D
coordinates, which we reduced down to 30 absolutely nec-
essary facial coordinates. These coordinates will include 12
eye landmarks, 3 nose landmarks, 2 mouth landmarks, and
the remainder being chin and jaw landmarks.[4][2]

5.6 Eye Classification

Using landmarks retrieved from our facial landmarking,
we then classify whether an eye is opened or closed. This
is done by finding the proportion between the width and
height of the eye based on 6 eye landmarks. This propor-
tion is called the Eye Aspect Ratio, or EAR, which is found
using the following formula[7]:

EAR =
‖p2 − p6‖+ ‖p3 − p5‖

2 ‖p1 − p4‖
(1)

where p1, ..., p6 are 2D landmark locations provided by
Dlib’s 68-point facial landmark detector. The smaller the
ratio, the closer the driver’s eyelids are together, signalling
that their eyes are closing. The threshold for the EAR will
be determined through calibration and training.

5.7 Head Pose Estimation

From the landmarks retrieved from the facial landmark-
ing phase, we can calibrate on system turn on, an origin for
an imaginary axis. This origin would be the tip of the nose.
Thus, with an origin being defined, if the driver’s head tilts
down or moves to the right, the tip of the nose would be in
the negative quadrants of the axis. Hence we could deter-
mine that the driver is possibly distracted.

5.8 Focus Timer

The focus timers for head pose and eye classification
help determine whether a driver is distracted or not. There
are normal driver movements that require the driver to not
face forward such as, checking their side and rear view mir-
rors. The timers account for these brief glances and limit
the alerts as to not inconvenience the driver.

5.9 Audio Alert

To ensure that the driver is awoken from their drowsi-
ness, our audio alert is a clear 1.5-second vocal instruction
to refocus on the road. The volume of the alert is loud
enough to be heard over a car radio. Additionally, we want
optimal volume experienced by the driver, so our speaker
will be situated facing our driver.

18-500 Design Report - March 17, 2021 Page 6 of 11

Figure 3: Software Block Diagram

6 PROJECT MANAGEMENT

6.1 Schedule

Fig. 4, 5, and 6 present this project’s Gantt Chart. This
schedule has faced significant revisions since presenting the
project proposal due to the replacement of the vibration
alert with an audio alert, as well as adding more time for
training and slack. We focused on attention to detail while
determining our tasks, and thus our schedule lists a total
of 44 tasks.

6.2 Team Member Responsibilities

All team members will be working together throughout
the design, development, and testing of this project. We
have assigned each team member to be in charge of specific
aspects of the design. Heidi is focused on implementing
and testing the facial detection, facial landmarking, and
head pose estimation algorithms on the Jetson Xavier. Va-
heeshta is focused on implementing and testing the eye
classification algorithm, training the eye classification al-
gorithm, and creating the system calibration. Danielle is
focused on implementing the focus timer, creating the au-
dio alert system, and helping with training.

6.3 Budget

The table represented by Fig. 7 presents all materials
that were purchased for the development of this project.
Out of our $600 budget, we used $455.57. Most of our
budget is used by the NVIDIA Jetson Xavier NX Devel-
oper Kit, which totalled $399. However, we were able to
still have room in our budget largely due to us having a
majority of our other materials either on hand or provided
by the 18-500 inventory.

6.4 Risk Management

There are several risks we must consider while planning
the project. For one, there is significant concern about our
system latency. Specifically, detection of drowsiness and
alerting the driver might not happen in the desired time
frame. While we have metrics discussed previously to de-
termine how fast we would like our system to be, until we
begin our first tests of our system, we are unsure if we can
meet these metrics. Therefore, our risk mitigation is in the
form of a fallback design. We hope to perform face detec-
tion on the Jetson Xavier, then crop out the face and send
this to the cloud using AWS to perform the remainder of
our computation. Then, the Jetson Xavier would receive
the signal from AWS of whether or not to trigger the audio
alert. The resources necessary to implement this change

18-500 Design Report - March 17, 2021 Page 7 of 11

are already accounted for in our requested AWS credits.
As for our schedule impact, implementing this would be
done during our allocated slack time in our schedule. Ad-
ditionally, another risk we may encounter is that we may
face issues with distinguishing between normal movements
and distracted movements, and thus do not detect all dis-
tracted instances. Our mitigation is to slightly overcorrect
to ensure that we at least detect the distracted cases. We
would rather have more false positives than false negatives,
while still keeping both within reason. Moreover, another
risk we anticipate involves our TalentCell power bank not
being able to power the Jetson Xavier for 8-10 hours as
our metric hopes. Since our Jetson Xavier will be perform-
ing continuous computations, this is a very likely possibil-
ity. Thus, we will power the Jetson Xavier using our car’s
power outlet. Lastly, our final risk involves varying light-
ing conditions affecting our drowsiness detection accuracy.
We will avoid this risk by limiting our scope to only direct
lighting conditions, with the aid of a ring light.

References

[1] Compile: Using dlib from Python. url: http://dlib.
net/compile.html.

[2] Dlib Shape Predictor. url: http : / / dlib . net /

python/index.html#dlib.shape_predictor.

[3] Vikas Gupta. Face Detection – OpenCV, Dlib
and Deep Learning. Oct. 2018. url: https : / /

learnopencv.com/face-detection-opencv-dlib-

and-deep-learning-c-python/.

[4] Davis King. GitHub: Face Landmark Detection. url:
https : / / github . com / davisking / dlib / blob /

master / python _ examples / face _ landmark _

detection.py.

[5] Caio Bezerra Souto Maior et al. “Real-time classifica-
tion for autonomous drowsiness detection using eye as-
pect ratio”. In: Expert Systems with Applications 158
(Nov. 2020), p. 113505.

[6] Talal Bin Noman. “Mobile-Based Eye-Blink Detection
Performance Analysis on Android Platform”. In: Front
(Feb. 2018).

[7] Tereza Soukupová. “Real-Time Eye Blink Detection
using Facial Landmarks”. In: 21st Computer Vision
Winter Workshop (Feb. 2016).

18-500 Design Report - March 17, 2021 Page 8 of 11

Appendix A

Figure 4: Gantt Chart Section 1

18-500 Design Report - March 17, 2021 Page 9 of 11

Figure 5: Gantt Chart Section 2

18-500 Design Report - March 17, 2021 Page 10 of 11

Figure 6: Gantt Chart Section 3

18-500 Design Report - March 17, 2021 Page 11 of 11

Figure 7: Bill of Materials

Figure 8: User Story

