Team F2 Cookiebot - A Gesture Based Home Robot

Seungmin Ha, Rama Mannava, Jerry Yu

Application Areas

- Home robot with intuitive control
- Transportation of goods around the home
- Cookiebot tasks:
 - Tele-operated robot control via gestures
 - Drive home to dock on command
 - Drive to the user to deliver goods (snacks, phone charger)
 - Drive to a location the user points to

Requirements and Scope

• Requirements

- Accomplish all tasks with 90% end to end success rate
- < 1 feet average drift between actual robot location and mapping location
- Tasks should start to be performed < 1.9s on average

• Scope

- One person Limit complexity given time constraints
- 7 gestures 3 for tele-op, 1 gesture for stop, 1 gesture for go home, 1 gesture for going to user, 1 gesture for going to pointed location
- Will not avoid obstacles outside of those mapped during initialization

Solution Approach

Overhead Cameras

- Mounted on top of room
- Front, back, side, overhead
- Capture user and robot
- Multiple to reduce blind spots

NVIDIA Xavier board (8 CPU, 500 CUDA core GPU)

Jetson Xavier

eMMC 32GB

Xavier SoC

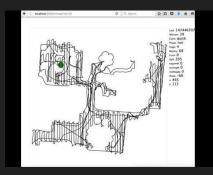
SD Card

Control

- OpenPose to process gestures
- Track position of user

5V REG

- Track position of robot
- Web server for communication

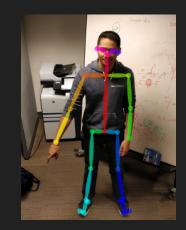


RPi mounted to Roomba

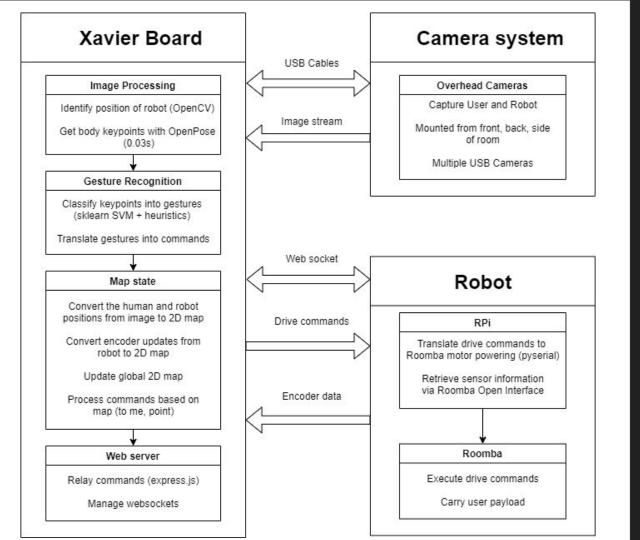
- Run commands
- Get encoder and bumper sensor data
- Carries user payload with basket

Solution Approach: Mapping

- Initialization
 - 1. Explore room while reading encoder data to obtain 2D room map
 - 2. Track robot via camera to map camera view pixels (3D view) to 2D map
- Runtime
 - 1. Use 3D to 2D mapping to localize user and robot
 - 2. Use 2D mapping for navigation to user, navigation to point
 - 3. Robot encoder updates are used to update the map



Ex: Roomba at position (56, -54) maps to pixel block (820, 210)


Solution Approach: Drive to Point

- Finding the point on the map the user points to:
 - Method 1: Using multiple images from different perspectives to draw a line from the user's arm to the ground.
 - Using trig with angles from core to arm, arm to shoulder, and feet position to determine ground.
 - Method 2: Using neural network classifier to predict the position in the room using keypoints as input
 - Collect training data of keypoints and proper bin
 - Treat every 1ft x 1ft square in the room as a bin in a grid
 - Regression model to determine x and y coordinate in the grid
 - Further testing required to determine method (leaning towards method 2)

System Architecture

Component	Also considered	Reasoning							
Keypoint recognition Algorithm: OpenPose (CNN)	Alphapose, Mask R-CNN, DeepCut	OpenPose had lowest latency (0.03s/frame on Xavier).							
Hardware for image processing and web server: NVIDIA Xavier Board (500 CUDA)	Run on local CPU, AWS (5k CUDA)	Lowest latency solution. Not enough compute on local CPU. Need to send images to AWS							
Camera setup: Multiple USB cameras from 3 sides + overhead	Overhead 3D camera, Fisheye camera	Provide backup in case OpenPose fails. Covers blind spots. USB cameras are low cost, easy to work with output image.							
Web server Express: Node JS with websockets	Python Flask with endpoints	Node is asynchronous, handles requests concurrently. Sockets allow for low latency.							
Robot: Roomba 671 with RPi	Building own robot	Roomba provides a drive base with bumpers, motor encoders. RPi provides wifi, python for serial communication							

Implementation Plan: Buy, Use, Write

- Image processing
 - Buy USB Cameras and cables to attach to board
 - Use CMU OpenPose to detect keypoints and user in image
 - Write robot recognition algorithm with OpenCV
- Gesture recognition
 - Write keypoint to gesture classifier with sklearn and collected data.
- Mapping
 - Write Roomba exploring algorithm for 2D map
 - Write 2D to 3D mapping and map updating methods
- Server
 - Write web server using Node.js and Express.
- Robot
 - Buy Roomba, Assemble basket and RPi on top
 - Use Roomba drive base and Roomba Open Interface to send commands
 - Write serial communication from RPi using pyserial
 - Write method to translate gesture commands into Roomba commands

Metrics and Validation (Software)

Component	Metric	Method
Gesture Recognition (classification of keypoints to gestures)	> 80% per frame, Acceptable for high FPS, multiple cameras	Perform gestures in all parts of room. Compare identified gestures with known gestures
Mapping and Localization	< 1ft on average, Reasonable rift	Compare camera prediction of location on 2D map with actual position across 10 movement gestures
User Gesture - RPi Transmission	< 1.9s on average, Google Home	Measure the time from capturing a frame to sending the appropriate command to the Roomba via the RPi for 10 gestures

Risk: What if the system fails to identify a gesture?

 \rightarrow Use other cameras and subsequent frames to aid identification

Metrics and Validation (Hardware)

Component	Metric	Method						
Server - RPi transmission	< 100ms on average	Measure time it takes to send 5 sensor data (RPi -> Server) and receive 1 path information (Server -> RPi)						
Robot movement accuracy	< 1 ft on average, reasonable drift	Measure distance between the goal position and the actual position after 5 runs of movement						
Robot movement speed	< 50s on average, safety and efficiency	Measure the time between gesture input and the movement completion (~10m) for 10 gestures						

Risk: What if the robot's estimation of the current position is off by a lot? \rightarrow Use camera as a means of backup localization

Project Management

Each member: ~20 hr / week

Constantly updated, break down tasks after each phase and testing

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
Date	1/13	1/20	1/27	2/3	2/10	2/17	2/24	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	
Team Research																
Research: Ideation, Robot, Gesture, Mapping																All
MVP Building			_													Sean
Install OpenPose locally																Rama + Jerry
Install OpenPose on AWS																Jerry
Setup Xavier board																Rama
Install OpenPose on Xavier board																
Gesture recognition / classification on video																
Gesture recognition with camera																
Gesture data collection + model training																
Build hardware for overhead system																
Connect to Roomba with connector and python																
Setup Raspi																
Setup Xavier / raspi to connect to CMU network v	via etherr	net														
Setup server																
Setup multiple cameras																
Finish Tele-op driving (roomba wired)																
Finish way points (home)																
Roomba headless operation w/ raspi																
Finish stop command																
Mapping																
Build hardware for platfom of robot																
Mapping - testing, tracking of robot and user																
Mapping init phase																
Mapping tracking during runtime									1				1			
Drive to user																
Pointing																
Implement robot driving to user																
Find direction from user point																
Implement robot driving to point																
Slack																
Course Logistics																
Abstract																
Proposal																
Design document							1									
Final testing																
Public demo and report																