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Abstract— On a video call with multiple people speaking         

on one smart device, holding the smart device and moving it           
towards the person speaking is a hassle. The solution we          
envisioned was a rotating platform that holds your phone and          
adaptively rotates towards the person who is speaking. This         
document details the design and development of this solution.         
It outlines the use case and problem space addressed, our          
vision for the product, system design choices and trade-offs.         
It also covers the outcome of the design process, metrics for           
success, testing and validation, and project management       
details. 

I. INTRODUCTION 
As the majority of our team has family located          

internationally, we are familiar with the pains of video calling          
into family dinners and events from across the world.         
Especially during this COVID-19 pandemic, connecting with       
family and friends through video calls has become of         
paramount importance.  

Video calls with multiple people on either end are often           
incredibly inconvenient as the phone has to be moved around          
constantly to face the person speaking. Human tendency is to          
be lazy and this can often lead to the phone being set down             
somewhere and causing confusion among participants on the        
call as to who is speaking. In order to alleviate this problem,            
we came up with COMOVO. The name COMOVO stands for          
Control, Motion, Voice.  

Our initial thought process was to have a user be able to             
simply download an application onto their phone which would         
register and configure their COMOVO device to communicate        
with any other user's COMOVO around the world. User A          
would place their phone in a little notch in their COMOVO,           
choose to video call any group of people (also with a           
registered COMOVO on their end) over any video calling         
application such as FaceTime, WhatsApp, Messenger, etc and        
have a hands-free enjoyable video chat experience.       
Inter-COMOVO communication would be enabled by the       
application sending commands over the internet. 

After considering budget and time constraints, our goal         
evolved into a rotating platform with a notch to hold your           

phone that would sit on a table on both ends of a video call. It               
would operate in two modes - automatic and manual. In          
manual mode, participants on either end of the video call          
would be able to control the rotation of the platform (and           
consequently, the phone) on the other end through hand         
gestures. In this mode, the COMOVO on one end of the call            
communicates the direction and duration of rotation of the         
COMOVO on the other end. In automatic mode, the platform          
would rotate the phone to face the loudest speaker in the room            
on the same end of the call. In this mode, there is no             
inter-COMOVO communication. These platforms work     
independently of the phones that sit on top of them. As a            
result, they are also independent of the video calling         
application used. 

Due to the COVID-19 pandemic, its implications on our          
access to resources, and the location of our team members, we           
had to further modify our goal. We decided to simulate the           
rotation of the platform using an animation that would behave          
almost exactly as a physical platform with a motor would have           
behaved in both automatic and manual mode. 

In this report, we have outlined the hardware and software           
implementation designs for our pre and post-pandemic goals        
for COMOVO as well as our metrics for testing and          
verification. We also discuss the final outcome of the design          
process, tradeoffs we made throughout, roadblocks that we        
overcame, and details of our project management.  

II. DESIGN REQUIREMENTS 
The metrics discussed below were chosen assuming certain         

testing conditions. For manual mode, we assumed that there         
would be good lighting conditions. For automatic mode, we         
assumed a reasonable conversation (one person speaking at a         
time), minimal background noise, and that 4 participants were         
seated equally spaced around the table. 

Tables 1a and 1b shown below detail the factors and metrics            
that we were concerned with for testing our device in manual           
and automatic mode respectively. For the accuracy of gesture         
detection in manual mode, we looked at the ability of the           
COMOVO to correctly identify the presence of a hand gesture          
or absence (just a person’s head). If there was a hand gesture,            
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we looked at the ability of the COMOVO to correctly identify           
the direction denoted by the hand gesture (left or right). We           
required that the classifier produce greater than 85% accuracy         
on the validation dataset that we created. This metric was          
based on our research of existing gesture classifiers used in the           
industry [1], [2]. We assumed that when people gesture in          
manual mode, they would be approximately a foot away from          
the COMOVO. Thus, we expected the COMOVO to detect a          
hand located a foot away from the platform. This metric came           
from the average distance of a person from their phone when           
they are video calling, assuming the phone is sitting on a           
surface.  

For the accuracy of ‘loudest speaker’ detection, we required          
a minimum 95% hit rate of the COMOVO rotating to within           
45° of the person speaking. Assuming 4 people are seated          
equally spaced around a table, this rotates directly towards the          
person speaking. This metric was based on our estimate of          
users’ tolerance towards errors. We used this justification as         
there was no substantial existing research or documentation        
regarding the accuracy of simple loudest speaker detection.        
Our estimate for the distance of the person speaking from the           
device was 3 feet. This number came from our research on the            
average dinner table radius [3]. 

Finally, we tested latency by building log creation into our           
scripts and recording time differences through these logs. In         
automatic mode, we measured the difference in time between         
when the user began speaking and when the COMOVO had          
finished rotating towards them. In manual mode, we        
measured the time difference between when the gesture was         
made by the user and when the COMOVO had finished          
rotating in the direction specified. Based on our research,         
video calling (which is over a UDP connection) latency is          
approximately 300 ms [4]. However, the more relevant metric         
that we used to measure success, was if the total latency was            
less than 2.3 seconds. This metric came from our own data           
collection on the average time taken for a person to move from            
their seat and rotate their phone to the current speaker.  
 

TABLE 1a.  Metrics and Testing: Manual Mode 

 
 
 
 
 
 

 
 

TABLE 1b.  Metrics and Testing: Automatic Mode 

 
 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Our system architecture has two main parts - the hardware           

interfaces and connections and the software interfaces and        
specifications. The hardware block diagram shown below in        
Fig. 1a describes our hardware specifications before we had to          
make modifications due to the pandemic. The hardware block         
diagram shown in Fig. 1b depicts our updated hardware         
interfaces. 

We used a Raspberry Pi 4 Model B [5] for the COMOVO’s             
main processor. We decided to use this model over the          
Raspberry Pi Zero Model W [6] which we were initially          
considering, because it provides more sensor input ports, is         
still small enough for our use case, and has WiFi capability.           
There was also plenty of documentation, user guides, and         
support readily available for this specific model of the RPi          
since it was one of the newest models. 

To capture gestures, we used a Raspberry Pi Camera Module           
V2-8 [7]. We decided on this camera as it provided the image            
quality that we required, was a custom RPi add-on, and had           
been used in previous projects with similar use cases. We          
required relatively high quality camera output as we had to          
feed the frames produced by the camera into our gesture          
classifier. 

To capture audio input, we initially planned on using          
Adafruit Mini USB Microphones [8] as they were        
inexpensive, small, and compatible with the RPi. However,        
due to the pandemic, the manufacturer of these microphones         
stopped shipping. We also realized after the design review         
that we required directional microphones for our use case.         
Unfortunately, due to the pandemic the only microphones we         
could find that were still available for shipping, were         
omnidirectional. Thus, we decided to use omnidirectional       
Zaffiro USB Microphones [9] augmented with baffles to        
provide directionality. 

The 4 microphones are connected to the RPi through the 4            
USB ports. The camera is connected to the RPi through the           
MIPI CSI port. The RPi is powered by a USB-c cable           
connected to a PC which provides the 5V and 3A required. 
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Our initial vision for the hardware included an Adafruit          
stepper motor in the NEMA-17 size [10], to control the          
rotation of the COMOVO. We also planned to use an          
Adafruit DC and Stepper Motor HAT [11] connected through         
the ground and motor ports to the motor. The motor HAT           
would have been connected to the RPi through two specific          
GPIO pins, SDA and SLC. The stepper motor required 12V          
and drew 350 mA and the motor HAT would have been           
powered by an external 12V NiMH 8xAA battery pack [12].          
With regards to the structure of the physical platform, we          
planned for the microphones to be mounted on the platform          
and remain stationary. The camera and phone would have         
been attached to the rotating part of the COMOVO as they           
both needed to be in sync. 
 
 

 
 
Fig. 1a.   Hardware Block Diagram (before modifications) 
 
 

 
 
Fig. 1b.   Hardware Block Diagram (after modifications) 
 

The software block diagram shown below in Fig. 2a          
describes our software specifications before we had to make         
modifications due to the pandemic. The software block        
diagram shown in Fig. 2b depicts our updated software         
interfaces. 

The RPi runs Raspbian OS [13] which simplified a lot of our             
interfaces as we did not have to implement our own device           
drivers to communicate with external hardware and had        
Python already installed. To capture frames at the chosen         

frame-rate from the COMOVO camera’s output video stream        
we used PiCamera module [14]. These frames were then         
pre-processed using OpenCV [15], NumPy [16] and imutils        
[17] and fed into the convolutional neural network (CNN) that          
we built using Keras [18], TensorFlow [19] and sklearn [20].          
The CNN predicts whether the input frame is a left hand           
gesture (‘L’ symbol), right hand gesture (‘ok’ symbol) or not a           
gesture (just a person’s head). The architecture of the CNN          
was modeled on the VGG-16 architecture [21]. The        
predictions made by the classifier were passed to the Pygame          
[22] animation running on the PC through a TCP connection. 

To read and process the audio signals from each of the            
COMOVO’s microphones we used PyAudio [23]. Once the        
microphone with the loudest signal is detected, the        
microphone ID is passed to the Pygame animation running on          
the PC through a TCP connection. 

Our initial plan involved the use of the Python Adafruit           
MotorHAT Library [24] to control the speed and direction of          
rotation of the stepper motor. The RPi would have         
communicated with the motor HAT and consequently the        
motor through the I2C bus. Instead, we created an animation          
in Pygame to simulate the rotation of the COMOVO. 

We used socket programming to send and receive messages          
between the RPis over TCP and between the RPIs and PC over            
TCP.  
 

 
 
Fig. 2a.  Software Block Diagram (before modifications) 
 
 

 
 
Fig. 2b.  Software Block Diagram (after modifications) 
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IV. DESIGN TRADE STUDIES 
In our initial design, we opted to use the Adafruit DC and             

Stepper Motor HAT for our project as it would have          
conveniently sat on top of the RPi enabling us to connect the            
motor to the RPi with less external wiring. It also would have            
contained motor controllers necessary to power the motor as         
the GPIO pins would not have been able to provide enough           
power. Additionally, the motor HAT would have allowed us         
to control the stepper motor through the motor HAT library          
which provided a high level of abstraction for pulse-width         
modulation (PWM) control and for setting the direction, speed         
and degrees of rotation of the motor. 

For the motor in our initial design, we decided to use the             
Adafruit Stepper Motor in the NEMA-17 size as it was small           
enough to uphold our size requirement for the platform and          
provided high torque rotation at low speeds. This particular         
motor also had a precision of 200 steps per revolution (or 1.8            
degrees per step) which was more than sufficient for our use           
case. The motor, motor HAT and RPi were compatible with          
one another and there were a lot of existing user guides and            
previous projects that used the three components together. 

Also in our initial design, we chose a NiMH 8xAA battery            
pack as the additional power supply that would have been          
connected to the motor HAT to power the stepper motor. We           
selected this power supply as it was inexpensive, easily         
available, simple, and provided the 12 V supply we needed. 

While building our gesture classifier, we had to make many           
trade-offs. First, we arbitrarily chose ‘thumbs up’ and        
‘thumbs down’ as our left and right hand gestures         
respectively. However, we realized after experimentation, that       
we needed hand gestures that were more distinguishable from         
one another and also from the wall or background. Thus, we           
chose the ‘L’ symbol as our left gesture and the ‘ok’ symbol            
as our right gesture as they each have a distinct number of            
fingers raised versus the number of fingers folded. 

Second, we started by following an existing Medium tutorial          
on how to build a CNN hand gesture classifier [25]. This           
tutorial utilized a 4000-image Kaggle dataset created using a         
Leap Motion sensor [26]. The classifier we built by following          
this tutorial, resulted in a 99% accuracy when validated on          
images from the Kaggle dataset. However, when we tested         
the classifier with real images that we captured of ourselves          
making the gestures, we found that the accuracy dropped to          
approximately 50%. We realized that this was due to the lack           
of diversity of the images in the dataset, as well as the fact that              
the images were captured with a motion sensor and looked          
dramatically different from those captured with a regular        
camera. We then decided to train the same classifier on real           
images of hand gestures we collected. At this point, we began           
the process of crowdsourcing images of four types: left hand          

gesture against a blank background, right hand gesture against         
a blank background, right hand gesture against a person’s face          
and left hand gesture against a person’s face. Initially, we          
collected around 600 images. We experimented with training        
the existing classifier on different subsets of our collected         
dataset. After experimentation, we were able to achieve a         
maximum of 80% accuracy by training on only images of the           
left and right hand gestures against blank backgrounds. 

Then, we tried to tweak the hyperparameters of the same           
classifier to increase its validation accuracy. We       
experimented with changing the loss function, optimization       
model, number of epochs, learning rate and test-to-train ratio         
of the CNN. We also added a feature to reduce the learning            
rate of the CNN when it reached a plateau of accuracy for a             
fixed number of consecutive epochs. This raised the        
validation accuracy of the classifier to between 82% and 85%.          
However, even after increasing the count of images in the          
dataset to 800 images, the accuracy of this classifier seemed to           
plateau at 83%. Thus, we decided to revamp the architecture          
of the CNN itself. 

After researching industry standard gesture classifiers, we        
discovered an architecture called VGG-16 created by K.        
Simonyan and A. Zisserman at the University of Oxford. This          
CNN was extremely large, contained 41 layers and learned         
138 million parameters or weights. Due to the limited         
processing power of the RPi, we decided to use a subset of the             
layers of VGG-16. After experimenting with different subsets        
of layers, playing with the number of nodes in the fully           
connected layers, and reading more tutorials, we reduced the         
total number of layers to 13 and the number of learnable           
parameters or weights to 3.7 million. This resulted in a 88%           
validation accuracy when trained on our dataset which at this          
point contained 1000 images. Once again we hit a plateau at           
88% and realized that we needed to collect more images to           
cross the 90% mark. With 1200 images in the dataset, we           
were able to achieve 90%. 

We attempted to further increase the accuracy by         
implementing the skin detection algorithm [27] in the        
pre-processing phase, to separate the foreground hand gesture        
image from the background by clustering pixels between        
certain color values. This boosted the accuracy to 92% and          
after collecting a total of 1966 images we hit 95%. To           
normalize images before feeding them into the classifier, we         
attempted to also add Otsu binarization [28] which would         
convert the image into only black and white pixels. However,          
this did not help as predicted and we decided against using it. 
During the integration phase, we realized we were missing an           

entire class that should have been predicted by our classifier.          
The CNN also needed to detect the difference between a          
person’s head and a hand gesture. Collecting more images of          
people’s heads would have been very time consuming.        
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Instead, we found an online dataset of 909 headshots of          
celebrities’ faces [29] and added these images to our training          
dataset. With a new total of 2875 images, our CNN still           
averaged an accuracy of 93-95%. 

The last important trade-off we made with regards to our           
gesture classifier was the value we chose for the frame-rate of           
the COMOVO’s camera. Selecting a value too high gave us          
almost perfect predictions when we took the arithmetic mode         
of the predictions of multiple consecutive frames. However,        
as the CNN is quite large, it took some time to make            
inferences on images passed in when it was running on the           
RPi. Thus, we could not choose a frame rate too high, as that             
drastically increased the prediction latency. We settled on        
using 4 frames per second and decided to get the predictions           
of these 4 frames simultaneously on the 4 cores (one frame per            
core) of the RPi to save even more time. 
Apart from those trade-offs related to the classifier, we had to            

make several others during the design process. First, we had          
to purchase microphones that were omnidirectional and larger        
than we had initially planned, as there was a lack of           
manufacturers shipping during the pandemic. 

Second, we decided to use the Python module Pygame          
instead of Simulink [30] (a MATLAB-based programming       
environment) for our animation. Pygame was simpler to        
integrate with the rest of the code, which was already in           
Python and we had some experience using Python animation         
libraries in prior projects. 

Third, the omnidirectional Zaffiro microphones innately had        
a certain level of directionality that became apparent when         
tested in our use case of a four-person, reasonable         
conversation. However, to further augment this directionality       
and maximize the margin of difference between the        
microphone detecting the loudest speaker and the other        
microphones, we constructed baffles, or plastic cones layered        
with bubble wrap, that encircled the microphones. 

Fourth, we had initially intended to create a head detector           
which would recognize the presence of a person’s head within          
a frame. This detector would have augmented the loudest         
speaker detector, by allowing us to more accurately zone in on           
the location of the person speaking. However, we realized         
that the number of people in our use case and the number of             
microphones we used for the loudest speaker detection were         
the same. We also recognized that a phone camera at a           
distance of approximately 3 feet (radius of a dinner table) can           
display more than one person’s head in a singular frame.          
Based on the time we invested into building and tuning the           
gesture classifier to our required accuracy, and considering        
that the head detector would also have to be a machine           
learning model like a CNN, we decided that the cost of           
building this classifier outweighed the benefits and that it         
would not be a very useful addition to COMOVO. 

Fifth, we had to make a trade-off with regards to the            
sampling rate of the microphones. We had to experiment to          
find a sampling rate that would give us a fast response and            
meet our accuracy requirements for loudest speaker detection.        
On the one hand, sampling at a higher rate used a lot of             
processing power and memory, and lengthened the response        
time. On the other hand, we believed that using a higher           
sampling rate would improve the accuracy of the loudest         
speaker detection. However, we learned that the loudest        
speaker detection accuracy fared better at a lower sampling         
rate as the microphones picked up less noise from other          
directions. 

Sixth, we had previously considered more complicated        
algorithms such as array processing and triangulation [31] [32]         
to detect the loudest person speaking or sound source.         
However, we realized that these algorithms were far too         
complicated to be a subsection of our project given the time           
and budget constraints. Thus, we decided to use our current,          
simple approach of calculating and comparing the root mean         
squares (which estimates the energy or loudness) of the audio          
signals from each microphone, to detect the microphone near         
the loudest person speaking. 

Seventh, we made the design choice to increase the          
audio-input-to-rotation latency as we required that a person        
remain speaking for a period of time before the COMOVO          
rotates towards them. We made this choice to avoid jitter          
caused by the COMOVO rotating towards a speaker who only          
utters a word, before rotating immediately back to the primary          
speaker.  

The final tradeoff we had to make was due to limited            
resources during the pandemic. We were not able to acquire          
eight microphones (four for each of the RPis), and thus,          
decided to designate one RPi to exhibit automatic mode         
(referred to in the following sections as RPi A) and the other            
RPi to exhibit manual mode (referred to in the following          
sections as RPi M). This also significantly changed our         
control loop as we no longer had to switch between modes for            
each of the RPis. As a result, for manual mode we had RPi M              
receive the video stream from the camera, predict the direction          
of rotation using the classifier, communicate this direction to         
RPi A, which would then communicate this direction of         
rotation to the animation running on the PC. For automatic          
mode, we had the RPi A receive audio signals from the           
microphones, detect the microphone receiving the loudest       
signals, and communicate this microphone ID to the animation         
running on the PC. 

V. SYSTEM DESCRIPTION 
Our system was developed following the two modes of          

operation of the COMOVO - automatic mode and manual         
mode. The overarching control loop that drives the animation         
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runs on the PC and both the RPis run a generic script that acts              
according to the current mode of operation as well as          
according to the specific RPi (A or M), as described briefly in            
the previous section. By making the script generic, we         
ensured that if we continued to work on the COMOVO in the            
future, we would easily be able to extend the control loop to            
allow both RPis to switch between automatic and manual         
mode. 

In the initial setup step, the control loop script is started up             
on the PC, configuring it to act as the server. This initializes a             
socket which listens for incoming TCP connections from both         
RPis which act as clients to the PC. Then, RPi A and RPi M              
are both switched on, the microphones which are connected to          
RPi A are also switched on. The camera is connected to RPi            
M. The generic script is started on both of the RPis and on             
each RPi, establishes a connection from the RPi to the PC.           
The PC displays a splash screen and awaits user keystroke          
input to either quit (‘q’) or select a mode of operation (‘a’ for             
automatic or ‘m’ for manual). The user keystroke input is          
communicated to both RPis. The descriptions of what occurs         
on the PC and each RPi in each mode of operation are in the              
subsections below. 

A. Automatic Mode 
In automatic mode, RPi M does nothing and simply waits for            

a message from the PC in the event of the user quitting or             
requesting a mode switch. RPi A runs all the code for loudest            
speaker detection. First, 4 audio streams are opened from the          
4 microphones connected, with the sampling rate specified.        
The 4 microphones have fixed positions such that each         
microphone ID (1, 2, 3 or 4) maps to a specific microphone            
(and thus, person) on the animation screen and the         
corresponding microphone (and thus, person) in real life. 

The script running on RPi A then reads in the audio samples             
coming from the 4 microphones at the specific sampling rate          
(8 kHz) for a specific amount of time (2 seconds). This is            
done simultaneously using multiprocessing on the 4 cores to         
provide audio snapshots from all 4 microphones during the         
same 2 second time interval. The root mean squares of the           
audio samples are then also simultaneously calculated. The        
RMSes are compared to determine the ID of the microphone          
receiving the highest energy audio signals (largest RMS),        
which consequently indicates the loudest speaker during that 2         
second interval. This process is repeated twice to get the          
loudest speaker for 4 seconds. Then, the microphone ID is          
communicated to the animation on the PC over the TCP          
connection established earlier. The above sequence of steps        
occurs in an infinite loop on RPi A, unless interrupted by a            
message received from the PC, in the event of the user quitting            
or requesting a mode switch.  

On the PC, the control loop awaits messages from RPi A            

communicating the microphone ID that the animation must        
rotate to. When a microphone ID is received, the animated          
COMOVO rotates to face the person at the position mapping          
to this ID, an arrow moves to point to that person and the             
screen is updated. The animation continuously listens for any         
user keypress event to quit or switch modes. If an event           
occurs, the PC communicates this information to both RPis         
over the TCP connections established previously. If the event         
is to quit, the connections between the PC and the RPis are            
closed and RPi A closes the connection between itself and RPi           
M (if this connection exists).  

B. Manual Mode 
In manual mode, RPi A listens on a socket for an incoming             

TCP connection from RPi M. Once the connection is         
established, RPi A listens for prediction messages from RPi M          
and also continues to listen for messages from the PC in the            
event of the user quitting or requesting a mode switch.  

RPi M runs all the code to capture and pass frames through             
the gesture detector. First, the software interface to the         
camera is set up using PiCamera module, and the camera          
resolution and frame rate are initialized to specific values.         
The trained CNN gesture classifier and its weights are loaded          
from files they were saved in and the CNN is compiled. 

The script captures frames continuously at 4 frames per          
second and uses multiprocessing to simultaneously make       
predictions for one frame per core. Predictions are made by          
forward propagating the frames through the compiled CNN.        
In order to make nearly perfect predictions, the arithmetic         
mode of the 4 individual frame predictions is calculated as the           
final prediction for that iteration. In other words, if there are 3            
or more of the same gesture predicted, the final prediction is           
that gesture (left or right). In all other cases, the final           
prediction is no gesture (head). The final prediction is         
communicated to RPi A which in turn forwards the prediction          
to the animation on the PC. The above sequence of steps           
occurs in an infinite loop on RPi M, unless interrupted by a            
message received from the PC, in the event of the user quitting            
or requesting a mode switch.  

On the PC, the control loop awaits messages from RPi A            
communicating the gesture prediction. If the prediction       
received is ‘left’, the animated COMOVO rotates 10° in the          
counterclockwise direction, if the prediction received is       
‘right’, it rotates 10° in the clockwise direction, and if the           
prediction received is ‘head’, no rotation occurs. The screen is          
then updated. As in automatic mode, the animation        
continuously listens for any user keypress event to quit or          
switch modes. If an event occurs, the PC communicates this          
information to both RPis over the TCP connections        
established previously. If the event is to quit, the connections          
between the PC and the RPis are closed and RPi A closes the             
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connection between itself and RPi M. 

VI. RESULTS 
We were able to surpass our benchmarks for success for both            

automatic and manual mode.  
In automatic mode, the measured latency from the time a           

person began speaking to the time the COMOVO began         
rotating was approximately 2 seconds. This latency       
outperformed the benchmark of 2.3 seconds that we had set.          
This benchmark came from averaging measurements of time        
taken to physically rotate a phone placed on a dinner table.           
The 2 second latency includes the delay we added as a design            
choice and without this delay, the sound processing pipeline         
returned results almost instantaneously. 

We also tested the accuracy of our loudest speaker detector           
over multiple runs with at least 3 people and with variation in            
terms of sampling frequencies, room size, echo, voice pitch,         
and placement of microphones. The accuracy was       
consistently over 95% for every test and surpassed our         
benchmark. Additionally, we noticed that at lower sampling        
frequencies the accuracy remained the same, but the margin of          
difference between the microphone signals from the loudest        
person speaking, and the signals from other microphones        
increased. This was attributed to the fact that at lower          
sampling frequencies, the microphones picked up less noise        
and there was less information to process.  

In manual mode, the measured latency from the time a           
person began making a hand gesture to the time the device           
began rotating, was 7 seconds at the time of our demo. This            
was several seconds past our benchmark, and in part was due           
to the processing occurring on the RPi. However, after our          
demo, we noticed that we were opening the file containing our           
saved CNN, reading the file, closing the file, and loading and           
compiling the CNN every time we made a prediction on a           
frame. After changing this to only load the saved classifier          
once on start-up, our latency went down to 1-2 seconds and           
outperformed our benchmark of 2.3 seconds.  

Each gesture registered rotates the device 10°, allowing the          
person making the gesture to have adequate control over the          
rotation while taking latency into consideration. Thus, it takes         
roughly 5 seconds to rotate from one person another, assuming          
they are seated approximately 90° apart. Given more time, we          
would experiment with using a neural stick [33] (which is a           
Visual Processing Unit with much higher processing power),        
connected to the RPi to process images and run the classifier           
to further improve latency. We would also use the low-level          
binary version of TensorFlow instead of the Python version as          
the high level abstraction increases latency.  

Finally, over many runs and epochs, our hand gesture          
classifier consistently produced a validation accuracy of       

93-95% and outperformed our 85% validation accuracy       
benchmark.  

VII. PROJECT MANAGEMENT 
A. Schedule 

Our original schedule in the proposal was changed to account           
for delays in ordering and receiving parts, changes to our          
proposed sound localization algorithm and the unprecedented       
time it took to set up the RPis. Our schedule then drastically            
changed again in the second week of March due to the           
pandemic and the resulting changes we had to make to our           
project plan. Our schedule over the whole semester reflecting         
these changes is shown on the last page. 

B. Team Member Responsibilities 
Neeti used her experience with machine learning to build the           

initial gesture classifier as well as create the pipeline to train           
and test the classifier. She also used her experience with          
Python animation to create the final simulation using Pygame. 

Gauri used her experience with machine learning to improve          
the accuracy of the initial gesture classifier and restructure its          
architecture. She worked with Shrutika on the camera-RPi        
and microphone-RPi interfaces. Initially, she also worked on        
setting up the RPis. 

Shrutika worked on setting up and testing all the hardware          
components. She handled PC-RPi communication and also       
worked with Gauri on the camera-RPi and microphone-RPi        
interfaces. 

All team members worked together to collect and construct         
the training dataset for the gesture classifier. We also worked          
together to integrate the animation with the camera-RPi and         
microphone-RPi interfaces and create the overall control loop.  

C. Budget 
The project Bill of Materials is shown in Table 2 and Table            

3 shows the parts we acquired from the inventory for free.           
The rows highlighted in green are the items we used to           
achieve the modified goals. 

D. Risk Management 
The first risk factor we faced was related to the gesture            

detection input. The risk here was that the accuracy rate of           
identifying the gestures depended on the size and quality of          
our dataset. To mitigate this risk, we initially narrowed the          
scope of classification to recognize a gesture with a blank          
background. We also created our own dataset. We were able          
to collect more images as needed to completely mitigate this          
risk and no longer require a blank background.  

The second risk factor we considered was the accuracy of          
the loudest speaker detector. We required a very high         
accuracy rate, and we identified several risks regarding        
ambient sound, sound from the phone speaker and the         
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accuracy of the microphones. We were able to mitigate this          
risk by creating baffles for the omnidirectional microphones        
that we used. We also narrowed the scope to detecting the           
loudest person speaking among 4 people having a reasonable         
conversation. 

The third risk factor was a higher latency than we expected           
due to the gesture classifier being a CNN as well as the low             
processing power of the RPi. We mitigated this risk by          
saving the trained model in a file and loading and compiling           
the model from this file only once on start-up. To further           
speed up the classification and produce real-time predictions,        
we would connect a neural stick to the RPi to harness its            
processing power. We would also use low-level binaries of         
TensorFlow instead of the version created for Python. 

Finally, the performance of our device was heavily        
dependent on parameter tuning. We mitigated this risk by         
experimenting heavily with different parameters and      
architectures for the classifier, different sampling frequencies       
for the microphones and different frame-rates for the camera. 
 

TABLE 2:  Bill Of Materials 

 
 

TABLE 3:  Other Parts (acquired for free) 

 

VIII. RELATED WORK 
We found that the closest product to COMOVO is         

Facebook Portal [34]. This is quite expensive, is integrated         
with Amazon Alexa for intelligence and only works with a          
certain set of video calling platforms. It is an independent          
tablet-like device that rotates on a platform and cannot be used           

in conjunction with any phone. 
Cisco Webex [35] and Zoom [36] have such loudest speaker          

detection capabilities but are used primarily in office        
conferencing settings and do not involve a portable platform         
that can physically rotate your phone. Additionally, these        
products are meant for office conferencing, they are meant to          
be bought by companies in bulk to be integrated with          
conference rooms with strategically placed cameras and       
microphones and are not for personal use. Cisco Webex and          
Zoom business licenses are often too expensive for individuals         
to purchase. 

IX. SUMMARY 
Over the course of the semester, our goals for this project           

evolved multiple times due to unforeseen circumstances. Our        
initial goal was to create a physical rotating platform to make           
multi-person video calling a better experience. However, due        
to the pandemic (a tired phrase) we had to drastically modify           
our goals to create a simulation of the physical platform          
instead. Although the circumstances were frustrating, we       
delivered a product that met our modified goals and surpassed          
all of our benchmarks for success. Section VI details our          
results and the performance of the COMOVO measured        
against our benchmarks. 

We would like to thank Professor Tom Sullivan and Jens          
Ertman for their guidance and support throughout this project,         
all of the other ECE Capstone faculty for sharing their          
knowledge, our ECE professors and peers for their valuable         
feedback, our friends, family and everyone else who provided         
us with images to help build our dataset. Finally, we would           
also like to thank Carnegie Mellon University for teaching us          
the building blocks that were fundamental in creating this         
project and giving us this opportunity to use and build on what            
we have learned over the last four years. 
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