
18-500 Design Report - March 2, 2020 Page 1 of 9

Body Buddy: Fall Detection Device for Elders
Jacob Hoffman, Sojeong Lee, Yujun Lee, Max Lutwak

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Body Buddy is a fall detection device on
a Raspberry Pi connected to a mobile application. It
uses IMU sensors to collect 3-axis accelerations, and
runs a machine learning algorithm on the data to clas-
sify user’s activity as either a fall or a normal activity.
When a fall is detected, it sends an alert to the user-
stored contacts through the mobile application. Falling
poses a substantial risk to elderly, and we hope to mit-
igate the damage done by falls through this project.

Index Terms— Alert System, Fall Detection,
Inertial Measurement Unit (IMU) sensor, Machine
Learning Algorithm, Mobile Application, Raspberry
Pi, Support Vector Machine (SVM)

1 INTRODUCTION

As the elderly population increases rapidly, there are
concerns for them who are facing a medical situation or
get lost without any assistance near them. The problem
we identified was that a fall can cause serious injuries if no
immediate assistance is taken, and the fear of fall limits
independent activities and social engagement of the elders.
To solve such a problem, we decided to create a fall de-
tection device that users carry in their pockets and sends
alerts to the first responders through a mobile application
when a fall is detected. There are fall detection devices that
are available on the current market, and one example is the
fall detection functionality on the Apple Watch. However,
Apple Watch is expensive and it includes too many unnec-
essary functionalities. As we target the elderly users, we
want to provide an affordable solution that is easily acces-
sible to them. Philips also sells a fall detection device called
GoSafe2 [4] that allows a user to press a button to contact
an operator through the 2-way voice system. One drawback
of this device is that the users have to pay a monthly sub-
scription fee for an interface that can be shared with friends
and family. Body Buddy lets users set up the system much
easier by simply downloading a mobile application on their
smartphones.

Our goal for this project is to accurately detect falls
and promptly notify the users. We want to achieve at least
90% accuracy for the fall detection algorithm. Body Buddy
collects 3-axis acceleration with an IMU sensor, performs a
real-time fall detection with a machine learning algorithm,
and sends a result to a mobile application through Blue-
tooth from a Raspberry Pi. The processing time of the
data will take less than 2 seconds to be able to provide im-
mediate help in case of an emergency. To prevent a false
alarm, the alert system in the mobile application allows 2
minutes for users to cancel the alarm. Otherwise, it sends

a text message or an email to the saved contacts with the
user’s current location information. We believe our project
Body Buddy can bring an effective way to assist elders with
a reliable alert system driven by technology.

2 DESIGN REQUIREMENTS

For a successful fall detection and usability of the Body
Buddy device, we have come up with the following require-
ments.

A. Hardware Requirements

The hardware component of Body Buddy should have
an enclosure to protect the embedded system from the falls
and to make sure that the device is easily accessible to the
users. The enclosure should fit in a user’s pocket, which
is 6 inches wide and 9 inches deep on average. The device
should also be lightweight, as it should not be a burden for
the elders to carry around. We have set the weight of the
device to be less than 5oz. This number is around the av-
erage weight of a smartphone, so we believe that it would
be a reasonable weight for a pocket device. We expect the
users to use Body Buddy daily, which brings the battery
life is also important. We set the requirement for battery
life to be at least 10 hours to ensure that the users can use
the device for a full day without charging.

B. Fall Detection Requirements

The most important component of this project is the
fall detection algorithm. We want the algorithm to detect
falls with at least 90% overall accuracy to avoid extraneous
warnings or missing a fall. The accuracy will be calculated
by running our algorithm with the test data and counting
the number of true positives, true negatives, false positives,
and false negatives. We believe that 90% accuracy is pos-
sible to achieve because the preliminary data that we col-
lected for falls and normal activities show a clear difference
in the two categories. We are aiming to focus more on re-
ducing the false negatives than the false positives because
false positives can easily be handled by the users, who will
be given two minutes to cancel the alarm before it is auto-
matically sent to their contacts.

The latency of the algorithm is another requirement.
Although we are giving some time for the users to can-
cel the alarm, the algorithm should still be able to detect
falls as soon as possible in case the falls lead to emergency
situations. We want to be able to process the IMU data
and send the result through Bluetooth within two seconds,
because our alert system should take much less time than
the time it takes for a nearby person noticing the fall and
calling 911. The latency will be calculated by adding up
the time it takes to run the algorithm and communicate



18-500 Design Report - March 2, 2020 Page 2 of 9

the result to the mobile application. The runtime of the al-
gorithm can be obtained by measuring the execution time
on the Python script. The communication latency can be
calculated by logging the time that the algorithm finished
running and the time that the result was received on the
mobile application. The two timestamps can then be sub-
tracted to obtain the time elapsed.

C. Mobile Application Requirements

The main functionalities of the mobile application is
to send alert messages to the contacts, and to allow the
users to cancel the alarm before sending the alerts to pre-
vent false positives. Although we want our fall detection
algorithm to have high accuracy, we do not want to de-
pend solely on the algorithm, so the mobile app will also
include an emergency button that allows the users to ask
for help whenever they need. For the mobile application,
user interface is crucial because our target users are elders.
The interface should be intuitive and easy enough for older
adults to use. For example, font and button sizes should
be large for the users who have vision impairments. The
number of buttons and the number of steps that need to
be taken to get to different pages of the application should
be minimized to help those who might have memory issues.
Sending an app notification to remind the users to cancel
the alarm is also required to make sure that they do not
forget it. We are planning to do user testing on our elderly
relatives to evaluate the usability of our mobile interface.

3 ARCHITECTURE OVERVIEW

Below is the block diagram for the overall architecture
of our system. The hardware systems are colored green and
the software systems are colored yellow.

Figure 1: Block Diagram.

The physical system has two components: A Raspberry
Pi collecting data from a 3-axis accelerometer over I2C,
and a Bluetooth-connected Android smartphone managing
the user interface and contacts. The Raspberry Pi is the
Zero W model, which is the lowest-power and smallest-size

version with WiFi and Bluetooth, powered by a consumer
3000mAh battery.

The software system also has two components: a ma-
chine learning system written in Python performing real-
time fall detection on the Raspberry Pi, and an Android
App providing the user interface as well as sending a variety
of alerts when a fall is detected.

We chose Python as a programming language for the
machine learning component because it provides libraries
such as NumPy and Scikit that are easy to use for the ma-
chine learning tasks. It is also the language that we are
all comfortable with. Because we wanted to run a Python
code, we decided to put the machine learning system on
the Raspberry Pi instead of on the mobile app, which can
be harder to integrate the Python program.

The machine learning system pipeline consists of four
steps, as shown in Figure 2. The input IMU data will first
be preprocessed to filter noise that can be caused by the
user holding the device or the device moving inside the
pocket. Then, the filtered data will be segmented into a
window of size 50 because we need to capture a time series
to be able to detect a fall. The ADXL345 accelerometer
that we are using has a data rate of 100Hz, so the window
size of 50 will capture 0.5 seconds of user activity. From
our preliminary data collection, this interval was enough
to capture the falls, but we can easily change the window
size in the future if we find any fall data that does not fit
within this interval as we collect more data set. The seg-
mented data is then converted into feature vectors. We are
currently experimenting with three different features: the
tuple of x, y, z accelerations, the magnitude of acceleration
and the angle of the acceleration. For high accuracy, we
expect that we will have to combine these feature vectors
into a multi-dimensional vector instead of only using one
of them. These vectors are the inputs to the Support Vec-
tor Machine, and we used the Python Scikit library for the
SVM. [2] If the SVM detects a fall, it will then communicate
to the Android application through Bluetooth.

Figure 2: Fall Detection System Flow Chart.

The Android mobile application interface needs to be
simple and intuitive as the main users are elders. In the
main page, a user can get to all the pages of the appli-
cation and press a emergency help button whenever they
need even if they did not fall and , as shown in Figure 3.



18-500 Design Report - March 2, 2020 Page 3 of 9

Figure 3: Application Main Page

The settings page is for putting a user’s information and
showing instructions how to connect a smartphone with the
physical device through bluetooth. To send an alert to the
user’s first responders automatically, the application asks
the user to save the contact information, which includes
name and phone number. When the application detects a
fall sent by the Raspberry Pi or the user pressed emergency
button in the main page, it shows a page where user can
send an alert to the saved contacts immediately or cancel
it in 2 minutes to prevent a false alarm, as shown in Figure
4. If the user pressed the send button or did not cancel
the alert within the given time , the application sends a
text message to the saved contacts with the user’s current
location information.

Figure 4: Application Sending Alert Page



18-500 Design Report - March 2, 2020 Page 4 of 9

4 DESIGN TRADE STUDIES

4.1 ML Algorithm Trade Studies

In the selection of our machine learning algorithm, we
considered potential to correctly classify falls as well as
wattage required to run our algorithms. After researching
the power consumption of RNN’s on embedded chips and
SVM’s on embedded chips, we found that SVM’s are 100%
more power efficient. SVM’s are also faster on embedded
chips.

• Power Consumption : WINNER - SVM

• Algorithm latency : WINNER - SVM

Because SVM’s were superior in these metrics, we de-
cided to switch our focus solely on SVM’s for fall detection.

To increase the performance of the SVM’s we will incor-
porate PCA compression before the SVM, STFT features,
and wavelet features

4.2 Design Specification of an RNN on
Embedded Chips

RNN’s are a class of neural networks designed to pre-
serve temporal information of data sets. Like other deep
learning techniques, they can reach very high accuracy but
require large amounts of data to train. As well, RNN’s have
significant overhead on an embedded chip at runtime since
inputs need to be propogated through various layers.

Figure 5: An RNN is so expensive because it is a combina-
tion of neural nets with state machines. Neural nets consist
of multiple layers of linear transformations that require a
lot of wattage to propogate inputs through for classification

Experimentally Found Results :

Latency : 4 Predictions per second [3]

Estimated Wattage : Approximately 4W [3]

4.3 Design Specifications of an SVM on
Embedded Chips

In contrast to NN’s, SVM’s are capable on training on
smaller data sets. They handle high dimensional data very
well, and are lower power to run on embedded chips.

Figure 6: SVM’s comparatively require a smaller number of
linear transformations to make a classification, They only
need to determine the position of features relative to a
boundary. They require less operations per classification
resulting in lower wattage.



18-500 Design Report - March 2, 2020 Page 5 of 9

5 SYSTEM DESCRIPTION

Provide one or more overall system and subsystem fig-
ures. This should drop into more specific detail compared
to the functional diagram described in section III. Specific
chips, sensors, interconnects, etc. should be described in
this section.

Concisely describe and, if appropriate, depict each ma-
jor subsystem.

If you use code or algorithms from other sources, make
sure to cite them.

5.1 Embedded Subsystem

The hardware subsystem is built on the Raspberry Pi
Zero W. This board provides the minimum subset of fea-
tures to allow Bluetooth connectivity while running a full
operating system. Using the Linux System Management
Bus (SMBus) protocol we talk over I2C to a board con-
taining the ADXL345 3-axis accelerometer. This device
provides data at up to 3KHz [1], which is far faster than we
need: we configure it to run at 100Hz. The data is read in
through a Python program which either logs the data (for
training/tagging) or runs the SVM to perfrom fall detec-
tion. Communication to the Android app is accomplished
through Bluetooth.

5.2 Fall Detection Subsystem

The fall detection subsystem will detect and classify the
falls and normal activities shown in Figure 5. We decided
to define the falls and normal activities to limit the kinds
of activities that we are going to detect. We also wanted
to ease the testing by having clear definitions of the data
that we are collecting.

Figure 7: Fall and Normal Activity Categories.

For feature extraction, we calculated the total magni-
tude of the acceleration and the angle between the accel-
eration vectors. The magnitude was calculated using the
following equation: √

a2x + a2y + a2z (1)

For the angle, we chose to use the angle between the
xy-plane and the z-axis, because this angle changes the

most drastically when a person falls. The angle was calcu-
lated by first calculating the total magnitude of the x and
y accelerations and finding the tangent angle with the z
acceleration.

tan−1(
az√

a2x + a2y

) (2)

We have collected some sample data using the iPhone
8 Plus and graphed them to show how the falls and normal
activities differ and to figure out how the feature vectors
are related to the raw data.

Figure 8: Raw Acceleration Data.

Figure 9: Total Magnitude of 3-axis Acceleration.



18-500 Design Report - March 2, 2020 Page 6 of 9

Figure 10: Angle between XY Acceleration and Z Acceler-
ation.

From the graphs, we could easily identify that the falls
and normal activities have different shapes, which indicate
that machine learning algorithm can also differentiate the
two categories. The graphs of the total magnitude and the
angle look similar to the raw acceleration graphs, and this
shows us that these two features correctly represent the
raw data. Although the magnitude and the angle graphs
look similar, the peaks of the normal activities in the angle
graphs are much smaller. This implies that using the an-
gle as a feature might present better results than using the
magnitude.



18-500 Design Report - March 2, 2020 Page 7 of 9

6 PROJECT MANAGEMENT

6.1 Schedule

Our milestones for each week is described on the Gantt
Chart on Appendix A. We had to modify our schedule af-
ter the proposal because Jacob joined our team as a new
member. We left the weeks before the interim demo and
before the final demo as slack to be able to combine as a
whole team and integrate our work.

6.2 Team Member Responsibilities

Our team of four has divided responsibilities into three
categories: the hardware system, the machine learning sys-
tem, and the mobile application.

Sojeong is responsible for the machine learning system
of the project. She wrote Python code for data segmen-
tation and the SVM classification. She is also working on
finding the combination of features that achieves the high-
est accuracy of the algorithm.

Jacob is responsible for looking into other techniques
besides SVM’s as a method of fall classification (RNN’s) ,
as well as supporting Sojeong in providing her additional
frequency domain features and compression tools to pre
process features to improve the SVM accuracy.

Max is responsible for the hardware platform. So far, he
has brought up the basic Pi/IMU system and is currently
working on establishing a better means of programming the
device as well as bringing up Bluetooth.

Yujun is primary focusing for the mobile application
system. He is working on the main features of the applica-
tion and implements a method to alert the first responders
effectively after fall is detected by the hardware and ma-
chine learning algorithm.

6.3 Budget

Refer to the Bill of Materials on Appendix B. The items
that we purchased are for the hardware system and data
collection, and we used free libraries for the software sys-
tem.

6.4 Risk Management

Our major concern with the project is collecting the
data set that is large enough to train our machine learning
algorithm. In order to do this, we ordered a dummy to
easily collect a large data set without us having to fall all
the time. Dummy is an easy way to collect large data, but
there is a risk that it might deviate from the data collected
from actual humans. In order to mitigate this risk, we are
also collecting the data of us falling on a gym mat. To
make sure that the fall detection works for any user, we
are going to collect the test data from people with different
weights and heights.

Another concern was the low accuracy of the machine
learning algorithm. In order to reduce the accuracy risks,

we compared the SVM and RNN approaches to fall detec-
tion. We will also try training our model with different
set of features (tuple of raw acceleration, magnitude, and
angle) and find the combination that achieves the best ac-
curacy.

7 RELATED WORK

Testing method and feature selection for the SVM algo-
rithm was inspired by the paper ”SVM-based fall detection
method for elderly people using Android low-cost smart-
phones” [5]. In the paper, they provide formulae for the
features that they extracted from their data set. For the
IMU, they used an accelereometer on Android devices and
achieved 97.7% accuracy for their SVM classification.

References

[1] ADXL345 Datasheet. 2008. url: https : / / www .

overleaf . com / learn / latex / Bibliography _

management_with_bibtex#The_bibliography_file.

[2] F. Pedregosa et al. “Scikit-learn: Machine Learning in
Python”. In: Journal of Machine Learning Research
12 (2011), pp. 2825–2830.

[3] Performance Analysis of Real-Time DNN Inference
on Raspberry Pi. url: https : / / digital . csic .

es / bitstream / 10261 / 163973 / 1 / Performance _

Analysis_of_Real_Time_DNN_on_RPi.pdf.

[4] Philips GoSafe2. url: https : / / www . lifeline .

philips . com / medical - alert - systems / gosafe -

2.html.

[5] P. Pierleoni et al. “SVM-based fall detection method
for elderly people using Android low-cost smart-
phones”. In: 2015 IEEE Sensors Applications Sympo-
sium (SAS) (2015), pp. 1–5.



18-500 Design Report - March 2, 2020 Page 8 of 9

Appendix A - Gantt Chart

,



18-500 Design Report - March 2, 2020 Page 9 of 9

Appendix B - Bill of Materials

,


