
18-500 Design Review Report - March 2, 2020 Page 1 of 10

Cookiebot: A Gesture Based Home Robot
Authors: Jerry Yu, Rama Mannava, Seungmin Ha: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— Cookiebot is a robotic home assistant
operated by gestures. Its primary application is to
help people easily transport goods around the home.
Cookiebot’s tasks are to 1. Be tele-operated, 2. Drive
to a home charging station, 3. Drive to the user, and
4. Drive to a location a user points to. Overhead
cameras will capture the user and the robot. Images
will be streamed to an NVIDIA Jetson Xavier to run
OpenPose and classification models to classify gestures.
Gestures will be relayed via a Node.js webserver to the
robot. The robot will have a Raspberry Pi and Roomba
to execute commands.

Index Terms—2D mapping, 3D mapping, Home
assistant, Gesture recognition with ML, Image process-
ing, Localization, Low latency ML inference, Robotics,
Websockets

1 INTRODUCTION

Home robots are currently limited to a few specific
functionalities and are clunky to control with an app or
remote. Robots have been limited to entertainment (Anki,
Zenbo), cleaning (Roomba, Landroid), and carrying pay-
loads (Budgee). With Cookiebot, we wanted to focus
on helping people carry goods easily around their home.
Other existing robots like Budgee only follow the user, but
we want Cookiebot to not only go to the user, but also
go anywhere in the room just by pointing at a location.
The advantage of our approach is that our system has full
overhead coverage of the room, the robot, and the user in
order to localize the position of the robot and the user.
With the overhead cameras, we can identify gestures using
machine learning to create natural methods of controlling
robots unlike Roomba or Anki, which require phone apps.

In order to achieve intuitive control, our system is re-
quired to have low latency and high accuracy. Our goals
are to:

1. Start performing all tasks within 1.9s on average for
10 tasks to be comparable to a Google Home.

2. Accomplish all tasks end-to-end with at least a 90%
percent success rate and at most a 10% false positive
rate to minimize user frustration.

3. Maintain less than 1 foot drift between where the
system predicts the robot is and where the robot ac-
tually is after 10 tasks to stay within easy reaching
distance.

To accomplish this, our system leverages a local NVIDIA
Jetson Xavier (8 Core CPU, 500 CUDA Core GPU) within

the room to perform low latency convolutional neural net-
work computation (0.03s/frame), image processing, key-
point classification using SVMs, and also to host a web-
server for low latency local network websocket communi-
cation between the cameras and the robot. We are also
building a robust method of creating a 2D map of the room
with robot encoders and a 3D mapping from pixel blocks
captured by cameras to parts of the 2D room map. This
will be constantly updated during runtime to have multiple
methods of maintaining user and robot localization.

2 DESIGN REQUIREMENTS

The design requirements can be divided up to two
parts: software and hardware requirements. Software re-
quirements are there to make sure the latency and user
experience is reasonable. Hardware requirements, on the
other hand, remind us of our physical restriction and the
expectation as of how the robot will function in the real
world. Overall, meeting both requirements would be es-
sential to ensure the successful and meaningful project.

A. Software Requirements

The purpose of setting requirements for the software
system is to set the maximum allowable limits of latency
and gesture recognition. Before we set any quantitative
requirements, we set our overall end-to-end time restraint.
Google Home, which is one example of commercially suc-
cessful Smart Home products, takes about 1.9s between the
user input and the output. Since we want this project to
be an extended and improved version of the smart home
concept, we decided that meeting the 1.9s end-to-end re-
striction would be reasonable.

The main sources of latency would be the data transmis-
sion between the web server and the robot subsystem. The
communication between the camera system and the web
server, while crucial to the project, would not have much
latency since they are directly connected via USB cables.
For the data transmission, we agreed to set 100ms latency
requirement. This would be the maximum allowable time it
takes for the Raspberry Pi to send 5 sensor data packets to
the web server and to receive one path data from the server.
This is to ensure that we have a fluid real time control of
the robot. The reason we are specifically setting the latency
limit for the transmission of 5 data packets is because that
is the maximum number of sensors the server would need
to generate or update the map: encoder readings for each
wheel and bumper readings for front, left, and right. Also,
100ms seems to be the maximum communication latency
which the user won’t find uncomfortable. While testing,
we were able to notice the discrepancy between the robot

18-500 Design Review Report - March 2, 2020 Page 2 of 10

and the data read by the web server when the latency was
longer than 100ms.

In addition, we are setting the required success rate
of the gesture recognition to be over 80% per frame on
average. We wanted to achieve high enough success rate
while also being realistic with the ML model we are using.
Having success rate lower than 80% would jeopardize our
goal of having intuitive and easy control of the robot. At
the same time, we wouldn’t need an exceptionally high
success rate since with a high enough fps the subsequent
frames would correct the wrong gesture recognition.

B. Hardware Requirements
Hardware requirements are in place to restrict the be-

havior of the robot. This is both for the successful output
and for the safety of the user.

First, we are requiring the robot to arrive at the goal
point within 1 ft error. This is to ensure the user would be
able to reach the robot even if the robot drifts a bit. This
requirement would be enforced by having a robust odom-
etry and a correcting the localization via camera system’s
video feed.

In addition, the robot must complete a path within a
reasonable time limit. The robot should move fast enough
to assist the user, but also not too fast to jeopardize the
correctness of the odometry or to potentially harm the user.
For this, we are requiring the robot to complete a 10m path
within 50s on average. While testing, we found this time
limit to enforce a reasonable speed restriction. Specifically,
the speed of the robot wasn’t high enough to damage the
surrounding such as an object or person placed after the
initialization of the map.

We are also requiring the robot to operate for at least
2 hours without charging. This is to ensure the user can
spend enough time using the robot without the need of in-
terruption. Most assistant tasks performed by the robot
would not require more than 10 minutes to complete, but
in case the user wants to use the robot for several consec-
utive tasks or wants the robot to wait in the same location
for some time, we want to make sure the robot can han-
dle such workload without having to return to the charging
station.

3 ARCHITECTURE OVERVIEW

See Appendix A at the end of the document for the
system architecture diagram.

There are four main components to the overall archi-
tecture of the system: dashboard, Xavier, camera system,
and the robot. The diagram clearly illustrates how each
components would interact.

A. Camera System
The camera system is composed of four individual USB

cameras each pointing at the front, back, and sides of the
room. These cameras capture the user and robot and send
the data to the Xavier via web server. Having four cam-

eras ensures that we aren’t leaving any blind spot in the
room. In addition, having multiple angles helps gesture
recognition by providing additional “backup” frames.

B. NVIDIA Jetson Xavier

The Xavier will be the main body for the computation
as well as hosting the web server. The board processes the
image received from the camera system using OpenCV and
OpenPose. After getting keypoints of the image and iden-
tifying the gesture, the gesture is classified into one of the
acceptable gestures. This gesture is then translated into
actual commands we can send to the robot subsystem. At
the same time, the Xavier is receiving data such as encoder
readings and light bumper sensor readings from the robot.
These data will be processed to generate a 2D map. In ad-
dition, the board will use the video feed from the camera
system to translate the 2D map to 3D representation by
comparing the XY-coordinate of the robot on the 2D map
and the location of the robot on the camera image.

As for the web server, the Xavier will host a web server
established using express.js. In addition, it will manage
websockets used to communicate with the robot subsys-
tem. Having robust server and websocket management
would be critical to the project, which makes the Xavier
even more important to the overall integration. During our
proposal, we said that we were going to use AWS as the
webserver. However, our testing of the Xavier showed that
it had enough CPU bandwidth to do run both image pro-
cessing with OpenPose and host a webserver. Hosting the
server locally instead of AWS also reduces latency because
it is less RPC calls we have to make and is in our local
network.

C. Robot System

The robot subsystem is composed of two components:
Raspberry Pi and Roomba which are connected via serial
USB-DIN cable. The Raspberry Pi receives commands
from the Xavier over the web server. These commands are
translated to a series of serial input by Raspberry Pi and
sent to the Roomba for execution. On top of that, the
Roomba is constantly reading its sensor values and report-
ing them to Raspberry Pi. Then, the sensor readings are
delivered to the Xavier via websockets for further process-
ing. One thing to note is that the Raspberry Pi is running
in a headless mode. In other words, all the commands need
to be given to the Raspberry Pi through the web server.

D. Dashboard

Lastly, the dashboard would be the visual hub for the
current state of the entire system. The Xavier relays cam-
era view and the map view to the monitor which is con-
nected to the board via HDMI cable. The camera view
will include the current camera stream as well as the ges-
tures and key points recognized. The map view, on the
other hand, would show the estimation of the location of
the robot and user on the 2D map. Using this dashboard,
we will be able to debug the system more easily, and the

18-500 Design Review Report - March 2, 2020 Page 3 of 10

user will be able to get a visual and intuitive status update
of the system.

4 DESIGN TRADE STUDIES

We considered several different options for each of the
different components of our project.

4.1 Camera System

The camera system needs to have vision of the entire
room to be able to identify gestures. It also needs to view
the room along multiple planes to differentiate gestures
that look identical when viewed on the same 2D plane.
We considered using a 3D camera or multiple webcams.
After some initial testing with the webcams we decided
that having multiple webcams would be able to provide
the functionality we needed at a much lower price than a
3D camera would cost. Our camera setup will have two
cameras for front and back, and third camera at a right
angle for gesture disambiguation, and an overhead camera
to aid with point gesture recognition. These four cameras
will give us three planes of information, which we can use
to identify gestures in 3D space, while also providing visual
coverage of the entire room without blind spots.

4.2 Keypoint Recognition

Figure 1: Runtime comparison of similar keypoint recogni-
tion algorithms. [1]

Recognizing gestures requires an algorithm that is able
to identify keypoints when given an image of a person.
The options we considered were OpenPose, Alphapose, and
Mask R-CNNs. Fig. 2 illustrates the the relative perfor-
mance of these algorithms on the same set of test images.

Given the tendency of keypoint recognition algorithms
to scale linearly with the number of people in a given image,

we decided to use OpenPose. For the case of only one per-
son, AlphaPose and OpenPose both clearly perform better
than the Mask R-CNN, and there isn’t a large difference
between the two. OpenPose gave us 0.03 seconds per frame
on the NVIDIA Jetson Xavier, while also promising con-
sistent results should we choose to support more than one
person in the future. Given this clear benefit over Alpha-
Pose and the slight difference in performance between the
two for our current use case, we decided to move forward
with using OpenPose as our keypoint recognition algorithm
of choice.

4.3 Compute Hardware

We needed to select a hardware solution to run our cho-
sen keypoint recognition algorithm as well as our in-house
gesture recognition algorithm and the server handling robot
communication. We considered using a laptop without a
GPU, an NVIDIA Jetson Xavier, and a GCP instance. Fig.
3 shows the results of running OpenPose with a short test
video on each of these options.

Our initial testing of OpenPose on a laptop required
20-30 seconds per frame, which was clearly unusable for
any gesture recognition at all. We then tried using a GCP
instance with 2 CPU cores and 5000 CUDA cores with per-
formance results of 3.5 fps. It wasn’t until our Xavier test-
ing that we realized the importance of CPU performance
and how seriously it bottlenecked our GCP test, as 4 CPU
cores gave the Xavier 17 fps and activating the 4 inactive
cores resulted in 27 fps. At this point we decided not to
retry using a GCP instance as 27 fps is much faster than
we require, and running OpenPose on the Xavier removes
the latency we would have to battle to stream video to a
GCP instance and stream keypoints or gestures back. CPU
utilization on the Xavier at 27 fps was only around 20%,
so it would also be able to handle the server required for
communication with the robot. We decided to use only the
Xavier for our compute hardware.

Table 1: Comparison of OpenPose Performance

Hardware CPU Cores CUDA Cores FPS

CPU-Only 8 0 0.05
GCP Instance 2 5000 3.5
NVIDIA Jetson Xavier 4 500 17
NVIDIA Jetson Xavier 8 500 27

4.4 Web Server

A web server is required to bridge the gap between
gesture recognition and the robot; it needs to convey the
gestures that were identified to the robot so that it will
be able to perform the tasks as instructed. To do this,
we considered Node.js and Python as platforms, and Web-
Sockets and REST as the method of communication. The
main difference between both platform choices is their ap-
proach to asynchronous operation, as Node.js is natively

18-500 Design Review Report - March 2, 2020 Page 4 of 10

asynchronous and Python is not. Given the nature of web
communication and the potential for multiple concurrent
requests, we decided that Node.js was the better option of
the two. As for the communication itself, we had to com-
pare providing WebSocket endpoints vs REST endpoints
for the gestures and robot to both connect to. WebSockets
are useful in situations where connections are anticipated
to be maintained for a long time, as the overhead occurs
when establishing the connection after which communica-
tion can easily proceed in both directions. On the other
hand, providing REST endpoints would require reestab-
lishing a connection with the server every time a message
needed to be exchanged. This server is intended to main-
tain its connection with the gestures and robot indefinitely,
so we opted for WebSockets to reduce the communication
latency between gesture recognition and robot response.

4.5 Robot

The robot needs to be able to navigate through the
room easily at a safe speed while also maintaining an ade-
quate level of visibility to prevent any accidents with walk-
ing people. We considered using a Roomba or building
our robot, but ultimately decided to use a Roomba. It is
able to rotate in place so there are no concerns about turn-
ing circle for navigation in tight spaces, and has a variety
of sensors that can be used for mapping and localization.
Encoder data from its motors can be used to aid in local-
ization. We decided to mount a Raspberry Pi on top of
the Roomba to control it via serial port. The Raspberry
Pi will communicate with the server and convert gestures
into commands for the Roomba, while maintaining a map
of the room and updating the Roomba’s position as neces-
sary. The Raspberry Pi is a light board that can easily be
powered from a battery pack on the Roomba, allowing for
untethered operation limited only by the range of its WiFi
connection.

5 SYSTEM DESCRIPTION

Here are the parts of our system that we have thought
about the most.

5.1 Subsystem A: Gesture Recognition

The gesture recognition system determines the user’s
gestures and relays the command to the webserver. It first
collects images from 3 webcams placed in the front, back,
and side of the room in order to maximize room cover-
age. We chose to use the Logitech C270 webcam since it
was the cheapest USB webcam we could find and we could
work with it’s image format without warping or other pre-
processing. Having USB webcams also allowed us to extend
the cables cheaply (Amazon basics 2.0 extension 10 ft ca-
bles) and connect to a USB hub easily that our board could
access with OpenCV.

OpenPose takes around 0.03s to process one image at
30 FPS, but processing 3 camera streams would bring our
FPS down to 10 FPS. So, we want to build a module to de-
termine which camera view to run OpenPose on to increase
our FPS. The idea is to choose one camera as a primary
camera and the others as secondaries. If we received key-
points with confidence from one camera view in previous
frames, we can then classify the gesture using only those
keypoints. However, we can still access the other camera
views if the gesture requires multiple views or leaves the
frame from one camera. In theory, we can bring the FPS
to around 20 FPS by selectively choosing frames classify
gestures.

OpenPose returns 25 keypoints across the body for us
the classify. From experimenting with different parame-
ters, we have found that using tracking mode gives us the
best performance of 30 FPS. Tracking uses temporal infor-
mation from previous frames in order to identify keypoints
faster. However, it can only track one user at a time. We
believe this tradeoff is worth it to reduce latency and to
limit the scope of our project.

Figure 2: Gesture recognition system and training pipeline

We can classify the keypoints using heuristics like left
wrist is above the left shoulder, but these heuristics are not
reliable for gestures for teleop and pointing when the user is

18-500 Design Review Report - March 2, 2020 Page 5 of 10

not standing directly facing a camera. So, we want to use a
SVM to classify each gesture by first creating a normalized
feature vector for a person and gathering data to train a
model. We wanted the full system to have an integrated
training pipeline so we can gather data easily and collect
data for edge case situations during run time. We can still
use heuristics as a backup to mitigate the risk that gesture
recognition fails.

5.2 Subsystem B: Getting location from
point

Figure 3: Pointing system

For pointing to the end of the room, we will find the
direction of where the user is pointing to. From knowing
the user’s location on the map and the direction, we can
find the point at the end of the room on the 2D map, and
the robot can go to it.

For pointing to a location on the ground, we will ex-
periment with two methods. The first method is to use
heuristics to draw a line from the user’s arm to the ground.
We will determine where the ground is by using the loca-
tion of the feet keypoints. By finding the intersection, we
can find the pointed location once we convert the 3D cam-
era view to the 2D map. The advantage of this method is

that it is deterministic based on heuristics. The downsides
are that we assume that we can see the feet of the user and
when the user is not standing directly at the camera, more
cases are needed to handle the heuristics. The solution to
this problem is to use more cameras, but we are limited by
our budget and OpenPose processing time.

Another method we will try to use a model to estimate
the location on the floor is a ML model based approach. We
will first divide the room into a grid of 1ft by 1ft of bins.
We can then gather data by having the user point to a bin
and mapping those keypoints to the appropriate bin. The
model will predict the x and y coordinate of where the bin
is on the grid, using a neural network or SVM regression
model, since bins close together should have more similar
keypoints.

Once we have the location on the 2D map from all the
methods, we can tell the robot to plan a path towards that
location.

5.3 Subsystem C: Robot

A. Components
The robot subsystem is composed of Raspberry Pi and

the Roomba 671 itself. Additionally the battery pack
(10,000mAH) will power the Raspberry Pi independent
of the Roomba power source. The Raspberry Pi and the
battery pack will be attached on top of the robot. It is
important not to obtrude any sensors while attaching these
components since some sensors (IR sensor, etc.) are placed
on top of the Roomba. Eventually, there will be a basket
attached on top as well to allow the robot to carry around
a payload. A flag will also be mounted on the robot so the
camera can detect it easily.

B. Odometry
Getting the XY-representation of the robot’s location

as precise as possible is crucial to the correct behavior of
the system. To do this, we are using the encoder values
of the Roomba to calculate the distance and the angle it
moved each time stamp. The distance travelled is calcu-
lated using following equation:

∆d =
(∆encoderright + ∆encoderleft)

2
× rwheel×

2π

360
(1)

In addition, the angle the robot has rotated can be calcu-
lated using

∆angleradian =
(∆dright − ∆dleft)

lwheelbase
(2)

By collecting these distance and angle travelled for each
timestamp(15ms), we can approximate the XY-coordinate
of the robot quite accurately.

∆x = −∆d× sin(angle) (3)

∆y = ∆d× cos(angle) (4)

C. 2D mapping

18-500 Design Review Report - March 2, 2020 Page 6 of 10

For the 2D mapping, the robot will first follow the wall
to collect information about the boundary of the environ-
ment. Then, based on the dimension of the room, the
robot will move back and forth within the region of un-
known to search for potential obstacles such as a furniture
or a wall. Throughout this process, the robot will operate
autonomously without any direction from the user. There-
fore, we are adjusting the heading of the robot based on
its sensor readings. For instance, if the robot detects an
object on the right bumper, the robot will drive backward
a bit and rotate to the left by a small increment. This will
allow the completeness of the wall following and ensure
the robot doesn’t get trapped within certain region of the
room. After completing this process, the robot will collect
enough samples to generate a blotted-2D representation of
the room. This map will be the base of any path finding
and localization.

5.4 Subsystem D: 3D to 2D mapping

Figure 4: Initialization phase for mapping. For example,
we will map pixel block at (820, 210) from the image below
to position (56, -54) on the 2D map shown above.

The 3D map is generated almost at the same time as
the 2D map. As the robot travels around the room, it will
report its estimated XY-location to the Xavier via websock-
ets. At the same time, the camera feed will detect the robot
and report its location within its frame. These two data are
then essentially connected to generate a rough one-to-one
sketch of the 2D-3D map translation. Due to the resolution
and fps limitation, we will group neighboring pixels within
the camera image into a bin to discretize the frame. This
will allow for more lenient and rational 3D mapping.

5.5 Subsystem E: Communication Inter-
faces

A. Camera System/Server Interface
The interface between the camera system and web

server will be mostly one-directional. During the initial-
ization phase, the server will send information about the
2D map position of the robot to the camera system via
websocket in the form of JSON with fields for coordinates.
This information will be used to create a mapping from
camera views to 2D map positions. After initialization,
JSON will be sent to the server via websocket with fields
for the recognized gesture, and the estimated 2D coordi-
nates of the user and robot based on the previously stored
camera view mapping. The server will use its map to con-
vert the gestures into a series of commands to relay to the
robot, while using the position information to update its
global map positions for the user and robot.
B. Server/Robot Interface

The interface between the web server and robot will be
bi-directional. During the initialization phase, the robot
will send information about its position periodically in the
form of JSON to the server via websocket to be relayed
to the camera system. After initialization, the server will
send commands to the robot, which will then execute those
commands and respond with estimated position updates as
JSON to the server. This information will be used by the
server to update its global map.

6 PROJECT MANAGEMENT

6.1 Schedule

We organized our project management to achieve three
major milestones: MVP (teleop and going to home), map-
ping, and pointing. We have designated general tasks to
achieve the milestones, and we plan to break the tasks
down into more detail 2 weeks before we work on some-
thing. We felt like it was difficult to plan with small
granularity ahead of schedule, and what we are learning
working on the project will help us break down future tasks
better. A detailed schedule will be attached at the end of
the report.

Milestone 1: MVP Teleop and Driving to home
We will have setup and built the base components of our

18-500 Design Review Report - March 2, 2020 Page 7 of 10

project: attaching the camera system, running OpenPose
on the Xavier, classifying easy static gestures, setting up a
webserver with websockets, communicating to the Roomba
via the Rpi and serial, and executing basic motor com-
mands on the Roomba. This allows us to understand the
base system before building more complicated functional-
ity.

Milestone 2: Mapping and Localization We will
work towards building a 2D map on the Roomba using en-
coders, synchronizing the 2D map with the 3D camera view,
and figuring out a system to consolidate map changes. This
allows us to build the map infrastructure and localization
required for advanced tasks like going to the user or going
to a point.

Milestone 3: Driving to point We believe pointing
will be the most complex part of the project. We need to
figure out where the user is pointing, place that onto the
map, and have the robot drive to it. Additional testing
is also required to figure out what method (heuristics or
model) we will use to find the location a user points to.

6.2 Team Member Responsibilities

Seungmin will be in charge of the robot. He has prior
experience with robotics and is a TA for Intro to Robotics.
He has led the development on communication to the
Roomba via the RPi and the Roomba 2D mapping with
Odometry. In addition, he will work on the path planning
of the robot and building the hardware for the robot.

Rama will be responsible for system devops, making
sure the overall system runs smoothly. He has prior expe-
rience working with Linux systems and webservers through
his research and previous internships. He has been respon-
sible for setting up our boards, network infrastructure, web-
server, and websockets. He will also be making sure the en-
tire system falls within our performance requirements and
perform optimizations if necessary. In addition, Rama will
work on updating the global map.

Jerry will be responsible for the image processing and
gesture recognition. He has prior experience working with
machine learning and computer vision through personal
projects and internships. He has been responsible for our
camera setup, building data pipelines to collect data, ML
models to classify gestures, and localizing the robot with
the camera. In addition, Jerry work on the global map
updates and system infrastructure with Rama.

We will all work together for the testing of our system
and making sure we fall within our requirements.

6.3 Budget

Table 2: Bill of Materials

Component Quantity Cost

Roomba 671 1 243.51
Roomba DIN to USB cable 1 23.99
Raspberry Pi 4 1 45.67
RaspPi Power Source 1 9.99
Wide angle camera 1 26.99
USB Webcam 2 34.98
MicroHDMI cable 1 6.49
USB extension cable (10ft) 2 11.58
USB extension cable (25ft) 1 7.69
USB Hub 1 27.99
Total: 438.88
Budget Left: 161.12

Table 3: Sourced and scrounged parts

Component Source

NVIDIA Jetson Xavier Prof. Savvides
Monitor Lab
USB mouse Lab
USB keyboard Personal
Ethernet cable Personal
HDMI Cable Personal
Battery pack Personal
MicroUSB power source Personal

Table 4: Tools

Tool Purpose

OpenCV Webcam and image processing
OpenPose Keypoint recognition
pyserial Communicating with Roomba
sklearn Training SVM models
Tensorflow Training Nueral network models
Express Node.js webserver
AWS GPU p2.xlarge ML model training

6.4 Risk Management

The largest risk for our project is localization of the
robot. Our tasks of going back to home, going to the user,
and going to the pointed location all require the robot to
know where it is on the map. We are trying to mitigate
the risk by using multiple methods to localize the robot.
We are using data from our motor encoders to know where
the robot has traveled on the 2D map. Additionally, we
are going to use the camera view and our camera 3D to
2D mapping in order to get a location of the robot in the
room. By having two methods to localize the robot, we can
maximize the chances of localization.

18-500 Design Review Report - March 2, 2020 Page 8 of 10

Classifying the gestures incorrectly is also a risk. Open-
Pose can give us incorrect keypoints, which would cause an
error in the classificaiton process. To address this, we are
using multiple cameras to capture the user from multiple
angles in the room. So, we have backup views of the user to
classify gestures. Running OpenPose on more cameras de-
creases our total FPS, so our system can only have at most
3 cameras. We chose 3 cameras to balance the performance
of our system and the cost of the hardware required with
the accuracy we can get in gesture classification. in addi-
tion, we will have backup heuristics to classify the gestures
if our system can not confidently recognize a gesture.

6.5 AWS Credit Usage

We have used around $3 in AWS credits with p2.xlarge
instances with GPU to test OpenPose and test ML models.

References

[1] Zhe Cao et al. “OpenPose: realtime multi-person 2D
pose estimation using Part Affinity Fields”. In: arXiv
preprint arXiv:1812.08008. 2018.

18-500 Design Review Report - March 2, 2020 Page 9 of 10

Appendix A

Figure 5: Overall system architecture

18-500 Design Review Report - March 2, 2020 Page 10 of 10

Figure 6: Gantt chart

	INTRODUCTION
	DESIGN REQUIREMENTS
	ARCHITECTURE OVERVIEW
	DESIGN TRADE STUDIES
	Camera System
	Keypoint Recognition
	Compute Hardware
	Web Server
	Robot

	SYSTEM DESCRIPTION
	Subsystem A: Gesture Recognition
	Subsystem B: Getting location from point
	Subsystem C: Robot
	Subsystem D: 3D to 2D mapping
	Subsystem E: Communication Interfaces

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget
	Risk Management
	AWS Credit Usage

