
Team F2
Cookiebot - A Gesture Based Home 

Robot
Seungmin Ha, Rama Mannava, Jerry Yu



Application Areas
● Home robot with intuitive control
● Transportation of goods around the home

● Cookiebot tasks:
○ Tele-operated robot control via gestures 
○ Drive home to dock on command
○ Drive to the user to deliver goods (snacks, phone charger)
○ Drive to a location the user points to



Requirements and Scope
● Requirements

○ Accomplish all tasks with 90% end to end success rate
○ < 1 feet average drift between actual robot location and mapping location
○ Tasks should start to be performed < 1.9s on average

● Scope
○ One person - Limit complexity given time constraints
○ 7 gestures - 3 for tele-op, 1 gesture for stop, 1 gesture for go home, 1 gesture for going to 

user, 1 gesture for going to pointed location
○ Will not avoid obstacles outside of those mapped during initialization



Solution Approach

Overhead Cameras

● Mounted on top of room
● Front, back, side, overhead
● Capture user and robot
● Multiple to reduce blind 

spots

NVIDIA Xavier board 
(8 CPU, 500 CUDA core GPU)

● OpenPose to process gestures
● Track position of user
● Track position of robot
● Web server for communication

RPi mounted to Roomba

● Run commands 
● Get encoder and bumper 

sensor data
● Carries user payload with 

basket



Solution Approach: Mapping
● Initialization

1. Explore room while reading encoder data to obtain 2D room map
2. Track robot via camera to map camera view pixels (3D view)

to 2D map

● Runtime
1. Use 3D to 2D mapping to localize user and robot 
2. Use 2D mapping for navigation to user, navigation to point 
3. Robot encoder updates are used to update the map

Ex: Roomba at position (56, -54) maps to pixel block (820, 210)



Solution Approach: Drive to Point
● Finding the point on the map the user points to:

○ Method 1: Using multiple images from different perspectives to 
draw a line from the user’s arm to the ground.

■ Using trig with angles from core to arm, arm to shoulder, 
and feet position to determine ground.

○ Method 2: Using neural network classifier to predict the position in 
the room using keypoints as input

■ Collect training data of keypoints and proper bin
■ Treat every 1ft x 1ft square in the room as a bin in a grid
■ Regression model to determine x and y coordinate in the 

grid
○ Further testing required to determine method (leaning towards 

method 2)



System
Architecture



Implementation Plan: Decisions

Component Also considered Reasoning

Keypoint recognition Algorithm: 
OpenPose (CNN)

Alphapose, Mask 
R-CNN, DeepCut

OpenPose had lowest latency (0.03s/frame on 
Xavier). 

Hardware for image processing 
and web server:
NVIDIA Xavier Board (500 CUDA)

Run on local CPU, 
AWS (5k CUDA)

Lowest latency solution. Not enough compute on 
local CPU. Need to send images to AWS

Camera setup: Multiple USB 
cameras from 3 sides + overhead

Overhead 3D camera, 
Fisheye camera

Provide backup in case OpenPose fails. Covers 
blind spots. USB cameras are low cost, easy to 
work with output image.

Web server Express: Node JS with 
websockets 

Python Flask with 
endpoints

Node is asynchronous, handles requests 
concurrently. Sockets allow for low latency.

Robot: Roomba 671 with RPi Building own robot Roomba provides a drive base with bumpers, 
motor encoders. RPi provides wifi, python for 
serial communication



Implementation Plan: Buy, Use, Write
● Image processing

○ Buy USB Cameras and cables to attach to board
○ Use CMU OpenPose to detect keypoints and user in image
○ Write robot recognition algorithm with OpenCV

● Gesture recognition
○ Write keypoint to gesture classifier with sklearn and collected data.

● Mapping
○ Write Roomba exploring algorithm for 2D map
○ Write 2D to 3D mapping and map updating methods

● Server
○ Write web server using Node.js and Express.

● Robot
○ Buy Roomba, Assemble basket and RPi on top
○ Use Roomba drive base and Roomba Open Interface to send commands
○ Write serial communication from RPi using pyserial
○ Write method to translate gesture commands into Roomba commands



Metrics and Validation (Software)
Component Metric Method

Gesture Recognition 
(classification of keypoints 
to gestures)

> 80% per frame, 
Acceptable for high FPS, 
multiple cameras

Perform gestures in all parts of room. 
Compare identified gestures with known 
gestures

Mapping and Localization < 1ft on average, 
Reasonable rift

Compare camera prediction of location on 
2D map with actual position across 10 
movement gestures

User Gesture - RPi 
Transmission

< 1.9s on average, Google 
Home

Measure the time from capturing a frame to 
sending the appropriate command to the 
Roomba via the RPi for 10 gestures

Risk: What if the system fails to identify a gesture?
→ Use other cameras and subsequent frames to aid identification



Metrics and Validation (Hardware)
Component Metric Method

Server - RPi transmission < 100ms on average Measure time it takes to send 5 sensor data 
(RPi -> Server) and receive 1 path 
information (Server -> RPi)

Robot movement accuracy < 1 ft on average, 
reasonable drift

Measure distance between the goal 
position and the actual position after 5 runs 
of movement

Robot movement speed < 50s on average, safety 
and efficiency

Measure the time between gesture input 
and the movement completion (~10m) for 
10 gestures

Risk: What if the robot’s estimation of the current position is off by a lot?
→ Use camera as a means of backup localization



Project 
Management

Each member:
~20 hr / week

Constantly 
updated, 
break down 
tasks after 
each phase 
and testing


