
18-500 Design Final Report - May 6, 2020 Page 1 of 10

Cookiebot: A Gesture-Based Home Robot
Authors: Seungmin Ha, Rama Mannava, Jerry Yu: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— Cookiebot is a robotic home assistant
operated by gestures. Its primary application is to help
people easily transport goods around the home. Cook-
iebot’s tasks are to 1. Be tele-operated, 2. Drive to
a home charging station, 3. Drive to the user, and 4.
Drive to a location a user points to. Overhead cameras
capture the user and the robot. Images are streamed
to an NVIDIA Jetson Xavier to run OpenPose and
classification models to classify gestures. Gestures are
relayed via a Node.js webserver to the robot. The robot
has a Raspberry Pi and Roomba to execute commands.

Index Terms—Homography, Home assistant, Ges-
ture recognition with ML, Image processing, Localiza-
tion, Low latency ML inference, Robotics, Websockets

Video demo: https://youtu.be/AF8zmTaa17s

1 INTRODUCTION

Home robots are currently limited to a few specific
functionalities and are clunky to control with an app or
remote. Robots have been limited to entertainment (Anki,
Zenbo), cleaning (Roomba, Landroid), and carrying pay-
loads (Budgee). With Cookiebot, we wanted to focus
on helping people carry goods easily around their home.
Other existing robots like Budgee only follow the user, but
we want Cookiebot to not only go to the user, but also
go anywhere in the room just by pointing at a location.
The advantage of our approach is that our system has full
overhead coverage of the room, the robot, and the user in
order to localize the position of the robot and the user.
With the overhead cameras, we can identify gestures using
machine learning to create natural methods of controlling
robots unlike Roomba or Anki, which require phone apps.

In order to achieve intuitive control, our system is re-
quired to have low latency and high accuracy. Our goals
are to:

1. Start performing all tasks within 1.9s on average to
be comparable to a Google Home.

2. Recognize gestures with at least a 90% percent suc-
cess rate and at most a 10% false positive rate to
minimize user frustration.

3. Maintain less than 0.3 meters (1 foot) drift for the
robot and user positions to stay within easy reaching
distance.

To accomplish this, our system leverages a local NVIDIA
Jetson Xavier (8 Core CPU, 500 CUDA Core GPU) within
the room to perform low latency convolutional neural net-
work computation (0.03s/frame), image processing, and

keypoint classification using SVMs. It also hosts a web-
server for low latency local network websocket communica-
tion between with the robot. We also built a robust method
of creating a 2D map of the room with robot encoders and
a 3D mapping from pixel blocks captured by cameras to
parts of the 2D room map. This is constantly updated
during runtime to have multiple methods of maintaining
accurate robot and user localization.

2 DESIGN REQUIREMENTS

Our design requirements fall into two broad categories:
time, and accuracy. The time requirements regulate the
latency of the user experience, while the accuracy require-
ments are goals for the ultimate usability of the system.
Overall, both sets of requirements are essential to define
reasonable expectations for this project.

A. Time Requirements

The goal of the time requirements is to regulate the
latency of the various sections of the system. The most
important constraint is the end-to-end response time. The
response time of a Google Home, one of the most com-
mercially successful Smart Home products, takes about 1.9
seconds from user input to response. Since we want this
project to be an extended and improved version of the
smart home concept, we settled on an overall response time
of 1.9 seconds as well.

The main sources of latency are the gesture recognition
and tracking, as well as the path planning that the robot
must perform before executing the given command. Al-
though the specifics of how the time budget is allocated
to these three tasks are not important, we decided to es-
tablish some reasonable guidelines to help us ensure that
we would reach our overall goal of 1.9 seconds. Both the
gesture recognition and tracking occur in parallel, so we
allocated 500 milliseconds. As for the path planning, its
complexity greatly increases with distance covered, so we
decided to give it 1000 milliseconds. Altogether this leaves
400 milliseconds of leeway to account for variation in per-
formance.

For the robot, we also required that the movement
speed was above 0.05 meters per second for efficiency but
lower than 0.2 meters per second for safety. We wanted
the system to run for over 2 hours without recharging, so
that it would be operational for a reasonable period of use.

B. Accuracy Requirements

The accuracy requirements are in place to guide the
overall usability of the project, minimizing frustration from
inaccurate gestures and discomfort from inaccurate local-

https://youtu.be/AF8zmTaa17s

18-500 Design Final Report - May 6, 2020 Page 2 of 10

ization.
We settled on a target success rate of 90% for the ges-

ture recognition. This includes a false positive rate of un-
der 10% and a false negative rate under 1%. With these
metrics, the system would misclassify a gesture once in ten
attempts, and would fail to recognize a gesture once out of
one hundred attempts. We anticipate that aiming for this
level of accuracy would greatly reduce user frustration, as a
one-in-ten chance of having a gesture misunderstood would
be a rare enough occurrence that it would not be annoying
to redo the gesture, while the system would very rarely fail
to respond to a gesture.

The localization accuracy requirements are twofold.
The first requirement is for robot and user drift during
usage. We defined drift to be the difference in estimated
location and actual location in the room. We want the user
and robot to always be within easy reaching distance, so
we required that the drift for the robot and user stay under
one foot. In this way, the worst-case scenario of the robot
and user drifting in opposite directions would still result in
a maximum drift of two feet, which is still within average
reaching distance. The second requirement is for the map
generated during the initialization phase. The robot ex-
plores the room to generate a map of the spaces that it can
visit, as well as the obstacles in the room. We wanted the
robot to have high map accuracy to increase the efficiency
of its path planning, so we set a goal of 90%.

3 ARCHITECTURE OVERVIEW

See Appendix A at the end of the document for the sys-
tem architecture diagram.

There are four main components to the overall architec-
ture of the system: visualizations, Xavier, camera system,
and the robot. The diagram clearly illustrates how the
components interact.

A. Camera System
The camera system is composed of a single USB we-

bcam. We originally wanted to use multiple webcams
to capture different angles, but the COVID-19 situation
caused the same 17 dollar webcams to be priced at over
100 dollars. As a result, we needed to have the user and the
robot in frame of the same camera. Gestures additionally
need to be done facing the camera. The camera captures
the user and robot and send the data to the Xavier via
low latency USB. When we moved to remote, we had to
do this processing offline, but the functionality via USB is
still implemented.

B. NVIDIA Jetson Xavier
The Xavier is the main body for the computation as

well as hosting the web server. The board processes the
image received from the camera system using OpenCV and
OpenPose. After getting keypoints of the image and iden-
tifying the gesture, the gesture is classified into one of the
acceptable gestures. This gesture is then translated into

actual commands we can send to the robot subsystem. At
the same time, the Xavier receives updates from the robot
about its location. In addition, the board will use the video
feed from the camera system to translate the 3D represen-
tation of the room to the 2D map by comparing the XY-
coordinate of the robot on the 2D map and the location of
the robot on the camera image.

As for the web server, the Xavier hosts a web server
established using express.js. In addition, it manages web-
sockets used to communicate with the robot subsystem.
Having robust server and websocket management is crit-
ical to the project, which makes the Xavier even more
important to the overall integration. During our proposal,
we said that we were going to use AWS as the webserver.
However, our testing of the Xavier showed that it had
enough CPU bandwidth to do run both image processing
with OpenPose and host a webserver. Hosting the server
locally instead of AWS also reduces latency because it re-
quires less RPC calls and is in our local network.

C. Robot System

The robot subsystem is has two main components:
Raspberry Pi and Roomba. These are connected via serial
USB-DIN cable. The Raspberry Pi receives commands
from the Xavier over the web server. These commands are
translated to a series of serial inputs by the Raspberry Pi
and sent to the Roomba for execution. On top of that, the
Roomba is constantly reading its sensor values and report-
ing them to the Raspberry Pi. Then, the sensor readings
are delivered to the Xavier via websockets for further pro-
cessing. One thing to note is that the Raspberry Pi is
running in headless mode, requiring all commands to be
given to the Raspberry Pi through the web server.

D. Visualizations

Lastly, we built visualizations to show the current state
of the entire system. The Xavier relays the camera view
and map view to the monitor which is connected to the
board via HDMI cable. The camera view includes the cur-
rent camera stream as well as the gestures and key points
recognized. The map view, on the other hand, shows the
estimated locations of the robot and user on the 2D map.
Using these visualizations, we were also able to debug the
system more easily. The user is also able to get a visual
and intuitive update of the system status. We found that
having live feedback was extremely useful for gestures like
the point, where users could understand when the system
made a mistake and could change their gesture such that
the system could classify it correctly. We have also based
our video demo on these visualizations.

4 DESIGN TRADE STUDIES

We considered several different options for each of the
different components of our project.

18-500 Design Final Report - May 6, 2020 Page 3 of 10

4.1 Camera System

Both the user and the robot need to be in frame for
the camera. In addition, the camera needs to be stationary
so we can re-use the 3D to 2D mapping generated during
the initialization phase. We originally wanted to cover the
entire room from all angles, but we decided to just use one
webcam due to the COVID-19 situation causing camera
prices to skyrocket.

From our testing, we found that using multiple cam-
eras would give us higher reliability compared to using 3D
cameras, which are much more expensive and harder to
work with. Multiple webcams would give us views of the
room along multiple planes to differentiate gestures that
look identical when viewed on the same 2D plane. This is
especially helpful for similar gestures like the point. Our
final camera system uses one front-facing camera and re-
quires the user to face the camera when gesturing.

4.2 Keypoint Recognition

Figure 1: Runtime comparison of similar keypoint recogni-
tion algorithms. [1]

Recognizing gestures requires an algorithm that is able
to identify keypoints when given an image of a person. This
is a popular computer vision problem known as 2D pose
estimation. The options we considered were OpenPose, Al-
phapose, and Mask R-CNNs. Fig. 2 illustrates the the
relative performance of these algorithms on the same set of
test images.

Given the tendency of keypoint recognition algorithms
to scale linearly with the number of people in a given image,
we decided to use OpenPose. For the case of only one per-
son, AlphaPose and OpenPose both clearly perform better
than the Mask R-CNN, and there isn’t a large difference
between the two. OpenPose gave us 0.03 seconds per frame
on the NVIDIA Jetson Xavier, while also promising con-
sistent results should we choose to support more than one

person in the future. Given this clear benefit over Alpha-
Pose and the slight difference in performance between the
two for our current use case, we decided to move forward
with using OpenPose as our keypoint recognition algorithm
of choice.

Additional consideration was put into using networks
with 3D pose estimation, since knowing the keypoints in
3D could ease the classification of gestures. [2] However,
we were worried we would not be able to get the same level
of runtime performance as OpenPose on embedded sys-
tems. The paper mentions a similar architecture to Mask
R-CNN, which OpenPose strongly outperforms. OpenPose
also has robust python bindings that make it easy to use,
whereas 3D methods would require more configuration. 3D
pose estimation is, however, an area for future work on this
project.

4.3 Compute Hardware

We needed to select a hardware solution to run our cho-
sen keypoint recognition algorithm as well as our in-house
gesture recognition algorithm and the server handling robot
communication. We considered using a laptop without a
GPU, an NVIDIA Jetson Xavier, and a GCP instance. Fig.
3 shows the results of running OpenPose with a short test
video on each of these options.

Our initial testing of OpenPose on a laptop required
20-30 seconds per frame, which was clearly unusable for
any gesture recognition at all. We then tried using a GCP
instance with 2 CPU cores and 5000 CUDA cores with per-
formance results of 3.5 fps. It wasn’t until our Xavier test-
ing that we realized the importance of CPU performance
and how seriously it bottlenecked our GCP test, as 4 CPU
cores gave the Xavier 17 fps and activating the remaining
4 inactive cores resulted in 27 fps. At this point we decided
not to retry using a GCP instance as 27 fps is much faster
than we require, and running OpenPose on the Xavier re-
moves the latency we would have to battle to stream video
to a GCP instance and stream keypoints or gestures back.
CPU utilization on the Xavier at 27 fps was only around
20%, so it would also be able to handle the server required
for communication with the robot. We decided to use only
the Xavier for our compute hardware.

Note in the chart below, we did not enable OpenPose
optimizations like the –tracking flag that gave us a 2x
speedup on the Xavier board. We were also running an
older version of OpenPose on AWS since it was the version
a docker container was released at.

Table 1: Comparison of OpenPose Performance

Hardware CPU Cores CUDA Cores FPS

CPU-Only 8 0 0.05
GCP Instance 2 4992 3.5
AWS p2.xlarge 4 4992 2.5
NVIDIA Jetson Xavier 4 512 17
NVIDIA Jetson Xavier 8 512 27

18-500 Design Final Report - May 6, 2020 Page 4 of 10

4.4 Web Server

A web server is required to bridge the gap between
gesture recognition and the robot; it needs to convey the
gestures that were identified to the robot so that it will
be able to perform the tasks as instructed. To do this,
we considered Node.js and Python as platforms, and Web-
Sockets and REST as the method of communication. The
main difference between both platform choices is their ap-
proach to asynchronous operation, as Node.js is natively
asynchronous and Python is not. Given the nature of web
communication and the potential for multiple concurrent
requests, we decided that Node.js was the better option of
the two. As for the communication itself, we had to com-
pare providing WebSocket endpoints vs REST endpoints
for the gestures and robot to both connect to. WebSockets
are useful in situations where connections are anticipated
to be maintained for a long time, as the overhead occurs
when establishing the connection after which communica-
tion can easily proceed in both directions. On the other
hand, providing REST endpoints would require reestab-
lishing a connection with the server every time a message
needed to be exchanged. This server is intended to main-
tain its connection with the gestures and robot indefinitely,
so we opted for WebSockets to reduce the communication
latency between gesture recognition and robot response.

4.5 Robot

The robot needs to be able to navigate through the
room easily at a safe speed while also maintaining an ade-
quate level of visibility to prevent any accidents with walk-
ing people. We considered using a Roomba or building our
robot, but ultimately decided to use a Roomba. It is able to
rotate in place so there are no concerns about turning circle
for navigation in tight spaces, and has a variety of sensors
that can be used for mapping and localization. Encoder
data from its motors can be used to aid in localization. We
decided to mount a Raspberry Pi on top of the Roomba
to control it via serial port. The Raspberry Pi communi-
cates with the server and converts gestures into commands
for the Roomba, while maintaining a map of the room and
updating the Roomba’s position as necessary. The Rasp-
berry Pi is a light board that can easily be powered from a
battery pack on the Roomba, allowing for untethered op-
eration limited only by the range of its WiFi connection.

5 SYSTEM DESCRIPTION

There are five main subsystems that comprise our
project.

5.1 Subsystem A: Gesture Recognition

The gesture recognition subsystem determines the
user’s gestures and relays the appropriate command to the
webserver. It first collects an image from the webcam con-
taining both the robot and the user. We chose to use the

Logitech C270 webcam since it was the cheapest USB web-
cam we could find and we could work with its image format
without warping or other preprocessing. Having USB web-
cams also allowed us to extend the cables cheaply (Amazon
basics 2.0 extension 10 ft cables) and connect to a USB hub
easily that our board could access with OpenCV.

OpenPose returns 25 keypoints across the body for us
the classify, with the XY-position in the frame along with
the confidence level. From experimenting with different pa-
rameters, we have found that using tracking mode gives us
the best performance of 30 FPS. Tracking uses temporal
information from previous frames in order to identify key-
points faster. However, it can only track one user at a time.
We believe this tradeoff is worth it to reduce latency and
to limit the scope of our project.

Figure 2: Gesture recognition system and training pipeline

We can classify the keypoints using heuristics like left
wrist is above the left shoulder, but these heuristics are not
reliable for gestures for teleop and pointing when the user is
not standing directly facing a camera. So, we want to use a
SVM to classify each gesture by first creating a normalized
feature vector for a person and gathering data to train a
model. We wanted the full system to have an integrated
training pipeline so we can gather data easily and collect
data for edge case situations during run time. We can still
use heuristics as a backup to mitigate the risk that gesture
recognition fails.

We ended up using heuristics for the to me, stop, go
home, and point ready gestures. We used heuristics to de-

18-500 Design Final Report - May 6, 2020 Page 5 of 10

termine if an arm was raised for teleop mode, and we used
a SVM to classify the direction and if the gesture was for
driving straight, turning left, or turning right.

In addition, we used post processing to ensure a gesture
was stable before we sent it to the robot. We did this by
using a sliding window and ensuring we saw a gesture for
10 frames before we sent it to a robot. In addiiton, we de-
fined that the system needs to be at no gestures detected
before a gesture is detected. This is done for all gestures
except for switching between teleop.

Figure 3: System recognizing go home, left hand up

5.2 Subsystem B: Getting location from
point

Figure 4: Pointing system

Pointing to a location on the ground uses a neural net-
work. We first divide the room into a grid of 1 foot square
bins. We then gather data by having the user point to a
bin and mapping those keypoints to the appropriate bin.
We wrote custom scripts to get video and label it. Around
1 hour of training and validation data was gathered for the
point. This was converted into a dataset of 14,400 train-
ing frames and 6,000 validation frames, with training and
validation data coming from different videos. The model
predicts the x and y coordinate of where the bin is on the
grid using a neural network regression model, since bins
close together have more similar keypoints.

We explored many methods of building the network;
the final architecture uses a 3 layer 64 hidden unit neu-
ral network with two regression multitask outputs of x and
y for the bins. For the input of the network, we found
improvements using only the arm keypoints and including
the location of the user in the frame, as the same point
gesture can look different in various locations of the room.
We trained all the neural networks until the loss stabilized
(100 epochs) with the Adam optimizer and we chose the
model that performed the best.

Table 2: Point model validation performance

Architecture Validation accuracy

Categorical NN 0.9006
Regression NN 0.9124
Regression NN with Location 0.9456

After getting the relative location, we can translate it
to the 2D map using the position of the user from tracking.
We can then tell the robot to plan a path towards that
location using A*.

Figure 5: Visualization of pointing in front

5.3 Subsystem C: Robot

A. Components
The robot subsystem is composed of a Raspberry Pi

and the Roomba 671 itself. Additionally the battery pack
(10,000mAH) powers the Raspberry Pi independent of the
Roomba power source. The Raspberry Pi and the battery

18-500 Design Final Report - May 6, 2020 Page 6 of 10

pack are attached on top of the robot. It is important not
to obstruct any sensors while attaching these components
since some sensors (IR sensor, etc.) are placed on top of
the Roomba. A red marking disk is also be mounted on
the robot so the camera can detect it easily.

B. Odometry
Getting the XY-representation of the robot’s location

as precise as possible is crucial to the correct behavior of
the system. To do this, we use the encoder values of the
Roomba to calculate the distance and the angle it moves
each time stamp. The distance travelled is calculated using
the following equation:

∆d =
(∆encoderright + ∆encoderleft)

2
× rwheel×

2π

360
(1)

In addition, the angle the robot has rotated can be calcu-
lated using

∆angleradian =
(∆dright − ∆dleft)

lwheelbase
(2)

By collecting the distance and angle travelled for each
timestamp(15ms), we can approximate the XY-coordinate
of the robot quite accurately.

∆x = −∆d× sin(angle) (3)

∆y = ∆d× cos(angle) (4)

C. Map Generation
For the map generation, the robot first follows the

wall to collect information about the boundary of the en-
vironment. Then, based on the dimension of the room,
the robot moves back and forth within the region of un-
known to search for potential obstacles such as a furniture
or a wall. Throughout this process, the robot operates
autonomously without any direction from the user. This
necessitates adjusting the heading of the robot based on
its sensor readings. For instance, if the robot detects an
object on the right bumper, the robot will drive backward
a bit and rotate to the left by a small increment. This
will allow the correctness of the wall-following process and
ensure that the robot doesn’t get trapped within a certain
region of the room. After completing this process, the
robot will collect enough samples to generate a blotted-2D
representation of the room. This map will be the base of
any path finding and localization.

D. Path finding
Based on the generated 2D map, the robot needs to

calculate a path to the desired goal location. Since we gen-
erate the 2D map by occupying a 0.05m-square grid, the
best approach was to use a graph search algorithm such as
A* or Djikstra’s algorithm. We eventually decided to use
A* algorithm with the diagonal distance as a heuristic. The
diagonal distance guarantees admissibility as well as con-
sistency on a 8-connect grid representation of the space.
Other variations of the A* algorithm were tested, such as
weighted-A*, but there was no need to trade computation

speed for optimality since the worst case computation speed
was well within the requirement we set for an acceptable
usability.

Figure 6: Three example paths generated using A* algo-
rithm and the 2D map. The white cell represents an empty
space, black cell represents an obstacle, and grey cells are
the space which were visited only once during the mapping
phase. The red cell represents the starting point, blue cell
represents the goal, and green cells represent the path the
robot will take.

5.4 Subsystem D: 3D to 2D Mapping

Figure 7: The results of the 3D to 2D Mapping. The first
row shows the camera position of the robot as well as its
position in the room according to its encoder data. The
second row contains the estimation of the map positions
using the generated homography, and the relevant drift in
millimeters.

The 3D to 2D Mapping is generated by building a ho-
mography. This is a transformation between two planes;
in this case, the planes are the camera’s perspective of the
floor, and the robot’s 2D map view. The larger the set of
corresponding coordinates used, the greater the accuracy
of the homopraphy. The encoder data from the map gener-
ation can be used for this purpose, but a smaller set from

18-500 Design Final Report - May 6, 2020 Page 7 of 10

simply sweeping both axes of the room satisfies accuracy
requirements as well. After this mapping is generated, the
websever is able to use this information to track the posi-
tions of both the robot and the user on the 2D map pro-
vided by the robot. The same mapping can be used as
long as a position in the camera view is known, so both
the robot and user can be localized with this same set of
information.

5.5 Subsystem E: Communication Inter-
faces

A. Camera System/Server Interface
The interface between the camera system and web

server is mostly one-directional. During the initialization
phase, the server sends information about the 2D map po-
sition of the robot to the camera system via websocket in
the form of JSON with fields for coordinates. This infor-
mation is used to create a mapping from camera views to
2D map positions. After initialization, JSON is sent to the
server via websocket with fields for the recognized gesture,
and the estimated 2D coordinates of the user and robot
based on the previously stored camera view mapping. The
server uses its map to convert the gestures into a series of
commands to relay to the robot, while using the position
information to update its global map positions for the user
and robot.
B. Server/Robot Interface

The interface between the web server and robot is bi-
directional. During the initialization phase, the robot sends
information about its position periodically in the form of
JSON to the server via websocket to be relayed to the cam-
era system. After initialization, the server sends commands
to the robot, which then executes those commands and re-
sponds with estimated position updates as JSON to the
server. This information is used by the server to update its
global map.

6 VALIDATION AND METRICS

6.1 Gesture Recognition

For gesture recognition, the key metric we aimed for
was classification accuracy. As mentioned in our require-
ments, we aimed for 90% accuracy to make our system
reasonable to use. In all of our tests, we had the user
face the camera and the user in frame. We also tested un-
der different lighting conditions, ranging from having the
lights on to having sunlight through the window. For the
teleop gestures (left, straight, right) we had 90.8% test ac-
curacy over 76 gestures. For the point classification, we
had 83.08% test accuracy over 130 gestures. The point
classification was harder than we expected, as very similar
keypoints could lead to different bins and the same gesture
could look different at various locations in the room. For
the heuristics gestures, our test accuracy was 95.6%. In
total, we achieved 90.2% test classification accuracy over

368 test gestures, reaching our goal of 90% test accuracy.
We had a 8.8% misclassification or false positive rate, along
with a 0.9% unrecognized or false negative rate. This met
our goal of 10% misclassification and 5% unrecognized rate.
We chose 5% as our unrecognized rate because we believed
that false negatives were worse for the user experience, as
the system does not acknowledge what a user does.

Table 3: Gesture Recognition Metrics

Gesture Type Requirement Test Accuracy

Teleop 90% 90.8%
Point 90% 83.8%
Heuristics 90% 95.6%

Overall 90% 90.3%

6.2 Tracking

The tracking performed using the 3D to 2D Mapping
was constrained by the accuracy of location estimates over
the course of system usage. Using around 3000 frames of
data, we compared the server’s estimate of the robot’s po-
sition with its actual position from encoder data. We also
used the same dataset to compare the estimated user po-
sition with the ground truth position found from markings
placed on the floor of the test area. The robot had an av-
erage drift of around 6 centimeters, while the user had an
average drift of 4 centimeters. The goal for drift was to
keep it within 300 centimeters (1 foot) for both the robot
and user, and we ultimately had much higher accuracy than
we had hoped for.

Table 4: Tracking Metrics

Subject Requirement Drift

Robot 30 cm 6 cm
User 30 cm 4 cm

6.3 Robot

There were three main metrics we wanted to test for
the robot manipulation. The first was the odometry accu-
racy. Throughout the operation, we heavily rely upon the
odometry-generated estimated position of the robot; for in-
stance, the path finding algorithm would be useless if the
robot is not actually where we think it is. Thus, it was im-
portant to ensure that the odometry is generating a fairly
accurate estimation of the robot position. For the valida-
tion, we made the robot drive to five different positions
and measured the discrepancy between its actual position
which was measured using a tape-measure, and its reported
estimation of the current location. The result came out to
be 4.8cm on average which was well within our requirement
of 30cm.

The second metric we wanted to test was the map ac-
curacy. During the mapping phase, the robot explores the

18-500 Design Final Report - May 6, 2020 Page 8 of 10

room and generates a 2D map which is used in the path-
finding as well as in the 2D-3D mapping. Thus, we wanted
to minimize any misrepresented space on the map to ensure
complete and consistent space representation. To test this,
we counted misrepresented cells on the generated 2D map
of a known environment. The resulting number of misrep-
resented cells was 56 out of 1271 cells, which meant 95.6%
accuracy.

The final metric was the average speed of the robot. We
wanted the robot to move fast enough to complete tasks ef-
ficiently, but also wanted to limit the speed of the robot to
ensure more accurate odometry as well as to guarantee user
safety. After testing with different speeds with the robot,
we decided that the robot must move at speed between 5
cm/s and 20 cm/s for usability and safety. To validate, we
made the robot perform 10 different tasks each requiring
around 10 m of movement and measured the time it takes
to complete the task. The resulting average speed was 11
cm/s which was within our desired range of speed.

Table 5: Robot manipulation Metrics

Criteria Requirement Test Result

Odometry accuracy 30 cm 4.8 cm
Map accuracy 90% 95.6%
Average speed < 20 cm/s 11 cm/s

> 5 cm/s

6.4 Performance

For performance, we aimed to have the entire system
from user action to the robot starting to execute the com-
mand be under 1.9 seconds, the average response time for
a Google Home. We first broke down our expectations for
the performance based on each of our components.

For gesture recognition, we measured the latency from
before the frame is captured to before the command is sent
to the robot. The average latency was 56 milliseconds and
the longest time was 261 milliseconds. after further time
profiling, we found that this was due to outliers in openpose
taking 150 milliseconds to run (usually 30 milliseconds) and
the point model could take up to 100 milliseconds to run.
we found the gesture recognition times by taking an average
over 129 gestures.

mapping processing was the time it took to track both
the robot and user in a frame. on average, it took 16 mil-
liseconds with the longest time being 166 milliseconds from
an outlier in openpose. this was tested by running the
tracking on 3072 frames. as both gesture recognition and
the tracking occur in parallel, the greater latency of the
gesture recognition supersedes the latency of the tracking.

path planning with a* took 230 milliseconds on average,
with 780 milliseconds being the time to search for a path
from one corner of the room to the other corner. we tested
this by taking the average time over 6 runs. although this
was by far the longest step in the process, it was still within
our budgeted time.

to test the rpi to server socket latency, we simulated 100
sends of location and receives of commands. the average
time was 3.5 milliseconds and longest time of 13.5 millisec-
onds. this was faster than what we expected because we
were running on a local network. we also measured the rpi
execution time over 100 cycles, from receiving the command
to sending the motor commands. we chose the requirement
of 15 milliseconds because it is the refresh rate of the sensor
data we get from the roomba. we were able to get an av-
erage time of 13.7 milliseconds and longest time over 16.2
milliseconds.

In total, we took the max of gesture recognition and
mapping since we could perform them in parallel, and
summed the result with the rest of the components. This
led to our average response time of 0.3 seconds and longest
response time of 1.07 seconds. This fits well under our goal
of 1.9 seconds. We believe this response time is a result of
the strong processing of the Xavier board both on the GPU
and CPU fronts that allowed us to meet our performance
goals.

Table 6: Performance metrics

Component Requirement Average Longest

Gesture recognition 500ms 56ms 261ms
Mapping processing 100ms 16ms 166ms
Path planning 1000ms 230ms 780ms
RPi socket 100ms 3.5ms 13.5ms
RPi execution 15ms 13.7ms 16.2ms

Total time 1.9s 0.3s 1.07s

7 PROJECT MANAGEMENT

7.1 Schedule

We organized our project management to achieve three
major milestones: MVP (teleop and going to home), map-
ping, and pointing. We designated general tasks to achieve
these milestones. A detailed schedule is provided in Ap-
pendix A.

Milestone 1: MVP Teleop and Driving to home
We set up and built the base components of our project:
attached the camera system, ran OpenPose on the Xavier,
classified easy static gestures, set up a webserver with web-
sockets, communicated to the Roomba via the RPi and se-
rial, and executed basic motor commands on the Roomba.
This allowed us to understand the base system before build-
ing more complicated functionality.

Milestone 2: Mapping and Localization We
worked towards building a 2D map on the Roomba using
encoders, synchronizing the 2D map with the 3D camera
view, and figuring out a system to consolidate map changes.
This allowed us to build the map infrastructure and local-
ization required for advanced tasks like going to the user
or going to a point.

Milestone 3: Driving to point Pointing was the

18-500 Design Final Report - May 6, 2020 Page 9 of 10

most complex part of the project. We needed to figure out
where the user is pointing, place that onto the map, and
have the robot plot and follow a path to it.

7.2 Team Member Responsibilities

Seungmin was in charge of the robot. He has prior ex-
perience with robotics and is a TA for Intro to Robotics.
He led the development on communication to the Roomba
via the RPi and the Roomba 2D mapping with Odometry.
In addition, he worked on the path planning of the robot
and built the hardware for the robot.

Rama was responsible for system devops, making sure
the overall system runs smoothly. He has prior experience
working with Linux systems and webservers through his
research and previous internships. He was responsible for
setting up our boards, network infrastructure, webserver,
and websockets. He also made sure the entire system fell
within our performance requirements and performed opti-
mizations when necessary. In addition, Rama worked on
updating the global map via camera tracking.

Jerry was responsible for the image processing and ges-
ture recognition. He has prior experience working with
machine learning and computer vision through personal
projects and internships. He was responsible for our cam-
era setup, and building data pipelines to collect data and
ML models to classify gestures. In addition, Jerry worked
on system infrastructure and performance with Rama.

We all worked together for the testing of our system
and made sure we fell within our requirements.

7.3 Budget

Table 7: Sourced and scrounged parts

Component Source

NVIDIA Jetson Xavier Prof. Savvides
Monitor Lab
USB mouse Lab
USB keyboard Personal
Ethernet cable Personal
HDMI Cable Personal
Battery pack Personal
MicroUSB power source Personal

Table 8: Tools

Tool Purpose

OpenCV Webcam and image processing
OpenPose Keypoint recognition
pyserial Communicating with Roomba
sklearn Training SVM models
Tensorflow Training Neural network models
Express Node.js webserver
AWS GPU p2.xlarge OpenPose testing

Table 9: Bill of Materials

Component Quantity Cost

Roomba 671 1 243.51
Roomba DIN to USB cable 1 23.99
Raspberry Pi 4 1 45.67
RaspPi Power Source 1 9.99
Wide angle camera 1 26.99
USB Webcam 2 34.98
MicroHDMI cable 1 6.49
USB extension cable (10ft) 2 11.58
USB extension cable (25ft) 1 7.69
USB Hub 1 27.99
Total: 438.88
Budget Left: 161.12

7.4 Risk Management

The largest risk for our project was localization of the
robot. Our tasks of going back to home, going to the user,
and going to the pointed location all required the robot
to know where it was on the map. We tried to mitigate
the risk by using multiple methods to localize the robot.
We used data from our motor encoders to know where the
robot had traveled on the 2D map. Additionally, we used
the camera view and our camera 3D to 2D mapping in order
to get a location of the robot in the room. By having two
methods to localize the robot, we maximized the accuracy
of the localization.

Classifying the gestures incorrectly was also a risk.
OpenPose can procide incorrect keypoints, which would
cause an error in the classification process. To address this,
our model-based approaches had backup heuristics to clas-
sify the gestures if our system could not confidently recog-
nize a gesture. In addition, we uses post processing on the
gesture output to ensure that a gesture was not caused by
noisy OpenPose output.

7.5 AWS Credit Usage

We have used around $10 in AWS credits with p2.xlarge
instances with GPU to test OpenPose and test ML models.
We lost access to our Xavier board briefly and needed to
get OpenPose set up on AWS to run our system.

References

[1] Zhe Cao et al. “OpenPose: realtime multi-person 2D
pose estimation using Part Affinity Fields”. In: arXiv
preprint arXiv:1812.08008. 2018.

[2] Dario Pavllo et al. “3D human pose estimation in video
with temporal convolutions and semi-supervised train-
ing”. In: Conference on Computer Vision and Pattern
Recognition (CVPR). 2019.

18-500 Design Final Report - May 6, 2020 Page 10 of 10

Appendix A

Figure 8: Overall system architecture

Figure 9: Gantt chart

	INTRODUCTION
	DESIGN REQUIREMENTS
	ARCHITECTURE OVERVIEW
	DESIGN TRADE STUDIES
	Camera System
	Keypoint Recognition
	Compute Hardware
	Web Server
	Robot

	SYSTEM DESCRIPTION
	Subsystem A: Gesture Recognition
	Subsystem B: Getting location from point
	Subsystem C: Robot
	Subsystem D: 3D to 2D Mapping
	Subsystem E: Communication Interfaces

	VALIDATION AND METRICS
	Gesture Recognition
	Tracking
	Robot
	Performance

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget
	Risk Management
	AWS Credit Usage

