
18-500 Final Report - May 6, 2020 Page 1 of 11

CV Studio
Authors: Tony Lu, Chris Ng, Mark Prettyman

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system developed to use the body in
music production. Users are able to play sounds using
motions such as stomps, claps and hits. Furthermore,
the user is able to make basic edits on a recorded loop
such as quantizing notes to a grid. Latency-critical ges-
tures that are used to play music are classified with
simple time-distance-threshold algorithms while editing
gestures are classified with image classifiers for greater
accuracy. The system is supplemented with a glove with
a button on each fingers to give extra functionality to
music creation gestures; for example, when the user
stomps while holding a button down, the kick drum
that plays is different. We use OpenPose to identify
joints, which are then be fed into our gesture recogni-
tion algorithms.

Index Terms—Computer Vision, Gesture Recog-
nition, Action Recognition, Music Production, Open-
Pose, Pose Estimation

1 INTRODUCTION

Currently, music production is mostly done through dig-
ital audio workstations (DAWs), allowing users to record
and edit sounds. Most of this work is done using a mouse
and keyboard. Most times, loops are recorded using a MIDI
keyboard or entered in using the mouse; however, this input
only requires usage of one’s hands. CV Studio aims to allow
music producers to create input using body movements and
allow for editing of already recorded work. Current prod-
ucts that are similar to CV Studio are the MI-MU gloves,
which contain sensors that track hand movements [5]. The
advantage of CV Studio is that it supports movement of the
feet as well as the hands. Furthermore, the Mu.Mi gloves
are intended for music performance rather than production.

CV Studio must be able to recognize gestures in less
that 80ms for music playing related gestures (stomp, clap,
hit). CV Studio must also maintain a 90% accuracy rate of
recognizing gestures with a 0% false positive rate. It must
function within a reasonable distance from the camera (1.5
- 2.5 m).

2 DESIGN REQUIREMENTS

We have split the design requirements into five compo-
nents: latency, accuracy, distance, glove functionality, and
ease of use.

2.1 Latency

The success of CV Studio relies on its end to end latency
of music creation gestures. Users should not feel hindered

in any way using CV Studio versus using a MIDI controller
to control input. We have split up our requirements of
latency into two categories: music creation gestures and
editing gestures.

What we call music creation gestures consist of gestures
that are mapped to sounds in the studio software. For ex-
ample, when the user claps, they expect a snare drum to
play through the speaker and when the user stomps, they
will expect a kick drum to play. We are aiming for a la-
tency of 80 ms or less from the time the gesture is made
until the sound is played from the speaker. While there can
be noticeable latency for a performer at even 10 ms [10], we
were experimenting with a MIDI controller and increasing
latency until we could not play on the beat. This time was
80 ms. Since CV Studio is not intended for performances or
concerts, we do not need to achieve 10 ms latency. Further-
more, we wanted to make sure that even if the speaker was
off and the user wanted to only make gestures without au-
dio feedback that the note would be off by at most a 1/16th
note at 150 beats per minute (bpm), which is a fast tempo
and should include most types of music users will make
[9]. In time signatures with a denominator of 4 (which are
very common in music [11]), the quarter note represents a
beat, so the 16th note represents a quarter of a beat. This

means 150 beats
1 minute · 4 1/16th notes

1 beat · 1 minute
60 seconds = 10 1/16th notes

1 second .
Thus each 1/16th note takes 1

10 second = 100 ms. Choosing
80 ms made sense because it hits this threshold.

For editing gestures, which consist of stop, start, record
and quantize, we relax the requirement to 200 ms. We
chose 200 ms because that is when users begin to notice
a delay and feel that their commands are being processed
[7]. Although this research was done for web applications,
we believe our editing gestures have a similar function and
should therefore use similar latency constraints.

2.2 Accuracy

For the accuracy of CV Studio, we are aiming for a high
rate of true-positive recognition of gestures, a low rate of
false-negatives and a very low rate of false-positives. While
it may be annoying for the user to perform a gesture that
goes unrecognized, CV Studio will be unusable if the user
does not perform a gesture and the software executes a
command. Furthermore, incorrect classification of a ges-
ture will be quite intolerable since this could put unwanted
sounds into a loop or could stop playing a loop unexpect-
edly. We tolerate at most a 10% false-negative rate, since
a user could re-execute the gesture. We tolerate a 5% mis-
classification rate between quantize and stop/start as there
may be some issues with feature extraction and these are
not the most critical gestures to make accurate. The con-



18-500 Final Report - May 6, 2020 Page 2 of 11

Figure 1: Confusion matrix describing accuracy goals. Note that for each classifier, no gesture also refers to gestures
classified in the other classifier.

fusion matrix in Figure 1 describes our accuracy goals.

2.3 Distance

The requirement of distance is that a user can stand
from the camera at a reasonable distance while CV Studio
retains full functionality. We chose 1.5 m - 2.5 m for us-
able distance as this will have the body in full frame of the
camera, while allowing a few steps of freedom of movement
for the user away from the camera. Furthermore, as a user
is farther away, the accuracy of pose estimation decreases,
making it harder to detect gestures.

2.4 Ease of Use

CV Studio should be easy and intuitive to use. The
glove should not be too restrictive and the users should
be able to pick up on gestures. We want 75% of users to
find CV Studio easy to pick up, rating the intuitiveness
as positive or negative and overall satisfaction positive or
negative.

3 ARCHITECTURE OVERVIEW

The main components of our design are the glove, a
Raspberry Pi Zero, a webcam, an Nvidia Jetson AGX
Xavier, and a laptop running Ableton Live.

The buttons on the glove are connected to GPIO pins
on the RPi Zero, which are then connected via Bluetooth
to the laptop. The webcam is connected to the Xavier via
USB and the Xavier connected to the laptop via USB-C.
Figure 2 showcases the overall architecture.

4 DESIGN TRADE STUDIES

4.1 OpenPose Latency on Xavier

Running OpenPose without detecting finger keypoints
on the Xavier achieves roughly 27 fps and with finger key-
points runs at approximately 10 fps. With our classifica-
tion algorithms, this will likely be reduced. To achieve the
latency requirement of 80 ms, the Xavier with our classi-
fication algorithms needs to run at at least 1000/80 ≈ 13
fps.

Initially, we had planned on using finger keypoints and
the cosine distances between them as features to classify
the stop/start and quantize gesture. Unfortunately, with
finger keypoints turned on, the frame rate was too low to
reach our latency requirements for the music creation ges-
tures.

Although we planned to implement neural networks
to classify all gestures, the latency requirement for mu-
sic creation gestures and constrained computing resources
forced us to resort to simpler approaches for classification.
Thus, implemented simpler time-distance thresholding al-
gorithms for the music creation gestures, while retaining
neural-networks for the editing gestures.

4.2 Clap, Hit, Stomp Classification Accu-
racy

4.2.1 LSTM

The music gestures were first classified with an LSTM.
The features used were the joint coordinates from Open-
Pose, centered on the middle of the hip and normalized so
that the distance from the middle of the hip to the neck
was 1. We appended or truncated frames to a gesture se-
quence if it was not equal to the median length, which was
23 frames. However, the accuracy of the LSTMs was below
40%, far less than what we required. We also tried remov-
ing unnecessary features, such as keypoints in the face, and
preprocessing our data so that the joint coordinates were
turned into normalized vectors from one joint to the next.
Although this decreased training times for the models, this
did not improve accuracy.

4.2.2 Spatial-only Algorithm

After trying LSTMs, we resorted to a simpler approach
that only used spatial properties of the gestures. We com-
puted the distance between relevant joints for each gesture:
for claps, the distance between wrist keypoints; for stomps,
the vertical distance between ankle keypoints; and for hits,
the cosine distance at the elbow. If it exceeded a tuned
threshold, we would detect a gesture. The user would then
have to hit a reset threshold that would allow the gesture
to be detected again. This approach had very low latency
and reasonable accuracy, although it did not meet our goal.



18-500 Final Report - May 6, 2020 Page 3 of 11

Figure 2: The architecture of the entire system. Orange blocks represent borrowed or purchased parts, blue blocks repre-
sent parts we created, and purple blocks represent software that we downloaded. Note that Max4Live is be downloaded
but is modified it for our purposes, so it is both blue and purple.

4.3 Stop/Start, Quantize Classification
Accuracy

4.3.1 LSTM

The first attempt to classify the stop/start and quan-
tize gestures was to use an LSTM. The features used for
this attempt was a convex hull drawn around a normalized
mask of the hand of the user, containing far fewer points
than trying to use an LSTM to classify a series of images;
however, there were some struggles in getting consistent
features to pass to the model, resulting in frequent false-
negatives. For example, if for a few frames within a stop/s-
tart sequence, the mask around the hand was not extracted
correctly, the LSTM would classify that as no gesture. The
accuracy using LSTM was around 55%. Under highly con-
trolled environments, the recognition accuracy could reach
about 70%, both well under acceptable accuracy require-
ments. These tests were run under non-real time video,
and we did not collect latency metrics.

4.3.2 Image Classification

The more successful version of classifying gestures was
to do framewise image classification. Instead of passing a
convex hull into a classifier, we passed the entire mask as an
image into a keras image classifier[2]. For each image, we
were able to achieve a very high accuracy of 97%. In order
verify whether a gesture was actually performed, a series of
6 frames were classified and if more than half of them were
classified as a gesture, that would be the predicted gesture.

5 SYSTEM DESCRIPTION

Figure 2 shows the architecture of CV Studio. Below
we describe each component in more detail.

5.1 Xavier Board

The Xavier is the component running OpenPose and the
classifiers. The board is connected to the laptop and the
webcam through separate USB cables. Information about
classifier outputs are passed to the laptop through the USB,
acting as a network connection.

5.2 OpenPose

The joint detection algorithm is done by CMU’s Open-
Pose [4]. OpenPose takes in input from the webcam con-
nected to the Xavier and output the main body joint po-
sitions. We are not using the finger keypoints or the face
keypoints. We ran OpenPose through its Python API.

5.3 Gesture Classification

The gesture classification system is split up between the
classification system for the time-distance gestures (clap,
stomp, hit) and the gestures for editing (stop/start, quan-
tize). We had initially planned to use a record gesture as
well, but this was dropped.



18-500 Final Report - May 6, 2020 Page 4 of 11

5.3.1 Time-Distance Gesture Classifier

This gesture classifier only relies on major key joint
positions, meaning it will not take in any facial or fin-
ger keypoints. We use a simple classification method that
tracks the important joints for each gesture and determine
whether or not they are within the threshold for the gesture
to be made.

First, the classifier normalizes distances between key-
points based on the distance between the neck and waist
keypoint in each frame in order to adjust for different
heights and distances from the camera.

For the clap gesture, we take into account the positions
of both wrist joints. If they move within a certain thresh-
old, we know that that is the clap gesture. We must take
into account that OpenPose will relay that the hands are
still moving even if they are not due its slight inaccuracy.
We also do not want to output more than one clap as it
is being detected. This means that we have to determine
when a clap is released. This is done using another thresh-
old, with the distance being a little higher than the original
threshold to determine the gesture. These thresholds can
be set without having to take into account true distances
as the joints positions have been normalized.

For the stomp gesture we determine if the ankles are far
enough in their y-coordinates. If this reset threshold has
been met, the next time the user brings their ankles within
a small enough vertical distance will classified as a stomp.

The hit gesture, which is a gesture that is the user pre-
tending to hit a drum off to the side, will be classified by
finding when the arm is fully extended to the side after
the forearm is moved up and back down. We calculate the
angle between the upper arm and forearm to determine if
there is a 180 degree angle (with some margin for error) and
then when it retracts we will be able to reset the gesture.

The reasoning for these simple methods of determining
these music playing gestures is that they are fast. Since we
do not rely on temporal data, we need only one frame to
classify when a gesture has broken a threshold. Gestures
can also be classified simultaneously, giving the user more
freedom in using CV Studio.

Figure 3: The actual confusion matrix of the time-distance
gestures. There were 186 clap samples, 163 stomp samples,
158 hit samples, and 139 no gesture samples.

5.3.2 Editing Gesture Classification

The editing gesture classifier classifies the gestures of
stop/start and quantize. The gestures are as follows:
stop/start will be a closed fist into palm facing forward
and quantize will be a thumbs down.

The image classifier is briefly described in section 4.3.2;
We use the Keras image classifier.

Feature extraction of gestures consisted of a binary
mask around the right hand of the user, as the left hand
would be the one wearing the glove. To extract this mask,
first, the OpenPose keypoint of the right hand would be
used to track the hand location, then a cropped image
would be extracted from the frame. From there, the hand
is extracted by extracting the HSV range of skin using
OpenCV accounting for noise using a Gaussian blur. We
then draw a contour around the hand, normalizing the size
and location of the contour. We then fill in the contour
with white to get a binary mask around the hand. Please
refer to figure 4.

Training is done by manually labeling samples of the
hand in the final position of the gesture, for the start/stop
it would be the open palm and for the quantize the thumbs
down. We trained multiple models on a large set of data
and then saved the most accurate one to use in the project
to classify. Figure 8 shows a flow chart of the training and
classification of the gestures.

Figure 4: Feature extraction



18-500 Final Report - May 6, 2020 Page 5 of 11

Figure 5: Actual confusion matrix of editing gestures run
on 50 samples each

5.4 Glove

A system diagram for the glove component is shown in
Figure 6. The glove operated as a wireless accompaniment
to gestures created by the user, allowing for the user to
press buttons on the glove while performing music related
gestures, increasing the potential number of instruments
and sounds by a factor of four. Four buttons were be wired
directly to GPIO pins on a Raspberry PI Zero W. The Pi
Zero was chosen due to its portability and ability to pro-
cess button inputs and easily relay the results to the laptop
via a Bluetooth connection. In the figure, GPIO pins 2, 3,
4, and 14, are called out. These pins were chosen because
they are in close proximity to each other on the Pi Zero and
also are conveniently located next to ground pins. Since the
Raspberry Pi Zero requires 5 volts to operate, we used a
portable Pi-specific lithium battery module known as the

Pi Sugar. This supplied enough power to run the glove
component for 6 hours and was easily rechargeable. In the
initial design, the glove was intended to have two layers,
so the raspberry pi could lay between the layers of gloves
and provide a cleaner look. However, the gloves purchased
ended up not stretchy enough to accommodate the pi and
pi sugar package, so just one layer of glove was used. But-
tons were soldered to wire and connected directly to the
Pi Zero. The buttons were glued to the area near the fin-
gertips and the Pi Sugar, which was connected to the Pi
through four small screws, was glued to the back of the
glove. It was considered unnecessary to design a PCB to
achieve this purpose, as the complexity of this part of the
project does not warrant a custom PCB.

5.4.1 Glove Integration

After completing the assembly of the glove, it was
moved into an initial testing phase, where a python script
verified each button press. Connections on the first iter-
ation of the glove were generating inconsistent results, as
the middle and ring finger buttons were shorting out. Upon
reworking the glove and button connections, the hardware
was improved so that button presses were recognized and
reported almost flawlessly. Due to the nature of the soft
tactile buttons purchased, it was difficult to tell whether
a press and non-report was a result of not triggering the
switch or some other error. As a next step of integration,

Figure 6: The architecture of the glove. Orange blocks represent borrowed or purchased parts, blue blocks represent
parts we created, and purple blocks represent software that we downloaded.



18-500 Final Report - May 6, 2020 Page 6 of 11

(a) Pi side of glove (b) Buttoned side of glove

Figure 7: Glove component, 2nd iteration assembly.

the buttons were associated with wav file sound samples,
which were played through a Bluetooth speaker connected
to the Raspberry Pi upon press. This intermediate step
was used for testing purposes only prior to the connection
of the glove to a laptop. The next phase of glove integration
consisted of sending button press info through Bluetooth
connection to a laptop, as Ableton ran on one of the team
members machines. This was achieved through establish-
ing a socket Bluetooth connection between the pi and the
laptop, and sending data to the laptop indicating when any
button is pressed. The translator acts as a server and re-
ceives incoming data from the pi and our classifier, and
outputs the corresponding MIDI notes to Ableton. On the
pi side, button presses are only allowed once per second, as
the program waits for a final output from Ableton before
accepting another press. This constraint was deemed to
be reasonable as the time it takes for users to perform a
gesture and hear the output is in the range of one second
[3].

5.5 Translator

The translator component of our project is one that
converts the classification output and the glove data into
data readable by Ableton. For the music creation gestures,
we use RTMidi, a Python package to output MIDI data di-
rectly into Ableton, which reads our translator as a MIDI
input. Luckily, there is a standard in how drum kits, the
sounds we use in Ableton are mapped to notes on a key-
board, allowing the user to swap different drum kits with-
out having to remap what MIDI notes our translator out-
puts.

5.6 Ableton Live

Ableton Live is a full digital audio workstation meant
for music production and performance. Although we are
aiming for production, we utilize the ”Live” component of
Ableton live, the performance element to create loops to
edit which can then be moved to the production side. Able-
ton allows us to quantize notes easily with custom settings
and to edit clips easily.

5.6.1 Max4Live

Since the classifier outputs keystrokes, we needed a way
to convert these keystrokes into Ableton Commands. For
example, in order to quantize notes in Ableton, the default
method is to double click on a clip, select all the notes,
right click, and click on quantize. We didn’t want to im-
plement a script that would move the mouse around and
do mouse commands so we chose Max4Live, which allows
us to create commands within Ableton that does this for
us, for all gestures.

6 PROJECT MANAGEMENT

6.1 Schedule

Please refer to the schedules at the end of the document,
which contain our original and updated schedule after re-
mote instruction was issued. Although we have left a few
weeks of slack and extensive time for testing the system om
the original schedule, delays due to the pandemic caused us
to use all of that time.



18-500 Final Report - May 6, 2020 Page 7 of 11

Figure 8: Flow diagram describing training of model and classification of gestures.

6.2 Team Member Responsibilities

The classification algorithms were worked on by Chris
and Tony, splitting the work up into classifying different
gestures, while collaborating on the algorithms themselves
to be consistent across the project.

Chris worked on classifying the quantize and stop/s-
tart gesture, the ones using image classification and Tony
worked on the music creation gestures as well as the
record gesture using the Openpose keypoints with time
and distance relationships, although the record gesture was
dropped.

The glove was designed and built entirely by Mark with
decisions about parts and compatibility with the whole sys-
tem being made by the entire team.

Testing for each component was done by the member
who was responsible for that component. For Tony’s ges-
tures, the tests were done on videos that were processed on
Openpose whereas for Chris’ gestures, the tests were done
on real time video. This was solely due to the restriction
that the Xavier board was in Chris’ possession after the
class went online.

The software category primarily refers to the integra-
tion from data from the classification and the glove into
Ableton Live. The Max4Live system will be written by
Chris since he has the most experience with Ableton Live.
The translation of data into Max4Live readable data will
be done by Mark and Tony, with Mark and Tony being
responsible for glove data and classifier data respectively.

6.3 Budget and Parts

A bill of materials (BOM) is displayed at the end of this
document in Figure 9. The group was allocated approxi-
mately 600 dollars to spend on this project. However, the
more expensive components in our project are borrowed
from the ECE department rather than bought, so they are
not contributing to our overall costs. It is important to
note that the costs displayed in Figure 9 are round number
estimates, and fall slightly over the raw costs for the parts,
as shipping costs and taxes were included. Additionally,

some parts like wire and soldering equipment are provided
through the various ECE lab spaces in Hammerschlag Hall.

6.4 Risk Management

In the design document, we identified many potential
risks and ways to mitigate them. The most important was
balancing latency and accuracy in the classification algo-
rithms and reducing latency on the Xavier.

6.4.1 OpenPose Latency

We ran OpenPose with finger keypoints enabled at an
average of 10 frames per second on the Xavier board, which
posed an issue because this did not meet our latency re-
quirement of 80 ms. To remedy this, we sped up OpenPose
by reducing resolution as far as we could while keeping the
accuracy above requirements for the editing gestures. An-
other solution to this problem may have been to attempt
to use the Windows Kinect SDK for pose estimation. This
may be less accurate than OpenPose but may also run at
a higher frame rate. Given more time, we may also have
branched out to other lightweight implementations of pose
estimation that can run more quickly [1] [8].

6.4.2 Classification Latency

Implementing LSTMs proved to be difficult. Since none
of the LSTMs we used met our accuracy goals, we did not
have to optimize our system to account for their latency.
Instead, the simple spatial-only algorithm for the music
creation gestures allowed us to achieve our latency goal.
For the editing gestures, the framewise image classification
likely has less latency than a LSTM.

6.4.3 Classification Accuracy

Although we initially aimed for no false positives, this
proved to be ambitious. Since we were forced to reduce
OpenPose’s resolution and resort to simpler classification
schemes to reduce latency, we could not uphold our origi-
nal goal of detecting no false positives.



18-500 Final Report - May 6, 2020 Page 8 of 11

6.4.4 Difficult Gestures

Difficult gestures refers to gestures that are essential
to the success of the project yet are difficult to classify.
More concretely, this refers to claps, stomps, and hits that
are more subtly performed. For example, a user clapping
fast will not separate their hands very much and similarly
someone trying to stomp fast will not lift their feet very far
off the ground. Our solution was to not classify these ges-
tures and require the user to make more sweeping versions
of these gestures for accurate classification. This meant
increasing reset thresholds so that the user had to, for
hits, fully extend the elbow; for stomps, lift their heel high
enough off the ground before stomping; for claps, bringing
their palms far enough apart before clapping. However,
this sacrificed ease of use and restricted the way the user
could operate.

6.5 Bluetooth Latency

Since the glove is connected to the laptop via Bluetooth,
there is a risk that the input from the glove will not be reg-
istered in time to supplement the output from our classifier.
However, due to us working from home in the second half
of the semester, we did not integrate the glove with the
other components of the system and.

7 RELATED WORK

One system that is similar to CV Studio is GECO [6].
This attempts to provide MIDI expression to DAWs to con-
trol the feeling of a sound. This is a bit different from our
work to provide a studio setting for our users.

Another system, perhaps the most complete, is the
Mi.Mu gloves developed out of London in collaboration
with the famed Imogen Heap [5]. A very impressive sys-
tem that is integrated well into Ableton Live, it is a well
proven system to make music with gestures. Some advan-
tages that CV Studio offers over these is the ability to use
more percussive elements and to utilize the entire body as
input rather than just hand motion.

8 SUMMARY

Unfortunately, our system was not able to reach all
of our specifications. False positives were very difficult
to eliminate, especially on the time-distance gestures. In
order to improve performance of OpenPose to get very low
latency on time-distance, we decreased the net-resolution
of OpenPose, reducing the accuracy of joint detection,
meaning the thresholds we set would not be consistent for
every time the gesture was used. If we continued with this
project, we would revise our thresholding to track more
keypoints that are interrelated with each gesture. For the
image classified gestures, we were able to hit our accuracy
requirement of 90%, achieving 92% accuracy; however,
there were a few false positives. This is mainly due to
the limitations of our feature extraction method. When

moving quickly, accuracy of the mask around the hand
was quite limited due to motion blur, resulting in masks
that may look similar to those of our gestures. With more
time, we would change the feature extraction algorithm
completely to a convolutional-neural network to get much
more accurate masks. Lastly, we were not able to collect
any ease of use data due to COVID-19.

Through this process, we learned quite a bit about com-
puter vision systems that would attempt to recognize ges-
tures. First off, gathering data should be one of the first
things done. Because we tested on a limited set of data, we
missed some cases that should be accounted for. Second,
if using machine learning, it is critical to have good and
consistent features to pass to the classifier. Much of our
error on the image classification side was not due to the
classifier itself but rather the way we extracted features.
Lastly, make sure that there are at least basic functional
components working in the whole system before trying
to make each one perfect. This way, testing the system
as a whole is much easier. Furthermore, the way compo-
nents fit together is already in place so that when refining
parts, code will not have to be rewritten at the end to fit
everything together.

8.1 AWS Credit Usage

AWS credits were used to speed up processing the
videos we took before we received the Xavier. Videos were
taken on our personal devices, transferred to AWS and
pose information returned and processed using our clas-
sification algorithms. This was used to test our algorithms
on non real-time videos since our machines were not pow-
erful enough to run OpenPose at an acceptable frame rate.
We accidentally used all 100$ of credits allocated from two
team members due to confusion about how to deactivate in-
stances. We did not deposit the 50$ worth of credits from
the third team member.

Thank you to AWS Education and to the whole cap-
stone staff for helping us acquire these credits.

References

[1] https : / / github . com / Daniil - Osokin /

lightweight- human- pose- estimation.pytorch.
Accessed: 2020-03-02.

[2] Francois Chollet. Building powerful image classifi-
cation models using very little data. https : / /

blog . keras . io / building - powerful - image -

classification - models - using - very - little -

data.html. Accessed: 2020-03-23.

[3] Communication with Bluetooth. http : / / www .

python-exemplary.com/index_en.php?inhalt_

links=navigation_en.inc.php&inhalt_mitte=

raspi/en/bluetooth.inc.php. Accessed: 2020-04-
01.



18-500 Final Report - May 6, 2020 Page 9 of 11

[4] CMU Perceptual Computing. OpenPose. https://
github . com / CMU - Perceptual - Computing - Lab /

openpose. Accessed: 2020-03-02.

[5] Mi.Mu Gloves. https://mimugloves.com. Accessed:
2020-03-02.

[6] Leap Motion. Geco MIDI. http://uwyn.com/geco/.
Accessed: 2020-03-02.

[7] Jakob Nielsen. Usability Engineering. Jan. 1993. url:
https://www.nngroup.com/articles/response-

times-3-important-limits/.

[8] Daniil Osokin. https : / / github . com / Daniil -

Osokin / gccpm - look - into - person - cvpr19 .

pytorch. Accessed: 2020-03-02.

[9] Amanda Storey. What Are Beats Per Minute and
What Can BPM Tell You? https : / / blog .

storyblocks.com/tutorials/what- are- beats-

per-minute-bpm/. Accessed: 2020-03-02.

[10] Andy Swanson. Latency and Its Effect on Perform-
ers. https : / / www . churchproduction . com /

education / latency - and - its - affect - on -

performers/. Accessed: 2020-03-02.

[11] Which are the 15 most common time signatures?
https://music.stackexchange.com/questions/

14415/which- are- the- 15- most-common-time-

signatures. Accessed: 2020-03-02.



18-500 Final Report - May 6, 2020 Page 10 of 11

Appendix A

Figure 9: Bill of materials including costs.

Figure 10: Gantt chart displaying original semester schedule.



18-500 Final Report - May 6, 2020 Page 11 of 11

Figure 11: Gantt chart displaying Mark’s updated schedule.

Figure 12: Gantt chart displaying Chris’s updated schedule.

Figure 13: Gantt chart displaying Tony’s updated schedule.


