
18-500 Design Review Report: 03/02/2020 1

COMOVO - Control, Motion, Voice

Neeti Ganjur: Electrical and Computer Engineering, Carnegie Mellon University

Gauri Laxman: Electrical and Computer Engineering, Carnegie Mellon University

Shrutika Ruhela: Electrical and Computer Engineering, Carnegie Mellon University

Abstract​—​This document details the design and

development of our solution to multi-person video calling
difficulties. In a multiple person video call, especially for
personal use, holding a smart-device and moving it around
towards whoever is speaking is a hassle. This device is a
rotating platform that holds your phone and has the ability to
rotate towards the person who is speaking. ​This device will
have two operation modes, manual and automatic, which
allow different levels of control to the users. Over the last few
weeks, we conducted further research on the hardware
components necessary for the project and created a schematic
for the way in which the hardware components will fit
together and connect to one another. We also delved into
details of our software implementation and designed the
interfaces between the various sensors, the motor and the
Raspberry Pi. Finally, we elaborated on the overall control
loop for the project, our plan for testing the device, the
potential risk factors of this project, and our projected
schedule for project development.

I. I​NTRODUCTION
AS a majority of our team has family located internationally,

we are familiar with the pains of video calling into family
dinners and events from across the world. Especially with
multi-person video calls it becomes increasingly hard for the
phone to be passed around between every new speaker. In
order to alleviate this problem, we decided to come up with a
solution in the form of a rotating device that sits on your table
and holds your phone. We decided to name our device
COMOVO which stands for Control, Voice, Motion.

Existing solutions include Facebook Portal [7] integrated
with Amazon Alexa, Cisco Webex [8] and Zoom [9]. All of
these are quite expensive, video-calling platform dependent
and are mostly for office space conferencing. Our goal is to
make an easily affordable, video-calling platform independent
device that is meant for personal use.

The device will be able to function in two modes - automatic
and manual. In automatic mode, the device collects video
frame data through a camera and sound data through multiple
microphones, processes both these types of data to detect the

location of the speaker and then rotates the motor (and thus,
the phone that sits atop the device) to face the speaker. In this
mode, there is no inter-COMOVO communication. In manual
mode, the user on one end of the call will be able to use hand
gestures to control the direction and duration of rotation of the
motor on the other end of the video call. In this mode, the two
COMOVO devices will communicate with each other through
a protocol we define, independent of the phones that sit on top
of them. The device will boot up by default in automatic
mode and we will allow mode switching through our
inter-device communication protocol.

In this report, we have outlined the hardware and software
implementation designs for COMOVO as well as our plans
and metrics for testing and verification. We also discuss
potential risk factors and details of our project management.

II. D​ESIGN​ R​EQUIREMENTS
Table 1 shown below details the factors and metrics that we

are concerned with for testing our device. For the accuracy of
gesture detection we will be looking at the ability of the CNN
classifier to correctly identify a hand when it is being used to
gesture in manual mode and identify the direction of rotation
intended. We aim to have the classifier produce greater than
85% accuracy on the testing dataset that we will create and
feed it. This metric is based on our research of existing
models that classify similar data. We expect that when people
gesture in manual mode, they will be approximately a foot
away from the device. Thus, our model should be able to
detect a hand that is a foot away from the camera. This metric
comes from the average distance of a person from their phone
when they are video calling.

For the accuracy of ‘loudest speaker’ detection, since we will
be working with four directional microphones, we expect that
the accuracy of rotating to the correct quarter will be quite
high and so we are aiming for a minimum 95% hit rate. Our
estimate for the distance of the person speaking from the
device is 3 feet. This number came from our research on the
average dinner table radius.

18-500 Design Review Report: 03/02/2020 2

Finally, we will be testing latency by building log creation
into our scripts and recording time difference through these
logs. In automatic mode we will be measuring the difference
in time between when the speaker starts talking and when the
device has finished rotating towards the speaker. In manual
mode we will be measuring the time difference between when
the gesture or keystroke input is fed in to the device and when
the device has finished rotating towards the speaker. Based on
our research, video calling latency which is over a UDP
connection is approximately 300ms. Our latency for manual
mode will be slightly higher as TCP connections are slower
than UDP connections. However, the more relevant metric
that we will be using to measure success for latency is if the
total latency is less than 2.3 seconds. This metric comes from
data collection on the average time taken for a person to move
from their seat and rotate their phone to the current speaker.

TABLE 1. Metrics and Testing

III. A​RCHITECTURE​ ​AND​/​OR​ P​RINCIPLE​ ​OF​ O​PERATION
Our system architecture has two main parts. The hardware

interfaces and connections and the software interfaces and
specifications. The hardware block diagram is shown below
in Fig. 1. We will be using a Raspberry Pi 4 Model B [4] for
the COMOVO’s main processor. We decided to use a stepper
motor and a motor hat to easily drive and power the motor.
Since we need visual input for our computer vision processing
we have a camera and since we need audio signal input, we
decided to use four directional microphones to get the range
and accuracy we want. These microphones will be mounted
on the platform and will be stationary. The camera and phone
will be on the rotating part of our device since they both need
to be in sync.

The stepper motor requires 12V and draws 350 mA and will
be driven by the motor hat which is powered by an external
12V battery pack. It will be connected to the motor hat
through the ground and motor ports. The motor hat is
connected to the RPi through two specific GPIO pins, SDA
and SLC.

Our current plan is to use 4 USB microphones connected to
the RPi’s USB ports through adapters so that we have extra
wire length to mount the microphones correctly on the
platform. It is possible that we might switch to different
microphones in the near future if we find out that the
microphones we have chosen do not have the sensitivity we
require or do not have the directional capabilities we need. In
this case, the new microphones we choose might be connected
to the GPIO pins instead of the USB ports.

Our camera will be connected to the MIPI CSI port of the
RPi. We also have a temporarily connected USB keyboard
that we will be using as an incremental testing tool for our
gestures in manual mode. This will allow us to separately
develop motor control and gesture detection using computer
vision. The RPi itself will be powered by a USB-c cable
which provides the 5V and 3A required.

The software block diagram is shown below in Fig. 2. The
RPi runs Raspbian OS which will simplify a lot of our
interfaces. The RPi will communicate with the motor hat and
consequently the motor through the I2C bus. We will be able
to control the speed, direction, and degrees of rotation of the
motor through specific methods of the stepper motor object
that we create as an instance of the PWM controller class
through the motor hat library. We have already used PyGame
to process keystroke input from the USB keyboard. We will
use OpenCV [3] to process frames from the camera’s output
video stream and we plan on using PyAudio [2] and
SoundDevice [1] to read and compare the volumes of
microphone data received by the RPi.

Depending on which mode the devices are in, we will apply
either a hand/not-hand classifier or a head/not-head classifier
on the video frames. In automatic mode, we will use the
head/not-head convolutional neural network in conjunction
with our microphone amplitude data to locate the speaker. In
manual mode, we will use the hand/not-hand convolutional
neural network and information about the location of the hand
in the frame to recognize “right” and “left” gestures and
classify the implied direction of rotation.

In terms of the overarching control loop, both devices
(holding phones on either end of the video call) will begin by
running a headless script that establishes a client-server model
TCP connection (which we have already been able to
implement). We will use socket programming to send and
receive messages between the RPis. They will then run the
appropriate python scripts to process sensor data, depending
on the mode. Subsequently, if the sensor data reaches a
specific threshold, the loop will trigger the script for motor
rotation (also dependent on the mode).

18-500 Design Review Report: 03/02/2020 3

Fig. 1. Hardware Block Diagram

Fig. 2. Software Block Diagram

18-500 Design Review Report: 03/02/2020 4

IV. D​ESIGN​ T​RADE​ S​TUDIES
We decided to use the Raspberry Pi 4 model B over the

Raspberry Pi Zero Model W which we were initially
considering, because it provides more sensor input ports, is
still small enough for our use case and has WiFi capability.
There is also plenty of documentation, user guides and support
readily available for this specific model of the RPi since it is
one of the newest models.

We opted to use the Adafruit DC and Stepper Motor Hat for
our project as it conveniently sits on top of the RPi and
contains motor controllers which are necessary to power to the
motor since the GPIO pins cannot provide enough. The motor
hat also allows us to control the stepper motor through the
motor hat library which provides a high level of abstraction
for PWM control and for setting the direction, speed and
degrees of rotation of the motor.

For the motor we decided to use the Adafruit Stepper Motor
in the NEMA-17 size as it is small enough to uphold our size
requirement for the device and provides high torque rotation at
low speeds. This particular motor also has a precision of 200
steps per revolution (or 1.8 degrees per step) which is more
than sufficient for our use case. The motor, motor hat and RPi
are compatible with one another and there are a lot of existing
user guides and previous projects that use the three
components together.

The camera we decided on is the Raspberry Pi Camera
Module V2-8mp as it provides the image quality that we
require, is a custom RPi add-on, and has been used in previous
projects with similar use cases. We wanted relatively high
quality camera output since we will be performing computer
vision analysis on the frames received from the camera.

Finally, for the additional power supply that will be
connected to the motor hat to power the stepper motor, we will
be using a simple NiMH 8xAA battery pack as it inexpensive,
easily available, simple, and provides the 12V supply we need.

V. S​YSTEM​ D​ESCRIPTION
Our main interfaces are described in further detail in the

subsystems below. As described in the block diagrams section
III, each interface has a hardware and a software component.
Additionally, the code for these interfaces will be modular in
order to compartmentalize the pieces and enable unit testing.
The integration will be primarily in the control loop.

A. Motor-RPi Communication
The first thing we have to do to allow the RPi to

communicate with the motor through the motor hat is to
enable I2C on the RPi. This is a simple step that can be
accomplished using raspi-config. We will be using PWM

(Pulse Width Modulation) to control the speed, direction and
degrees of rotation of the motor. Instead of writing the drivers
ourselves, using the motor HAT allows us to use the Python
Adafruit DC + Stepper Motor HAT library [6]. We will
instantiate an object of the PWM controller class to represent
the stepper motor and feed in arguments to specify the
connection port and steps per revolution that we want the
motor to rotate at. This object has methods that we will use to
direct the motor’s rotation.

For manual mode, we will take in the direction specified by
the gesture and translate that to a specific amount of degrees to
rotate. This information will then be sent to the other
COMOVO and the motor on that side will be rotated by the
specified amount.

For automatic mode, we will calculate the degrees to rotate
locally on each Pi based on the sound and camera signals data
and rotate the motor on the same side by that amount.

B. Camera-RPi Communication
We will connect the camera to the RPi through the MIPI

CSI port which allows Python OpenCV [3] to directly
recognize the camera. We can read video frames at a fixed
rate (based on how frequently we want to process the data)
using the OpenCV video capture method and feed these
frames to the appropriate classifier based on the mode.

For manual mode, we want to use the camera feed to detect
the gestures on the controller’s side. For automatic mode, we
want to use the camera feed to detect the presence and location
of a head in the quarter specified by the microphone input.
This will enable us to rotate the platform within the chosen
quarter until we find a head.

C. Microphone-RPi Communication
This is the interface that will require the most testing and

experimentation in order for us to figure out the best way to
analyze audio data for our project. Similar to OpenCV for
camera output, PyAudio [2] is capable of reading audio
signals from the microphones connected to the RPi if we
specify the ports. However, it is difficult to get volume
information easily using PyAudio and so we found another
open source library called SoundDevice [1] that enables users
to calculate volume given a sound signal.

Since the microphones are stationary on the platform, each
one corresponds to a specific quarter in the full circle. Our
plan is to intermittently pick the quarter whose microphone is
receiving the maximum volume sound input. Using cardioid
directional microphones with parabolic baffles, we hope to get
an accurate estimate of which quarter the speaker is located in.
This will also take care of ignoring sound coming out of the
phone’s speaker as that will be located behind each
microphone. The microphones are only relevant for automatic

18-500 Design Review Report: 03/02/2020 5

mode.
We did initially consider using a common method for sound

localization called Time Difference of Arrival (TDOA) [5] but
this did not seem like a good choice of algorithm for our use
case because the microphones on our platform will be placed
less than 6 inches apart and thus there will likely be no
significant time difference between the arrival of sound at
each microphone. This problem of the distance between the
microphones may also prove to be an issue with our chosen
method of volume comparison, but we think that using
directional microphones should reduce the severity of the
problem should it arise.

D. RPi-RPi Communication
The two COMOVOs will communicate over a TCP

connection using standard socket programming functions like
send and recv. We will establish a protocol of commands and
sequences of events to perform the two key functionalities
needed: sending the calculated direction to other RPi in
manual mode and mode switching.

E. Control Loop
The main control loop will run on both COMOVOs and

begin as headless scripts that startup on boot. This loop will
continually process sensor inputs based on the current mode
and will also check for mode switch commands. This means
that in manual mode, the camera video feed will be processed
by this loop on the controller’s side and in automatic mode the
camera and microphone data will be processed on both sides.
The loop will also keep polling the listening socket for any
new command information received from the other end. We
will write this in Python for ease of integration with the other
interfaces’ code which will all be in Python.

VI. P​ROJECT​ M​ANAGEMENT
A. Schedule

Our schedule has been affected since the original proposal
planned schedule because of delays in ordering and receiving
parts, changes to our proposed sound localization algorithm
and certain setup procedures taking slightly longer than
anticipated. We had to parallelize some items in our schedule
in order to account for these changes. The schedule is shown
in Fig. 3 on page 7.

B. Team Member Responsibilities
Neeti has experience in embedded software, networks and

machine learning. She will lead the effort to build the ML
models and create datasets to train and test them. She will
also work with Gauri to control the motors and convert camera
output to motor rotation.

Gauri has experience with operating systems, embedded

systems and networks. She will be working on interfacing
with the motors and processing sound data from the
microphones in order to perform sound localization. She will
also be working with Neeti on building the ML models since
both of them have taken Pattern Recognition Theory.

As a software engineer with experience in networks,
Shrutika is responsible for designing the inter-RPi
communication protocol and ensuring that they communicate
reliably and effectively. A lot of this will be in the integration
phase once the devices are set up and receiving sensor input.
She is also in charge of building the physical platform and
fitting all of the different parts together.

C. Budget
The project Bill of Materials is shown in Table 2 on page 6

and Table 3 on page 6 shows the parts we acquired from the
inventory for free.

D. Risk Management
We have identified several risk factors for our project. The

first risk factor is related to the gesture detection input, taken
by the Raspberry Pi Camera Module to classify left and right
gestures, and forward them to the paired COMOVO. The risk
here is that the accuracy rate of identifying the gestures
depends on the size and quality of our dataset. To mitigate
this risk we plan to narrow the scope for the purpose of the
demo to recognizing a gesture with a specific background
(against a plain black/white background). This way our
dataset can be high quality and specific, and our gesture
detection and rotation will work with a higher rate of
accuracy.

The second risk factor is the accuracy of the sound
localization. We are planning for a very high accuracy rate of
the COMOVO rotating towards the loudest speaker, and we
have identified several risks regarding ambient sound, sound
from the phone speaker and the accuracy of directional
microphones. We plan to use cardioid directional
microphones to ensure that too much ambient noise is not
picked up, but to further mitigate this risk, for demo purposes,
we may use a quieter room, and narrow the scope to detecting
between a specific number of people rather than an undefined
number of people surrounding the device.

The third risk factor is the potential for higher latency than
is anticipated. Since our use case is for long distance video
calls, our short distance testing might not accurately represent
the latency for our original use case.

Finally, the performance of our device is heavily dependent
on parameter tuning and the physical design of the device - the
classifiers will need to be tuned to accurately recognize heads
and hands, the directional microphone sensitivities needs to be

18-500 Design Review Report: 03/02/2020 6

sufficient to offset the short distance between them and we
will need to experiment with different speeds for the motor
rotation to pick a stable one.

TABLE 2: Bill Of Materials

TABLE 3: Other Parts (acquired for free)

VII. R​ELATED​ W​ORK
As talked about in the introduction, we found that the

closest product to COMOVO is Facebook Portal [7]. This is
quite expensive, is integrated with Amazon Alexa for
intelligence and only works with a certain set of video calling
platforms. It is an independent tablet-like device that rotates
on a platform and cannot be used in conjunction with any
phone.

Cisco Webex [8] and Zoom [9] have such audio localization
capabilities but are used primarily in office conferencing
settings where typically only one person is talking at a time.
Also since these products are meant for office conferencing,
they are meant to be bought by companies in bulk to be
integrated with conference rooms with strategically placed
cameras and microphones and are not for personal use.

VIII. S​UMMARY
We hope that over the course of the rest of the semester, we

are able to build COMOVO successfully and satisfy all our
basic requirements. We anticipate hurdles during this process
but should be able to handle these with the contingency plans
outlined in the risk management section.

R​EFERENCES
[1] https://python-sounddevice.readthedocs.io/en/0.3.14/
[2] https://people.csail.mit.edu/hubert/pyaudio/docs/
[3] https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_t

utorials.html
[4] https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started/4
[5] https://en.wikipedia.org/wiki/3D_sound_localization
[6] https://github.com/adafruit/Adafruit-Motor-HAT-Python-Library
[7] https://portal.facebook.com/
[8] https://www.webex.com/
[9] https://zoom.us/

https://python-sounddevice.readthedocs.io/en/0.3.14/
https://people.csail.mit.edu/hubert/pyaudio/docs/
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html
https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started/4
https://en.wikipedia.org/wiki/3D_sound_localization
https://github.com/adafruit/Adafruit-Motor-HAT-Python-Library
https://portal.facebook.com/
https://www.webex.com/
https://zoom.us/

18-500 Design Review Report: 03/02/2020 7

Fig. 3. Schedule - Gantt Chart

