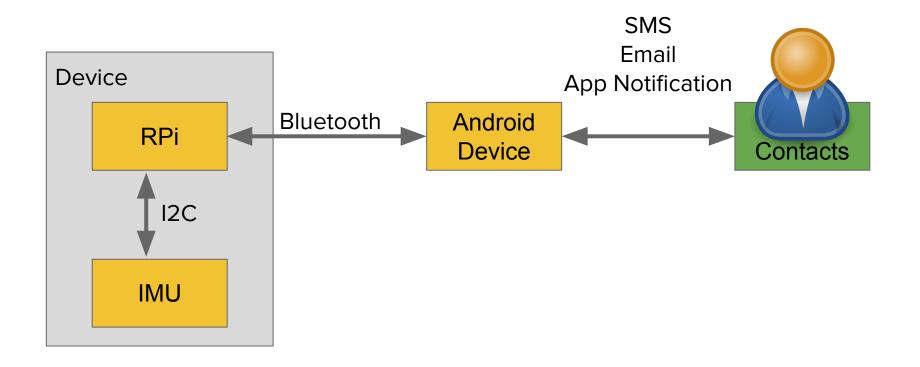
Team E7: Body Buddy

Nick Lee, Sojeong Lee, Max Lutwak, Jacob Hoffman

Application Area


- Problem
 - Falls can cause serious injuries for elders
 - Fear of falling can also limit their activities / social engagements

- How can we promptly handle the emergency situations caused by falls?
 - An attachable device connected to a mobile app that detects a fall and sends alerts to the first responders

Solution Approach

- Data collection
 - 3-axis accelerometer
- Fall detection
 - \circ $\,$ $\,$ Train two ML approaches on the data (SVM, RNN) $\,$
- Alert system
 - Mobile app sending alerts to the contacts (first responders)
- Device design
 - Minimize size and weight, maximize battery life

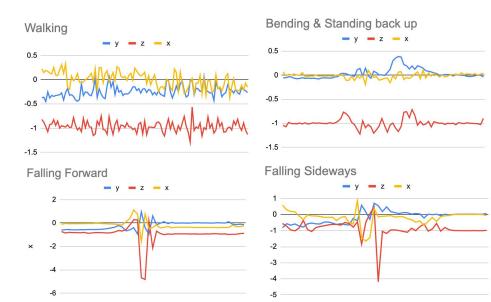
Block Diagram

Implementation Plan - Hardware

- Main platform: Raspberry Pi Zero W
 - Low power
 - Bluetooth Low Energy (BLE) & I2C
 - \circ $\,$ $\,$ Full OS, so we can choose to do ML locally $\,$
- IMU: Sunfounder ADXL345 board
 - 3-axis accelerometer
 - >100 samples/sec over I2C
 - Small form factor, low power draw (<5mA)
- Power Supply: Attom Tech 3000mAh smartphone charger
 - Similar dimensions to Pi Zero case
 - Expected power draw is <200mA, should guarantee >10hrs
 - Lightweight (2.2oz)

Implementation Plan - ML

- Train two machine learning systems on the data
 - o SVM
 - RNN
- Compare and contrast the performance tradeoffs
 - Bias, Variance, Accuracy, Loss
- Use a sliding window of 10 seconds interval to run the algorithm
 - If needed, can improve efficiency by running only on a big change in data


Implementation Plan - Data

- Collect a dataset of simulated falls / normal activities
 - Take some falls for the team
 - Get a dummy and attach our hardware
- Manually label our data
 - Use a tool such as TRAINSET
- Segment the data
 - Allows an SVM to classify the falls.
- Apply a Kalman Filter
 - Smooths the data out
 - More accurately interpreted by our ML algorithms.

Falls	Normal Activities					
Falling forward / backward	Walking					
Falling sideways	Running					
Falling from stairs	Jumping					
Falling on an incline	Lying down					
Falling on a decline	Sitting / Bending Down					

Sample Data

- 3-axis acceleration
 - Can add more data (gyroscope, magnetometer) if desired accuracy is not achieved
- Collected using iPhone accelerometer (50Hz data rate)
 - Will get more accurate data on Pi
- Can spot differences in fall and non-fall graphs

Implementation Plan - Mobile App

- Alert system
 - Allow 2 minutes for users to cancel the alarm
 - Send automatically alerts to saved contacts after 2 minutes
- Leverage Android Studio to make a mobile application with major features
 - Bluetooth API connection with RPi
 - Send location in a human-readable format (Location API)
 - Contacts Provider manages the contact information data
 - SmsManager sending SMS messages

Metrics and Validation

• Hardware

- Battery Life (>10h)
 - Leave system running until we stop transmitting data
 - Mostly just a function of battery choice
- Weight (<10oz.)
 - A scale

• Mobile App

- Connections (RPi <-> App / App <-> Contacts)
 - Send dummy data to measure latencies for messaging services
- Location
 - Determine the correct location 95%+ of the time
- Front-End UI
 - User testing

Metrics and Validation

• Fall Detection

- Clear falls / normal activities categories to ease testing
- Calculate accuracy of the algorithm (>90%) test data from each category
- Risk Factors

True Positive + True Negative

True Positive + True Negative + False Positive + False Negative

- Low accuracy of the algorithm
 - Two approaches (SVM, RNN)
 - Try training the model with different features
 - Tuple of x, y, z accelerations
 - Total magnitude of accelerations
 - Angle of acceleration
- Discrepancy between real-world & test data
 - Use a dummy for collecting large set of fall data, but also collect actual fall data using a gym mat
 - Collect data from people with different weights / heights

Project Management

Milestones			Desi	Design Present Design Doc				Interim Demo				Final	
List of tasks	2/3	2/10	2/17	2/24	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20	4/2
SW Architecture													
HW Architecture													
Fall Detection Algorithm													
ML Design Decisions	2												Sojeong
App Barebone													Nick
HW Architecture (Devices)													Max
Parts Selection													Jacob
Design Presentation / Document													Whole Team
Order Parts													
Implement SVM													
Implement RNN													
Algorithm Feature Comparison													
GPS location system													
SW Bringup (Embedded System			1000		1								
Sending notification													
Spring Break													
Integrate / Test IMU sensor data													
Collect Data & start training													
SW HW Integration													
SW HW Integration													
IMU data connection to app													
SW Bringup (IMUs) / HW Bringup													
Slack								4					
Test and Improve SVM													
Test and Improve RNN													
SVM / RNN desicion													
Iterate on IMU configuration													
Test & collect data													
Improve UI/UX													
Slack / Testing													
Final Presentation Prep													
Demo													