Team E5 COMOVO: Control, Motion, Voice

Gauri Laxman, Neeti Ganjur, Shrutika Ruhela

Use Case

- Video calling during a family dinner
 - Especially suited for when more than one person is talking at once
- Manual: you can rotate the camera to wherever you want
- Automatic: the camera rotates towards the person speaking the loudest/indicates they are speaking to the person on the call

Comparative Advantage

Existing Products:

- Facebook Portal:
 - 1. Expensive
 - 2. Less mobile (not for phone)
 - 3. Limited to Facebook video calling platforms
- Zoom, Webex...:
 - 1. Not for personal use
 - 2. Cannot handle multiple sources of sound

Our Product:

- Cheaper
- Portable small rotating platform
- Platform independent
- For personal use
- Gives users control of other camera
- Sound localization capability with multiple sound sources

Requirements

- 1. A platform with a notch to hold a phone and connect to servo motor
- 2. Communicate between two COMOVO devices through cloud
 - a. Send motion sensor data to cloud, process it and send that to other device.
- 3. Be able to control the paired device manually and automatically
 - a. Manual: control the paired device through hand motions.
 - b. Automatic: paired device rotates towards loudest speaker.
- 4. Switch between manual and automatic modes

Solution Approach: Hardware

- Raspberry Pis
 - Preferably small
 - USB ports for video game controller
 - GPIO pin for servo motor control
 - Motion sensor input
 - Microphone input
- Servo motors
- Microphones
- Motion sensors

Solution Approach: Software

- Software to process motion data and convert it to degrees
- AWS EC2 server
- Writing the required drivers for RPi (UART, I2C, ADC)
- Motion sensor data processing library
- Sound signal processing library to localize source
- Software to run on AWS server that will decide course of action

Solution Approach: Automatic

Testing, Verification & Metrics

M = Manual only, A = Automatic only

Feature	Metric	Success Values			
(M) Motion Detection	% accuracy of motion detection	85%+			
(M) Latency	Time taken to receive, process, and execute command	Begin rotating in < 2.3s			
(A) Accuracy of 'loudest speaker' detection	% times COMOVO rotates to loudest speaker with one person speaking at a time	85%+			
(A) Distance of people speaking from COMOVO	Distance in feet	~ 3ft			
<i>(M)</i> Distance of person motioning from COMOVO	Distance in feet	< 3ft			

Challenges

- Understanding and implementing array localization
- Mapping motions from motion sensor data to video game controller motions
- Incremental testing and integration for each feature added
- Potentially using some computer vision to classify motions from motion sensor
- Establishing direction of communication between RPi and cloud depending on the circumstance
- Extending functionality to network more than two Comovo devices
- Deciding whether to process sound/motion data locally or on AWS

Schedule

Gauri													
All													
2.11L													
Week	1-3	4	5	6	7	8	9 (Break)	10	11	12	13	14	15
Date	1/3-1/27	2/3	2/10	2/17	2/24	3/2	3/9	3/16	3/23	3/30	4/6	4/13	4/20
Task													
Research													
Choose & order hardware parts													
Research array localization													
Choose cloud platform													
Platform													
Design													
Build													
Motor Control													
Pi-servo communication													
Pi-vgc communication													
Map vgc to motion sensor													
Pi-Pi over AWS													
Send data to EC2													
Process data on EC2													
Get data from EC2													
Test motor control Pi-Pi													
Array Localization													
Finalize sound stimulus													
Rotate motor towards sound													
Integration													
Manual and automatic switch													
Testing whole													