
18-500 Final Report: 05/06/2020 1

COMOVO - Control, Motion, Voice

Neeti Ganjur: Electrical and Computer Engineering, Carnegie Mellon University

Gauri Laxman: Electrical and Computer Engineering, Carnegie Mellon University

Shrutika Ruhela: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— On a video call with multiple people speaking

on one smart device, holding the smart device and moving it
towards the person speaking is a hassle. The solution we
envisioned was a rotating platform that holds your phone and
adaptively rotates towards the person who is speaking. This
document details the design and development of this solution.
It outlines the use case and problem space addressed, our
vision for the product, system design choices and trade-offs.
It also covers the outcome of the design process, metrics for
success, testing and validation, and project management
details.

I. INTRODUCTION
As the majority of our team has family located

internationally, we are familiar with the pains of video calling
into family dinners and events from across the world.
Especially during this COVID-19 pandemic, connecting with
family and friends through video calls has become of
paramount importance.

Video calls with multiple people on either end are often
incredibly inconvenient as the phone has to be moved around
constantly to face the person speaking. Human tendency is to
be lazy and this can often lead to the phone being set down
somewhere and causing confusion among participants on the
call as to who is speaking. In order to alleviate this problem,
we came up with COMOVO. The name COMOVO stands for
Control, Motion, Voice.

Our initial thought process was to have a user be able to
simply download an application onto their phone which would
register and configure their COMOVO device to communicate
with any other user's COMOVO around the world. User A
would place their phone in a little notch in their COMOVO,
choose to video call any group of people (also with a
registered COMOVO on their end) over any video calling
application such as FaceTime, WhatsApp, Messenger, etc and
have a hands-free enjoyable video chat experience.
Inter-COMOVO communication would be enabled by the
application sending commands over the internet.

After considering budget and time constraints, our goal
evolved into a rotating platform with a notch to hold your

phone that would sit on a table on both ends of a video call. It
would operate in two modes - automatic and manual. In
manual mode, participants on either end of the video call
would be able to control the rotation of the platform (and
consequently, the phone) on the other end through hand
gestures. In this mode, the COMOVO on one end of the call
communicates the direction and duration of rotation of the
COMOVO on the other end. In automatic mode, the platform
would rotate the phone to face the loudest speaker in the room
on the same end of the call. In this mode, there is no
inter-COMOVO communication. These platforms work
independently of the phones that sit on top of them. As a
result, they are also independent of the video calling
application used.

Due to the COVID-19 pandemic, its implications on our
access to resources, and the location of our team members, we
had to further modify our goal. We decided to simulate the
rotation of the platform using an animation that would behave
almost exactly as a physical platform with a motor would have
behaved in both automatic and manual mode.

In this report, we have outlined the hardware and software
implementation designs for our pre and post-pandemic goals
for COMOVO as well as our metrics for testing and
verification. We also discuss the final outcome of the design
process, tradeoffs we made throughout, roadblocks that we
overcame, and details of our project management.

II. DESIGN REQUIREMENTS
The metrics discussed below were chosen assuming certain

testing conditions. For manual mode, we assumed that there
would be good lighting conditions. For automatic mode, we
assumed a reasonable conversation (one person speaking at a
time), minimal background noise, and that 4 participants were
seated equally spaced around the table.

Tables 1a and 1b shown below detail the factors and metrics
that we were concerned with for testing our device in manual
and automatic mode respectively. For the accuracy of gesture
detection in manual mode, we looked at the ability of the
COMOVO to correctly identify the presence of a hand gesture
or absence (just a person’s head). If there was a hand gesture,

18-500 Final Report: 05/06/2020 2

we looked at the ability of the COMOVO to correctly identify
the direction denoted by the hand gesture (left or right). We
required that the classifier produce greater than 85% accuracy
on the validation dataset that we created. This metric was
based on our research of existing gesture classifiers used in the
industry [1], [2]. We assumed that when people gesture in
manual mode, they would be approximately a foot away from
the COMOVO. Thus, we expected the COMOVO to detect a
hand located a foot away from the platform. This metric came
from the average distance of a person from their phone when
they are video calling, assuming the phone is sitting on a
surface.

For the accuracy of ‘loudest speaker’ detection, we required
a minimum 95% hit rate of the COMOVO rotating to within
45° of the person speaking. Assuming 4 people are seated
equally spaced around a table, this rotates directly towards the
person speaking. This metric was based on our estimate of
users’ tolerance towards errors. We used this justification as
there was no substantial existing research or documentation
regarding the accuracy of simple loudest speaker detection.
Our estimate for the distance of the person speaking from the
device was 3 feet. This number came from our research on the
average dinner table radius [3].

Finally, we tested latency by building log creation into our
scripts and recording time differences through these logs. In
automatic mode, we measured the difference in time between
when the user began speaking and when the COMOVO had
finished rotating towards them. In manual mode, we
measured the time difference between when the gesture was
made by the user and when the COMOVO had finished
rotating in the direction specified. Based on our research,
video calling (which is over a UDP connection) latency is
approximately 300 ms [4]. However, the more relevant metric
that we used to measure success, was if the total latency was
less than 2.3 seconds. This metric came from our own data
collection on the average time taken for a person to move from
their seat and rotate their phone to the current speaker.

TABLE 1a. Metrics and Testing: Manual Mode

TABLE 1b. Metrics and Testing: Automatic Mode

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Our system architecture has two main parts - the hardware

interfaces and connections and the software interfaces and
specifications. The hardware block diagram shown below in
Fig. 1a describes our hardware specifications before we had to
make modifications due to the pandemic. The hardware block
diagram shown in Fig. 1b depicts our updated hardware
interfaces.

We used a Raspberry Pi 4 Model B [5] for the COMOVO’s
main processor. We decided to use this model over the
Raspberry Pi Zero Model W [6] which we were initially
considering, because it provides more sensor input ports, is
still small enough for our use case, and has WiFi capability.
There was also plenty of documentation, user guides, and
support readily available for this specific model of the RPi
since it was one of the newest models.

To capture gestures, we used a Raspberry Pi Camera Module
V2-8 [7]. We decided on this camera as it provided the image
quality that we required, was a custom RPi add-on, and had
been used in previous projects with similar use cases. We
required relatively high quality camera output as we had to
feed the frames produced by the camera into our gesture
classifier.

To capture audio input, we initially planned on using
Adafruit Mini USB Microphones [8] as they were
inexpensive, small, and compatible with the RPi. However,
due to the pandemic, the manufacturer of these microphones
stopped shipping. We also realized after the design review
that we required directional microphones for our use case.
Unfortunately, due to the pandemic the only microphones we
could find that were still available for shipping, were
omnidirectional. Thus, we decided to use omnidirectional
Zaffiro USB Microphones [9] augmented with baffles to
provide directionality.

The 4 microphones are connected to the RPi through the 4
USB ports. The camera is connected to the RPi through the
MIPI CSI port. The RPi is powered by a USB-c cable
connected to a PC which provides the 5V and 3A required.

18-500 Final Report: 05/06/2020 3

Our initial vision for the hardware included an Adafruit
stepper motor in the NEMA-17 size [10], to control the
rotation of the COMOVO. We also planned to use an
Adafruit DC and Stepper Motor HAT [11] connected through
the ground and motor ports to the motor. The motor HAT
would have been connected to the RPi through two specific
GPIO pins, SDA and SLC. The stepper motor required 12V
and drew 350 mA and the motor HAT would have been
powered by an external 12V NiMH 8xAA battery pack [12].
With regards to the structure of the physical platform, we
planned for the microphones to be mounted on the platform
and remain stationary. The camera and phone would have
been attached to the rotating part of the COMOVO as they
both needed to be in sync.

Fig. 1a. Hardware Block Diagram (before modifications)

Fig. 1b. Hardware Block Diagram (after modifications)

The software block diagram shown below in Fig. 2a
describes our software specifications before we had to make
modifications due to the pandemic. The software block
diagram shown in Fig. 2b depicts our updated software
interfaces.

The RPi runs Raspbian OS [13] which simplified a lot of our
interfaces as we did not have to implement our own device
drivers to communicate with external hardware and had
Python already installed. To capture frames at the chosen

frame-rate from the COMOVO camera’s output video stream
we used PiCamera module [14]. These frames were then
pre-processed using OpenCV [15], NumPy [16] and imutils
[17] and fed into the convolutional neural network (CNN) that
we built using Keras [18], TensorFlow [19] and sklearn [20].
The CNN predicts whether the input frame is a left hand
gesture (‘L’ symbol), right hand gesture (‘ok’ symbol) or not a
gesture (just a person’s head). The architecture of the CNN
was modeled on the VGG-16 architecture [21]. The
predictions made by the classifier were passed to the Pygame
[22] animation running on the PC through a TCP connection.

To read and process the audio signals from each of the
COMOVO’s microphones we used PyAudio [23]. Once the
microphone with the loudest signal is detected, the
microphone ID is passed to the Pygame animation running on
the PC through a TCP connection.

Our initial plan involved the use of the Python Adafruit
MotorHAT Library [24] to control the speed and direction of
rotation of the stepper motor. The RPi would have
communicated with the motor HAT and consequently the
motor through the I2C bus. Instead, we created an animation
in Pygame to simulate the rotation of the COMOVO.

We used socket programming to send and receive messages
between the RPis over TCP and between the RPIs and PC over
TCP.

Fig. 2a. Software Block Diagram (before modifications)

Fig. 2b. Software Block Diagram (after modifications)

18-500 Final Report: 05/06/2020 4

IV. DESIGN TRADE STUDIES
In our initial design, we opted to use the Adafruit DC and

Stepper Motor HAT for our project as it would have
conveniently sat on top of the RPi enabling us to connect the
motor to the RPi with less external wiring. It also would have
contained motor controllers necessary to power the motor as
the GPIO pins would not have been able to provide enough
power. Additionally, the motor HAT would have allowed us
to control the stepper motor through the motor HAT library
which provided a high level of abstraction for pulse-width
modulation (PWM) control and for setting the direction, speed
and degrees of rotation of the motor.

For the motor in our initial design, we decided to use the
Adafruit Stepper Motor in the NEMA-17 size as it was small
enough to uphold our size requirement for the platform and
provided high torque rotation at low speeds. This particular
motor also had a precision of 200 steps per revolution (or 1.8
degrees per step) which was more than sufficient for our use
case. The motor, motor HAT and RPi were compatible with
one another and there were a lot of existing user guides and
previous projects that used the three components together.

Also in our initial design, we chose a NiMH 8xAA battery
pack as the additional power supply that would have been
connected to the motor HAT to power the stepper motor. We
selected this power supply as it was inexpensive, easily
available, simple, and provided the 12 V supply we needed.

While building our gesture classifier, we had to make many
trade-offs. First, we arbitrarily chose ‘thumbs up’ and
‘thumbs down’ as our left and right hand gestures
respectively. However, we realized after experimentation, that
we needed hand gestures that were more distinguishable from
one another and also from the wall or background. Thus, we
chose the ‘L’ symbol as our left gesture and the ‘ok’ symbol
as our right gesture as they each have a distinct number of
fingers raised versus the number of fingers folded.

Second, we started by following an existing Medium tutorial
on how to build a CNN hand gesture classifier [25]. This
tutorial utilized a 4000-image Kaggle dataset created using a
Leap Motion sensor [26]. The classifier we built by following
this tutorial, resulted in a 99% accuracy when validated on
images from the Kaggle dataset. However, when we tested
the classifier with real images that we captured of ourselves
making the gestures, we found that the accuracy dropped to
approximately 50%. We realized that this was due to the lack
of diversity of the images in the dataset, as well as the fact that
the images were captured with a motion sensor and looked
dramatically different from those captured with a regular
camera. We then decided to train the same classifier on real
images of hand gestures we collected. At this point, we began
the process of crowdsourcing images of four types: left hand

gesture against a blank background, right hand gesture against
a blank background, right hand gesture against a person’s face
and left hand gesture against a person’s face. Initially, we
collected around 600 images. We experimented with training
the existing classifier on different subsets of our collected
dataset. After experimentation, we were able to achieve a
maximum of 80% accuracy by training on only images of the
left and right hand gestures against blank backgrounds.

Then, we tried to tweak the hyperparameters of the same
classifier to increase its validation accuracy. We
experimented with changing the loss function, optimization
model, number of epochs, learning rate and test-to-train ratio
of the CNN. We also added a feature to reduce the learning
rate of the CNN when it reached a plateau of accuracy for a
fixed number of consecutive epochs. This raised the
validation accuracy of the classifier to between 82% and 85%.
However, even after increasing the count of images in the
dataset to 800 images, the accuracy of this classifier seemed to
plateau at 83%. Thus, we decided to revamp the architecture
of the CNN itself.

After researching industry standard gesture classifiers, we
discovered an architecture called VGG-16 created by K.
Simonyan and A. Zisserman at the University of Oxford. This
CNN was extremely large, contained 41 layers and learned
138 million parameters or weights. Due to the limited
processing power of the RPi, we decided to use a subset of the
layers of VGG-16. After experimenting with different subsets
of layers, playing with the number of nodes in the fully
connected layers, and reading more tutorials, we reduced the
total number of layers to 13 and the number of learnable
parameters or weights to 3.7 million. This resulted in a 88%
validation accuracy when trained on our dataset which at this
point contained 1000 images. Once again we hit a plateau at
88% and realized that we needed to collect more images to
cross the 90% mark. With 1200 images in the dataset, we
were able to achieve 90%.

We attempted to further increase the accuracy by
implementing the skin detection algorithm [27] in the
pre-processing phase, to separate the foreground hand gesture
image from the background by clustering pixels between
certain color values. This boosted the accuracy to 92% and
after collecting a total of 1966 images we hit 95%. To
normalize images before feeding them into the classifier, we
attempted to also add Otsu binarization [28] which would
convert the image into only black and white pixels. However,
this did not help as predicted and we decided against using it.
During the integration phase, we realized we were missing an

entire class that should have been predicted by our classifier.
The CNN also needed to detect the difference between a
person’s head and a hand gesture. Collecting more images of
people’s heads would have been very time consuming.

18-500 Final Report: 05/06/2020 5

Instead, we found an online dataset of 909 headshots of
celebrities’ faces [29] and added these images to our training
dataset. With a new total of 2875 images, our CNN still
averaged an accuracy of 93-95%.

The last important trade-off we made with regards to our
gesture classifier was the value we chose for the frame-rate of
the COMOVO’s camera. Selecting a value too high gave us
almost perfect predictions when we took the arithmetic mode
of the predictions of multiple consecutive frames. However,
as the CNN is quite large, it took some time to make
inferences on images passed in when it was running on the
RPi. Thus, we could not choose a frame rate too high, as that
drastically increased the prediction latency. We settled on
using 4 frames per second and decided to get the predictions
of these 4 frames simultaneously on the 4 cores (one frame per
core) of the RPi to save even more time.
Apart from those trade-offs related to the classifier, we had to

make several others during the design process. First, we had
to purchase microphones that were omnidirectional and larger
than we had initially planned, as there was a lack of
manufacturers shipping during the pandemic.

Second, we decided to use the Python module Pygame
instead of Simulink [30] (a MATLAB-based programming
environment) for our animation. Pygame was simpler to
integrate with the rest of the code, which was already in
Python and we had some experience using Python animation
libraries in prior projects.

Third, the omnidirectional Zaffiro microphones innately had
a certain level of directionality that became apparent when
tested in our use case of a four-person, reasonable
conversation. However, to further augment this directionality
and maximize the margin of difference between the
microphone detecting the loudest speaker and the other
microphones, we constructed baffles, or plastic cones layered
with bubble wrap, that encircled the microphones.

Fourth, we had initially intended to create a head detector
which would recognize the presence of a person’s head within
a frame. This detector would have augmented the loudest
speaker detector, by allowing us to more accurately zone in on
the location of the person speaking. However, we realized
that the number of people in our use case and the number of
microphones we used for the loudest speaker detection were
the same. We also recognized that a phone camera at a
distance of approximately 3 feet (radius of a dinner table) can
display more than one person’s head in a singular frame.
Based on the time we invested into building and tuning the
gesture classifier to our required accuracy, and considering
that the head detector would also have to be a machine
learning model like a CNN, we decided that the cost of
building this classifier outweighed the benefits and that it
would not be a very useful addition to COMOVO.

Fifth, we had to make a trade-off with regards to the
sampling rate of the microphones. We had to experiment to
find a sampling rate that would give us a fast response and
meet our accuracy requirements for loudest speaker detection.
On the one hand, sampling at a higher rate used a lot of
processing power and memory, and lengthened the response
time. On the other hand, we believed that using a higher
sampling rate would improve the accuracy of the loudest
speaker detection. However, we learned that the loudest
speaker detection accuracy fared better at a lower sampling
rate as the microphones picked up less noise from other
directions.

Sixth, we had previously considered more complicated
algorithms such as array processing and triangulation [31] [32]
to detect the loudest person speaking or sound source.
However, we realized that these algorithms were far too
complicated to be a subsection of our project given the time
and budget constraints. Thus, we decided to use our current,
simple approach of calculating and comparing the root mean
squares (which estimates the energy or loudness) of the audio
signals from each microphone, to detect the microphone near
the loudest person speaking.

Seventh, we made the design choice to increase the
audio-input-to-rotation latency as we required that a person
remain speaking for a period of time before the COMOVO
rotates towards them. We made this choice to avoid jitter
caused by the COMOVO rotating towards a speaker who only
utters a word, before rotating immediately back to the primary
speaker.

The final tradeoff we had to make was due to limited
resources during the pandemic. We were not able to acquire
eight microphones (four for each of the RPis), and thus,
decided to designate one RPi to exhibit automatic mode
(referred to in the following sections as RPi A) and the other
RPi to exhibit manual mode (referred to in the following
sections as RPi M). This also significantly changed our
control loop as we no longer had to switch between modes for
each of the RPis. As a result, for manual mode we had RPi M
receive the video stream from the camera, predict the direction
of rotation using the classifier, communicate this direction to
RPi A, which would then communicate this direction of
rotation to the animation running on the PC. For automatic
mode, we had the RPi A receive audio signals from the
microphones, detect the microphone receiving the loudest
signals, and communicate this microphone ID to the animation
running on the PC.

V. SYSTEM DESCRIPTION
Our system was developed following the two modes of

operation of the COMOVO - automatic mode and manual
mode. The overarching control loop that drives the animation

18-500 Final Report: 05/06/2020 6

runs on the PC and both the RPis run a generic script that acts
according to the current mode of operation as well as
according to the specific RPi (A or M), as described briefly in
the previous section. By making the script generic, we
ensured that if we continued to work on the COMOVO in the
future, we would easily be able to extend the control loop to
allow both RPis to switch between automatic and manual
mode.

In the initial setup step, the control loop script is started up
on the PC, configuring it to act as the server. This initializes a
socket which listens for incoming TCP connections from both
RPis which act as clients to the PC. Then, RPi A and RPi M
are both switched on, the microphones which are connected to
RPi A are also switched on. The camera is connected to RPi
M. The generic script is started on both of the RPis and on
each RPi, establishes a connection from the RPi to the PC.
The PC displays a splash screen and awaits user keystroke
input to either quit (‘q’) or select a mode of operation (‘a’ for
automatic or ‘m’ for manual). The user keystroke input is
communicated to both RPis. The descriptions of what occurs
on the PC and each RPi in each mode of operation are in the
subsections below.

A. Automatic Mode
In automatic mode, RPi M does nothing and simply waits for

a message from the PC in the event of the user quitting or
requesting a mode switch. RPi A runs all the code for loudest
speaker detection. First, 4 audio streams are opened from the
4 microphones connected, with the sampling rate specified.
The 4 microphones have fixed positions such that each
microphone ID (1, 2, 3 or 4) maps to a specific microphone
(and thus, person) on the animation screen and the
corresponding microphone (and thus, person) in real life.

The script running on RPi A then reads in the audio samples
coming from the 4 microphones at the specific sampling rate
(8 kHz) for a specific amount of time (2 seconds). This is
done simultaneously using multiprocessing on the 4 cores to
provide audio snapshots from all 4 microphones during the
same 2 second time interval. The root mean squares of the
audio samples are then also simultaneously calculated. The
RMSes are compared to determine the ID of the microphone
receiving the highest energy audio signals (largest RMS),
which consequently indicates the loudest speaker during that 2
second interval. This process is repeated twice to get the
loudest speaker for 4 seconds. Then, the microphone ID is
communicated to the animation on the PC over the TCP
connection established earlier. The above sequence of steps
occurs in an infinite loop on RPi A, unless interrupted by a
message received from the PC, in the event of the user quitting
or requesting a mode switch.

On the PC, the control loop awaits messages from RPi A

communicating the microphone ID that the animation must
rotate to. When a microphone ID is received, the animated
COMOVO rotates to face the person at the position mapping
to this ID, an arrow moves to point to that person and the
screen is updated. The animation continuously listens for any
user keypress event to quit or switch modes. If an event
occurs, the PC communicates this information to both RPis
over the TCP connections established previously. If the event
is to quit, the connections between the PC and the RPis are
closed and RPi A closes the connection between itself and RPi
M (if this connection exists).

B. Manual Mode
In manual mode, RPi A listens on a socket for an incoming

TCP connection from RPi M. Once the connection is
established, RPi A listens for prediction messages from RPi M
and also continues to listen for messages from the PC in the
event of the user quitting or requesting a mode switch.

RPi M runs all the code to capture and pass frames through
the gesture detector. First, the software interface to the
camera is set up using PiCamera module, and the camera
resolution and frame rate are initialized to specific values.
The trained CNN gesture classifier and its weights are loaded
from files they were saved in and the CNN is compiled.

The script captures frames continuously at 4 frames per
second and uses multiprocessing to simultaneously make
predictions for one frame per core. Predictions are made by
forward propagating the frames through the compiled CNN.
In order to make nearly perfect predictions, the arithmetic
mode of the 4 individual frame predictions is calculated as the
final prediction for that iteration. In other words, if there are 3
or more of the same gesture predicted, the final prediction is
that gesture (left or right). In all other cases, the final
prediction is no gesture (head). The final prediction is
communicated to RPi A which in turn forwards the prediction
to the animation on the PC. The above sequence of steps
occurs in an infinite loop on RPi M, unless interrupted by a
message received from the PC, in the event of the user quitting
or requesting a mode switch.

On the PC, the control loop awaits messages from RPi A
communicating the gesture prediction. If the prediction
received is ‘left’, the animated COMOVO rotates 10° in the
counterclockwise direction, if the prediction received is
‘right’, it rotates 10° in the clockwise direction, and if the
prediction received is ‘head’, no rotation occurs. The screen is
then updated. As in automatic mode, the animation
continuously listens for any user keypress event to quit or
switch modes. If an event occurs, the PC communicates this
information to both RPis over the TCP connections
established previously. If the event is to quit, the connections
between the PC and the RPis are closed and RPi A closes the

18-500 Final Report: 05/06/2020 7

connection between itself and RPi M.

VI. RESULTS
We were able to surpass our benchmarks for success for both

automatic and manual mode.
In automatic mode, the measured latency from the time a

person began speaking to the time the COMOVO began
rotating was approximately 2 seconds. This latency
outperformed the benchmark of 2.3 seconds that we had set.
This benchmark came from averaging measurements of time
taken to physically rotate a phone placed on a dinner table.
The 2 second latency includes the delay we added as a design
choice and without this delay, the sound processing pipeline
returned results almost instantaneously.

We also tested the accuracy of our loudest speaker detector
over multiple runs with at least 3 people and with variation in
terms of sampling frequencies, room size, echo, voice pitch,
and placement of microphones. The accuracy was
consistently over 95% for every test and surpassed our
benchmark. Additionally, we noticed that at lower sampling
frequencies the accuracy remained the same, but the margin of
difference between the microphone signals from the loudest
person speaking, and the signals from other microphones
increased. This was attributed to the fact that at lower
sampling frequencies, the microphones picked up less noise
and there was less information to process.

In manual mode, the measured latency from the time a
person began making a hand gesture to the time the device
began rotating, was 7 seconds at the time of our demo. This
was several seconds past our benchmark, and in part was due
to the processing occurring on the RPi. However, after our
demo, we noticed that we were opening the file containing our
saved CNN, reading the file, closing the file, and loading and
compiling the CNN every time we made a prediction on a
frame. After changing this to only load the saved classifier
once on start-up, our latency went down to 1-2 seconds and
outperformed our benchmark of 2.3 seconds.

Each gesture registered rotates the device 10°, allowing the
person making the gesture to have adequate control over the
rotation while taking latency into consideration. Thus, it takes
roughly 5 seconds to rotate from one person another, assuming
they are seated approximately 90° apart. Given more time, we
would experiment with using a neural stick [33] (which is a
Visual Processing Unit with much higher processing power),
connected to the RPi to process images and run the classifier
to further improve latency. We would also use the low-level
binary version of TensorFlow instead of the Python version as
the high level abstraction increases latency.

Finally, over many runs and epochs, our hand gesture
classifier consistently produced a validation accuracy of

93-95% and outperformed our 85% validation accuracy
benchmark.

VII. PROJECT MANAGEMENT
A. Schedule

Our original schedule in the proposal was changed to account
for delays in ordering and receiving parts, changes to our
proposed sound localization algorithm and the unprecedented
time it took to set up the RPis. Our schedule then drastically
changed again in the second week of March due to the
pandemic and the resulting changes we had to make to our
project plan. Our schedule over the whole semester reflecting
these changes is shown on the last page.

B. Team Member Responsibilities
Neeti used her experience with machine learning to build the

initial gesture classifier as well as create the pipeline to train
and test the classifier. She also used her experience with
Python animation to create the final simulation using Pygame.

Gauri used her experience with machine learning to improve
the accuracy of the initial gesture classifier and restructure its
architecture. She worked with Shrutika on the camera-RPi
and microphone-RPi interfaces. Initially, she also worked on
setting up the RPis.

Shrutika worked on setting up and testing all the hardware
components. She handled PC-RPi communication and also
worked with Gauri on the camera-RPi and microphone-RPi
interfaces.

All team members worked together to collect and construct
the training dataset for the gesture classifier. We also worked
together to integrate the animation with the camera-RPi and
microphone-RPi interfaces and create the overall control loop.

C. Budget
The project Bill of Materials is shown in Table 2 and Table

3 shows the parts we acquired from the inventory for free.
The rows highlighted in green are the items we used to
achieve the modified goals.

D. Risk Management
The first risk factor we faced was related to the gesture

detection input. The risk here was that the accuracy rate of
identifying the gestures depended on the size and quality of
our dataset. To mitigate this risk, we initially narrowed the
scope of classification to recognize a gesture with a blank
background. We also created our own dataset. We were able
to collect more images as needed to completely mitigate this
risk and no longer require a blank background.

The second risk factor we considered was the accuracy of
the loudest speaker detector. We required a very high
accuracy rate, and we identified several risks regarding
ambient sound, sound from the phone speaker and the

18-500 Final Report: 05/06/2020 8

accuracy of the microphones. We were able to mitigate this
risk by creating baffles for the omnidirectional microphones
that we used. We also narrowed the scope to detecting the
loudest person speaking among 4 people having a reasonable
conversation.

The third risk factor was a higher latency than we expected
due to the gesture classifier being a CNN as well as the low
processing power of the RPi. We mitigated this risk by
saving the trained model in a file and loading and compiling
the model from this file only once on start-up. To further
speed up the classification and produce real-time predictions,
we would connect a neural stick to the RPi to harness its
processing power. We would also use low-level binaries of
TensorFlow instead of the version created for Python.

Finally, the performance of our device was heavily
dependent on parameter tuning. We mitigated this risk by
experimenting heavily with different parameters and
architectures for the classifier, different sampling frequencies
for the microphones and different frame-rates for the camera.

TABLE 2: Bill Of Materials

TABLE 3: Other Parts (acquired for free)

VIII. RELATED WORK
We found that the closest product to COMOVO is

Facebook Portal [34]. This is quite expensive, is integrated
with Amazon Alexa for intelligence and only works with a
certain set of video calling platforms. It is an independent
tablet-like device that rotates on a platform and cannot be used

in conjunction with any phone.
Cisco Webex [35] and Zoom [36] have such loudest speaker

detection capabilities but are used primarily in office
conferencing settings and do not involve a portable platform
that can physically rotate your phone. Additionally, these
products are meant for office conferencing, they are meant to
be bought by companies in bulk to be integrated with
conference rooms with strategically placed cameras and
microphones and are not for personal use. Cisco Webex and
Zoom business licenses are often too expensive for individuals
to purchase.

IX. SUMMARY
Over the course of the semester, our goals for this project

evolved multiple times due to unforeseen circumstances. Our
initial goal was to create a physical rotating platform to make
multi-person video calling a better experience. However, due
to the pandemic (a tired phrase) we had to drastically modify
our goals to create a simulation of the physical platform
instead. Although the circumstances were frustrating, we
delivered a product that met our modified goals and surpassed
all of our benchmarks for success. Section VI details our
results and the performance of the COMOVO measured
against our benchmarks.

We would like to thank Professor Tom Sullivan and Jens
Ertman for their guidance and support throughout this project,
all of the other ECE Capstone faculty for sharing their
knowledge, our ECE professors and peers for their valuable
feedback, our friends, family and everyone else who provided
us with images to help build our dataset. Finally, we would
also like to thank Carnegie Mellon University for teaching us
the building blocks that were fundamental in creating this
project and giving us this opportunity to use and build on what
we have learned over the last four years.

REFERENCES
[1] Pisharady, Pramod & Saerbeck, Martin. (2015). Gesture

Recognition Performance Score: A New Metric to
Evaluate Gesture Recognition Systems. 157-173.
10.1007/978-3-319-16628-5_12.

[2] Badi, H. Recent methods in vision-based hand gesture
recognition. Int J Data Sci Anal 1, 77–87 (2016).
https://doi.org/10.1007/s41060-016-0008-z

[3] How To Calculate The Best Dining Table Size For Your
Room. (2019, May 2). Retrieved from
http://www.parotas.com/en/calculate-best-dining-table-siz
e/

[4] Grigorik, I. (n.d.). High Performance Browser
Networking. Retrieved from
https://www.oreilly.com/library/view/high-performance-b
rowser/9781449344757/ch01.html

https://www.oreilly.com/library/view/high-performance-browser/9781449344757/ch01.html
https://www.oreilly.com/library/view/high-performance-browser/9781449344757/ch01.html

18-500 Final Report: 05/06/2020 9

[5] Raspberry Pi 4 Model B specifications – Raspberry Pi.
(n.d.). Retrieved from
https://www.raspberrypi.org/products/raspberry-pi-4-mod
el-b/specifications/

[6] Buy a Raspberry Pi Zero W – Raspberry Pi. (n.d.).
Retrieved from
https://www.raspberrypi.org/products/raspberry-pi-zero-/

[7] Camera Module. (n.d.). Retrieved from
https://www.raspberrypi.org/documentation/hardware/ca
mera/README.md

[8] Mini USB Microphone. (n.d.). Retrieved from
https://www.adafruit.com/product/3367

[9] USB Microphone, ZAFFIRO. (n.d.). Retrieved from
http://www.zaffiro.cc/P_view.asp?pid=227

[10] Stepper motor - NEMA-17 size - 200 steps/rev, 12V
350mA. (n.d.). Retrieved from
https://www.adafruit.com/product/324

[11] Adafruit DC & Stepper Motor HAT for Raspberry Pi -
Mini Kit. (n.d.). Retrieved from
https://www.adafruit.com/product/2348

[12] Industries. (n.d.). 8 x AA battery holder. Retrieved from
https://www.adafruit.com/

[13] Raspbian.
https://www.raspberrypi.org/documentation/raspbian/

[14] picamera. (n.d.). Retrieved from
https://picamera.readthedocs.io/en/release-1.13/

[15] OpenCV. (2020, April 9). Retrieved from
https://opencv.org/

[16] NumPy. (n.d.). Retrieved from https://numpy.org/
[17] imutils. (n.d.). Retrieved from

https://pypi.org/project/imutils/
[18] Keras: The Python Deep Learning library. (n.d.).

Retrieved from https://keras.io/
[19] TensorFlow. (n.d.). Retrieved from

https://www.tensorflow.org/
[20] scikit-learn. (n.d.). Retrieved from

https://pypi.org/project/scikit-learn/
[21] Simonyan, K., & Zisserman, A. (2015, April 10). VERY

DEEP CONVOLUTIONAL NETWORKS FOR
LARGE-SCALE IMAGE RECOGNITION. Retrieved
from https://arxiv.org/pdf/1409.1556.pdf

[22] Pygame Front Page. (n.d.). Retrieved from
https://www.pygame.org/docs/

[23] PyAudio Documentation. (n.d.). Retrieved from
https://people.csail.mit.edu/hubert/pyaudio/docs/#pyaudio
-documentation

[24] Adafruit-Motor-HAT-Python-Library. (2017, February
28). Retrieved from
https://github.com/adafruit/Adafruit-Motor-HAT-Python-
Library

[25] https://towardsdatascience.com/tutorial-using-deep-learni
ng-and-cnns-to-make-a-hand-gesture-recognition-model-3
71770b63a51

[26] Hand Gesture Recognition Database. (2018, July 30).
Retrieved from
https://www.kaggle.com/gti-upm/leapgestrecog/version/1

[27] Baig, W. U., Rosebrock, A., SaadEddin, Tsipenyuk, B.,
Landau, J., Nowicki, P., … Orion Gump. (2020, April
18). Tutorial: Skin Detection Example using Python and
OpenCV. Retrieved from
https://www.pyimagesearch.com/2014/08/18/skin-detecti
on-step-step-example-using-python-opencv/

[28] Image Thresholding. (n.d.). Retrieved from
https://opencv-python-tutroals.readthedocs.io/en/latest/py
_tutorials/py_imgproc/py_thresholding/py_thresholding.h
tml#otsus-binarization

[29] Liu, Z., Luo, P., Wang, X., & Tang, X. (2016, July 29).
Large-scale CelebFaces Attributes (CelebA) Dataset.
Retrieved from
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

[30] Simulink - Simulation and Model-Based Design. (n.d.).
Retrieved from
https://www.mathworks.com/products/simulink.html

[31] S. Ganguly, J. Kerketta, P. K. Kumar and M.
Mukhopadhyay, "A study on DOA estimation algorithms
for array processing applications," 2017 International
Conference on Computing and Communication
Technologies for Smart Nation (IC3TSN), Gurgaon, 2017,
pp. 62-65, doi: 10.1109/IC3TSN.2017.8284451

[32] Lam, A. (2017). 3D sound-source localization using
triangulation-based methods (T). University of British
Columbia. Retrieved from
https://open.library.ubc.ca/collections/ubctheses/24/items/
1.0357459

[33] Intel® Neural Compute Stick 2. (2019, October 11).
Retrieved from
https://software.intel.com/en-us/neural-compute-stick

[34] Portal from Facebook. (n.d.). Retrieved from
https://portal.facebook.com/

[35] Video Conferencing, Online Meetings, Screen Share:
Cisco Webex. (2020, May 6). Retrieved from
https://www.webex.com/

[36] Video Conferencing, Web Conferencing, Webinars,
Screen Sharing. (n.d.). Retrieved from https://zoom.us/

[37] Girma, A. (2019, March 1). Keras - Convolutional
Neural Network (CNN) Implementation for Hand Gesture
Recognition. Retrieved from
https://medium.com/@aggirma/keras-convolutional-neura
l-network-cnn-implementation-for-hand-gesture-recogniti
on-d7dd11958af6

https://picamera.readthedocs.io/en/release-1.13/
https://www.tensorflow.org/

18-500 Final Report: 05/06/2020 10

