
1
18-500 Final Project Report: 05/06/2020

E4: Run With It
Aarushi Wadhwa: Electrical and Computer Engineering,

Carnegie Mellon University

 Akash Bansal: Electrical and Computer Engineering,
Carnegie Mellon University

 Mayur Paralkar: Electrical and Computer Engineering,
Carnegie Mellon University

Abstract —A system capable of adapting the BPM of a song to
the pace of a long distance jogger. We will use the step detector
hardware sensor on a smartphone to detect footsteps of the
runner, which we will set as a target BPM for a song which will
be scaled in the time domain by a phase vocoder. The user will hit
a button on the smartphone app and begin running, and the
music will start playing while being refreshed every one and a
half minutes. A score-based algorithm will select songs from the
playlist to be played next - the score is based on how close the
song is to the runner's pace, and how recently the song was last
played.

Index Terms —Android, Beats Per Minute (BPM), Dual-Tree
Complex Wavelet Transform (DTCWT) Phase Vocoder, Footstep
Detection, Pace, Short-Time Fourier Transform (STFT) Phase
Vocoder, Time-Scale Audio Modification

A. I NTRODUCTION
Running with music can be very difficult, because if the

pace of the music does not match the runner’s natural pace, it
will throw them off and possibly ruin their run. We have
talked to runners who hum or sing their own music instead of
listening to music so that they can naturally speed up or slow
down the song to fit their running pace. Our goal is to alleviate
this burden for long distance joggers. By solving this issue,
runners will be able to get more enjoyment out of their run,
leaving them more fulfilled and feeling better.

We have seen this type of application created using just a
Short-Time Fourier Transform (STFT) based phase vocoder,
but our advantage was to come from using a Dual-Tree
Complex Wavelet Transform Phase Vocoder (DTCWT). The
latter was assumed to be more efficient and to produce higher
quality audio. However, after testing both phase vocoder
techniques, we found that the DTCWT phase vocoder was
significantly inferior to the STFT phase vocoder. Our goal was
to measure the pace of the runner every minute, take a song
within a -15/+10 BPM range of the pace, and warp it to the
necessary new BPM. The phone app is very intuitive and easy
to use, so the user just puts in their own music and presses
play; the rest is taken care of automatically.

B. D ESIGN R EQUIREMENTS
Central to our problem is the acquisition of accurate step

detection data. For a proper solution, we must be able to
achieve an accuracy great enough to ensure optimality for the
runner. State-of-the-art algorithms from recent years have

attained around 94% accuracy (defined to be true positives out
of total steps measured) [2], and so our goal was to produce
the same results. We believe this was a worthy objective, as
gaining an even greater accuracy would require research or
expertise that would require more time than our constraints for
the project allowed. State-of-the-art results should be enough
to satisfy users.

Next, we wanted to begin playing music within 225
milliseconds after the “play” button on our main app activity
is pressed. This measurement falls in line with human reaction
speed. Essentially, our goal was for there to be too little time
for users to react between the time they expect the music to
begin playing and when it actually starts.

Then, from personal testing, we have found that our pace is
between 150-180 steps/minute when we run at the speed of an
average long-distance runner. As our target is to match beats
in the song to user steps, we decided to impose a requirement
that all songs in the playlist originally have tempos between
150 and 180 BPM. Lastly, we constrained these songs to stay
between -15/+10 BPM of their natural tempo after the warping
process. In our personal experience, we have found that music
scaled outside of this range begins to pick up too many
artifacts to listen to enjoyably.

Furthermore, when warping songs, we wished for the pitch
to stay relatively the same. Only 1-5 people in 10,000 have
absolute pitch and can reliably distinguish incredibly small
differences well [3]. Our project targets the average individual.
Consequently, we necessitated that music should stay within
25 cents, or a quarter of a semitone, of the original. This is
almost unnoticeable for most people [4].

Another specification we believe is crucial to the success of
our product is the time between updates for songs. In more
detail, we wanted the songs to be “updated” (warped) every 90
seconds. If the current song ends before the 90 second interval
is over, then we wanted the next song to play immediately, but
at the same tempo as the previous one. Hence, runners will not
be impeded by the inevitable shift. Long-distance joggers tend
to stay fairly consistent in their pace throughout their run. We
believe that using a smaller increment of time may
accidentally take too many inconsequential variations into
account. For example, we do not want to change the tempo of
the music based on brief fluctuations caused by a stop light,
miniature stretches of muddy terrain, or untied shoelaces. At
90 seconds, the product would be robust to each of these
situations.

Those 90 seconds should also encompass the time required
for our algorithm to completely process the music. No more
than 30 seconds should be used for this step. We believed this
metric was reasonable for processing large chunks of data (eg
song audio). Shorter restrictions will not give time for a
reasonable algorithm to run, while longer ones may begin to
extend the update time passed desirable.

Finally, we imposed one final design requirement upon our
application. Given a list of songs, the next chosen song to be
played should be based on how recently it was played. As a
result, we could avoid irritation caused by repeatedly hearing
the same song.

2
18-500 Final Project Report: 05/06/2020

C. A RCHITECTURE AND / OR P RINCIPLE OF O PERATION
The process of operation of Run With It is shown in Fig. 1.

A more detailed block diagram is shown in Fig. 2. Prior to
using the mobile application for its purpose, the user needs to
input a set of songs into the app’s playlist. This set of songs is
what will be played back to the user during their run. The
mobile app filters user song inputs. This is shown in the block
diagram as “Music Filter” in the Android Mobile App. First,
for the preliminary version of this product, the application will
only support songs of WAV file formats. Additionally, to meet
the defined design requirements, the application only allows
songs of 150-180 BPM. The app will rely on the audio file’s
metadata on tempo as its “BPM Detection” method. At this
point, the app is ready to use.

The user will start the app, and indicate to start music by
pressing a play button. The application will receive the user’s
running data through the phone’s built-in and interfaceable
step counter sensor. These measures will allow the mobile
application to calculate the user’s pace, in terms of steps per
minute, over a given time period. The time period in the
preliminary version of the application will remain one minute.

The next component of the application is the music
component. This includes the “Song Choice Algorithm”, the
“Audio Signal Transformation”, and the “Time-Scale Audio
Modification”. The jogger’s calculated pace will be sent to the
“Song Choice Algorithm” and the “Time-Scale Audio
Modification Algorithm”.

The song-choice algorithm chooses a song from the user’s
playlist with a score-based algorithm that depends on (1) the

proximity of a song’s tempo to the jogger’s pace, and (2) how
recently the song was played. The song’s original tempo is

Fig. 2. Block Diagram

passed in from the “Music Filter”, and the jogger’s pace will
come from the “Pacing Calculations”. The chosen song will be
inputted into the “Audio Signal Transformation” function to
read the audio signal from its provided WAV format into
matrix representation such that it is compatible with the
“Time-Scale Audio Modification Algorithm”.

The “Time-Scale Audio Modification Algorithm” then
modifies the song such that the new tempo matches the
jogger’s pace, as acquired from the pacing calculations. This
modified song will be played back to the user during their run.

The pacing calculations repeat every minute. However, the
next modified song, in accordance with the user’s most recent
pace, will only play upon completion of the previous song.

Fig. 1. Principle of Operation

3
18-500 Final Project Report: 05/06/2020

TABLE 1. Device Properties

 iPhone Android Android
Smartwatch

Sensor
Accuracy

-- < 5% 10.4%

Development
Language

Swift Java & C/C++ Java (Wear
OS)

Power
Capacity

2700 mAh
(10-17 hrs)

3000 mAh (15
hrs)

472 mAh (4
days)

Processing
Power

6-Core 2.39
GHz

8-Core 2.8
GHz

Dual-Core 1.5
GHz

Ease of Use /
Comfort

Low Low High

Storage 16+ GB 16+ GB 4 GB

Our
Accessibility

1 2 1

D. D ESIGN T RADE S TUDIES

A. Device Consideration for Pace Measurements
We considered using several different devices for our

project as shown in TABLE 1. The first was an iPhone, the
second was a Samsung Galaxy phone, and the third was a
Galaxy Smartwatch. For each, we looked at a host of device
specifications that may affect our app.

As stated in the design requirements section, our ability to
capture accurate step information was paramount to our
overall project. Hence, we ran an experiment to investigate
whether the built-in hardware sensors of the devices were
accurate enough to meet our design specifications. The results
are shown in TABLE 2.

The iPhone only displayed step measure updates every 10
minutes, so we were not able to use it in our experiment.
Instead, two of us ran on a treadmill at 1 mile per hour
increments between 5 miles per hour and 10 miles per hour.
We counted our steps manually and compared it to the device
measurements for 30 seconds, 1 minute, 2 minutes, and 5
minute intervals.

TABLE 2. Step Counter Accuracy

 Samsung
S7

Samsung
S9

Galaxy
Watch

Mayur Error 13.80% 2.34% 8.36%

Aarushi Error 7.37% 5.83% 12.41%

Error per
Device

10.59% 4.08% 10.38%

For each measurement, we ran with all three (Samsung S7,
Samsung S9, Samsung Galaxy Watch) devices simultaneously.
We found that the Samsung S9 was accurate enough for the
design requirement of 94% accuracy, but the other two devices
were not.

Also, we checked the accessibility to each of the devices.
Noticeably, each device is expensive. Phones can cost
upwards of our budget ($600), while a single watch can take
up to half of it. Therefore, a crucial property of the devices is
whether we can use them at all. In our case, the three of us
have one iPhone, two Samsung Galaxy phones, and one
Samsung Galaxy Smartwatch between us.

Next, we needed to check the memory of the devices. After
all, the app and related audio takes up some amount of
memory. However, the minimum of the three was 4 gigabytes,
which is clearly more than enough for the application.
Similarly, the power capacity of the devices was analyzed.
Again, even the minimum was enough for our needs.

Perhaps one of the greatest advantages of the watches is
their comfort as compared to a phone. If using a phone during
the course of a run, you have to either hold it in your hand or
buy a sleeve to attach it to your arm. Even the latter does not
always fit comfortably. Meanwhile, a watch is simple and
lightweight.

On the other hand, phones are somewhat better for app
development. Audio processing applications obviously benefit
from stronger processors. Phones have significantly faster
clock speeds as well as more cores. As shown in TABLE 1,
the Android phone has four times the number of cores as the
watch and almost twice the clock speed.

Phones also tend to have more help resources than watches.
After all, most developers create apps for phones rather than
watches. Furthermore, we found that the Android Smartwatch
requires an additional Wear OS package to be integrated with
the app, which may add complexity to the overall application.
In general, Android is developed using the Android Studio
IDE, which uses either Java or Kotlin. The three of us have
prior experience with Java. Swift, the primary development
language for iPhones, is unfamiliar territory though. We
believe it is important to consider our familiarity with the
languages in our final design decision since our limited time
frame might be further shortened if we had to spend time
learning a new language.

B. Programming Language per Component
As previously mentioned, we factored our familiarity with

languages into consideration. Our team members have the
most experience with Python, and so researched the possibility
of using it with Android devices. TABLE 3 lists each software
that helps integrate Python with Android Studio and the
associated issues with each of them.

SL4A was a community-developed software tool to port
Python code to Android devices. However, it is no longer in
development. QPython is built on top of SL4A and may allow
for top-down development in Python, but lacks a way to
access Android’s Step Counter and Step Detector hardware

4
18-500 Final Project Report: 05/06/2020

TABLE 3. Python on Android

Software Issue(s)

SL4A (Scripting Layer for
Android) Dead! No longer in development

QPython (Script engine that
extends SL4A) No way to access Step Detector

Kivy

No way to access Step Detector
Not well documented
Complex: Requires 2 more
software tools to work on Android

External Tools Doesn’t act as a callable function

sensors. Kivy is a comprehensive software tool that allows
users to create a GUI and associated logic for almost any
device in Python. As a tradeoff though, it is not completely
optimized for Android. To get it working on Android devices,
it needs another two software tools and a Linux OS to work
correctly. Getting all three tools to work with each other adds
complexity to the project. Lastly, we explored the option of
using Android Studio’s External Tools menu to import code.
But, this option does not allow us to call our functions inside
our main Java app. Since we needed to provide arguments to
functions and call them repeatedly for our algorithms, the
External Tools menu was not feasible for our use case. We
also considered using MatLab, since the team has prior
experience in using it with the wavelet transform algorithm.
However, MatLab has the same issue as Python when trying to
use it for apps; it is not natively supported by Android Studio.

As expected, Java and Kotlin were two languages that could
be used to build the entirety of our app software. These two
languages are both supported by Android Studio, and are in
fact the main languages used to design the app UI. Although
preference seems to be moving towards Kotlin, there does not
seem to be any significant advantage to using it for a simple
application like ours.

Nevertheless, there were options aside from Java and
Kotlin. Namely, the C/C++ languages are natively supported
with the IDE. These languages are known to be fast and
effective for audio processing, but are less familiar to the
team. Their speed made them strong choices for implementing
the audio scaling algorithm. Additionally, while they are
supported, they are not trivial to use. Time had to be allocated
towards gaining familiarity with the Java Native Interface
(JNI), which allows Java and C/C++ to be integrated, and to
learn the syntax and libraries used in C++. One last advantage
of allowing the time warping component to be in C++ was the
fact that MatLab code could be mostly converted to C++ by
way of the MatLab Coder software.

C. Music File Format
 Android smartphones support audio in the file formats of
MP3, WMA, WAV, MP2, AAC, AC3, AU, OGG, and FLAC
[7]. These file formats do not all include tempo or BPM
metadata for musical files. However, additional metadata tags
can be appended to these file formats.
 The listed file formats are also not equally readable by
signal processing algorithms. Signal processing is most
commonly performed with WAV file formats. This is because
WAV files are lossless and uncompressed. As a result, they
lose no quality from the original audio [6]. Since Android
smartphones support this audio file type, the preliminary
version of this product only supports WAV files. Decreasing
the scope of allowed file formats is imperative to ensuring that
all processed audio in our C++ algorithm is treated the same
way.
 For our testing purposes, we used third party online
softwares that converted our files from MP3 or MP4 into
WAV files.

D. Time-Scale Audio Modification Algorithm
TABLE 4, below, shows the various possible methods that

could successfully implement time-scale audio modification. It
also displays their tradeoffs according to Livingston’s studies
[8].

The first methods considered are simple time domain

5
18-500 Final Project Report: 05/06/2020

techniques. This includes overlap-add (OLA) and its
variations such as synchronous OLA (SOLA) and
time-domain pitch SOLA (TD-PSOLA). These methods are
listed in order of least to most expensive, in terms of
computation time. While these methods are more efficient
than the others listed in the chart, these methods result in the
most drastic and noticeable artifacts. While pitch and
magnitude of signals are preserved, the artifacts are a result of
segmentation and simple time-scale stretches that do not result
in smooth tones [8].

The next method we considered was the short-time Fourier
transform (STFT) based phase vocoder. This method has
successfully been used by a 18-500 capstone group in the past.
It is assumed to be efficient in its simplistic implementation.
However, the simplistic implementation creates greater
artifacts. This is because smaller window size implementation
lends to greater resolution in the time domain of the signal
processing. However, smaller window sizes increase the
number of windows being processed. As a result, this
increases computation time. This advanced and more accurate
approach results in a computation of time that is considered
inefficient [8].

Lastly, we looked at the Dual-Tree Complex Wavelet
Transform (DTCWT) based phase vocoder. It is expected to be
slightly more efficient in comparison to the STFT based phase
vocoder. It also results in fewer artifacts - namely minor
erroneous frequency components. The DTCWT based phase
vocoder is a modification to the attempt of using discrete
wavelet transform (DWT) as a basis for phase vocoders.
Namely, the DTCWT improves upon the DWT base by
providing shift invariance where previously it did not exist.
This decreases the variations in the distribution of energy that
is found between DWT coefficients. As a result, a DWT based
phase vocoder would produce the same artifacts as seen
through the STFT based phase vocoder. The DTCWT,
however, is known to perform better since its shift invariance
deters the aliasing effects otherwise observed [8].

The described literature studies clearly show numerous
advantages to using the DTCWT phase vocoder. Thus, our
implementation of the time-scale audio modification algorithm
was originally going to follow this preference. However, we
tested and compared two of the described audio modification
methods: the STFT phase vocoder, and the DTCWT phase
vocoder, and had surprising results.

The STFT phase vocoder was implemented in Matlab and
was adopted from Dan Ellis’s implementation [1]. The
DTCWT phase vocoder was also implemented in Matlab, and
was adopted from Livingston’s implementation [8]. Both
implementations were appropriately modified for our
purposes. These alterations included function inputs, function
outputs, array and matrix sizes throughout the original audio
signal’s modification process, and including functionality to
visualize pitch and hear differences between the output
signals.

In comparing the two time-scale audio modification
techniques, we performed two basic experiments that
compared the results of using the two techniques to modify

Fig. 3. Experiment 1: Original Signal Pitch vs. Frequency

Fig. 4. Experiment 1: DTCWT Phase Vocoder Signal Pitch vs. Frequency

Fig. 5. Experiment 1: STFT Phase Vocoder Signal Pitch vs. Frequency

music by half of its original BPM. It is important to note

that the DTCWT signals are cut off due to its implementation
that requires padding the original array such that its size is a
power of 2, and due to Matlab array size restrictions.

The goal of experiment 1 was to test the audio
modification’s impact on vocals, and to test the speed of the
audio modification techniques. The audio used was the full
song: “Don’t Stop Believing” by Journey. The song’s duration

6
18-500 Final Project Report: 05/06/2020

was 4:10 minutes, and its BPM was 121. The pitch of the
original signal in relation to time is shown in Fig. 3 and is
titled “Believe Original Signal”.

 The result of experiment 1’s DTCWT phase vocoder output
is shown in Fig. 4, and the result of experiment 1’s STFT
phase vocoder is shown in Fig. 5. In comparing the pitch vs
frequency graphs, it is clear that Fig. 4 (the DTCWT phase
vocoder output) shows significantly greater data loss than that
of Fig. 5 (STFT phase vocoder output).

The goal of experiment 2 was to test for accuracy in the
audio modification process with music of more complex
layers, and to test the algorithms' performances on a song
within our range of 150-180 BPM. The audio used here was
the instrumental intro of the song: “Eye of the Tiger” by
Survivor. This intro snippet’s duration was 46 seconds, and its
BPM was 165. The pitch of the original signal in relation to
time is shown in Fig. 6 and is titled “Tiger Original Signal”.

The result of experiment 2’s DTCWT phase vocoder output
is shown in Fig. 7, and the result of experiment 2’s STFT
phase vocoder is shown in Fig. 8. Again, it is clear the Fig. 7
of the DTCWT phase vocoder output shows significantly
greater data loss than that of the Fig. 8 STFT phase vocoder
output.

In Experiment 1, the warping process with the STFT phase
vocoder took 36.33 seconds, and the warping process with the
DTCWT phase vocoder took 212.68 seconds. In Experiment
2, this process with the STFT phase vocoder took 2.37
seconds, and this process with the DTCWT phase vocoder
took 29.87 seconds. Through these timing measures. we see
that the runtime of both algorithms varies and is dependent on
the size of the input audio signal that must be modified.
However, we consistently see that the STFT phase vocoder
takes drastically less time to compute audio modification in
comparison to the DTCWT phase vocoder.

While measuring pitch loss visually and through pitch
values is consequential for verifying whether these audio
modification methods meet our design requirements of 25
cents variance between the original and modified signals,
audible pitch loss is most important to our use case, since our
user’s will be listening to the modified music. To that end, we
compared the modified signals between the STFT phase
vocoder and the DTCWT phase vocoder for each experiment.
Again, the results for each of these experiments were the
same: the DTCWT phase vocoder generated fuller sounds.
However, on average, they were unclear. On the other hand,
the STFT phase vocoder generated thinner sounds which
caused pitch to definitely increase, but the sounds were
clearer, which made the output signal discernable as the
original song that was modified. It is important to note that
there are significant extraneous artifacts generated by both
audio modification techniques in these experiments since we
are modifying the songs to be half of their original BPM.
Thus, this is an intense modification that suffers intense
artifacts from the output signals. There will be less artifacts
when computing the modified signals for the purpose of Run
With It since we restrict all modification to remain with
-15/+10 BPM (at most 10% modified).

Fig. 6. Experiment 2: Original Signal Pitch vs. Frequency

Fig. 7. Experiment 2: DTCWT Phase Vocoder Signal Pitch vs. Frequency

Fig. 8. Experiment 2: STFT Phase Vocoder Signal Pitch vs. Frequency

Through these two experiments, we compared STFT and

DTCWT phase vocoder techniques for signals of differing
lengths, BPMs, and layered sound types. We learned that
regardless of variations of these song characteristics, one of
the time-scale audio modification techniques always
performed far better than the DTCWT phase vocoder. This
was in terms of speed, visual pitch loss, and audible song

7
18-500 Final Project Report: 05/06/2020

comprehensibility. Thus, we implemented the superior
time-scale audio modification technique in our app: the STFT
phase vocoder.

E. S YSTEM D ESCRIPTION

A. Mobile App
We decided to use Android Studio for developing the

Android application. This allowed us to leverage our
knowledge of Java while taking advantage of the rich
community resources provided. Furthermore, Android Studio
is the environment of choice for developing Android mobile
applications. We chose to use Java in Kotlin because of our
familiarity with the language, and the lack of disadvantages
with using the former over the latter. The app has a single
Main Activity that users can use to start the app. Once the
“play” button is pressed, the app will trigger our business logic
by calling the song selection algorithm with a default tempo.
A selection of songs, already tagged with tempos, will be
chosen from a playlist. The first screen of the app is shown in
Fig. 9.

Fig. 9. Main Activity

For signal processing, we used Matlab and ported the code

to C++, and for the song selection algorithm, we implemented
it directly in Java. We found research that showed the
DTCWT and STFT implemented in Matlab. Furthermore, it is
extremely fast compared to some other languages. In the end,
the complexities of integrating Python with the IDE and its
relative slow speed were too great of sacrifices to use it for our
project.

The Main Activity is the main point of interface between
other subsystems. Pace measurements from the step counter
system are taken here and sent to the song selection algorithm.
A queue is implemented to deal with songs that do not end on
90 second intervals. Chunks are taken from the queue and sent
to the time-scale audio modification algorithm to be warped.
When the audio is returned, it is directly fed to the user.

The speed that the music starts playing after hitting the start
button was an important metric to test. We required that the
music start playing within 225 ms of the user hitting the play
button. We tested this multiple times by simulating a timer in

the code. We found that the maximum time between the button
press and the music playing was 5 ms; thus meeting our
human reaction time requirement.

B. Step Detection Sensor
Since we created the application on the phone, we felt that

in order to make the user experience better, we should
minimize the amount of extraneous hardware the user must
wear. For that reason, we decided to use the step counter
sensor in the smartphone since it is always included and
integrated with the system we are using. We found the step
counter sensor superior to the step detector and accelerometer
sensors, since it is optimized in the hardware of the phone
itself, and already accounts for false positives in footsteps.
Before we blindly chose to use the smartphone for collecting
the step count data, we wanted to test it to make sure it was
accurate enough to work for our project.

To test the sensor, we recorded the data from the phone and
our manual count from the treadmill tests, corrected for error,
and calculated the difference. In the end, we found that the
newest generation of phones had 94% accuracy, and the
generation prior to that had 90% accuracy. With this data, we
felt confident that the phone was a good device to use to
collect our data and use for our project.

We found after implementing the step counter sensor that it
provided inaccurate data because it removed the false
positives. We also found that it was much slower since it took
time to process the data to remove the false positives. We
could not have this as we wanted to collect data on exactly 60
second intervals, therefore we went with implementing the
step detector function which still met our 94% accuracy
requirement and was able to report the data on our needed
time intervals.

We considered using an iPhone as well but had too many
issues trying to collect the footstep data from it, so it ruled out
that device. We also considered the Samsung Galaxy Watch,
however, we found through our testing that the error was quite
high which made us unsure whether it would be reliable
enough to use as the main device collecting and sending our
data. For that reason we ended up using Android smartphones,
which made it easier for us to build the app too, since we
could just use Android Studio to build it and test it right on the
phone.

C. BPM Refresh Rate
The tempos of running songs chosen are between 150 and

180 BPM, following our design requirements exactly.
Additionally, no song should be warped to a tempo that is less
than 15 or greater than 10 beats per minute of its original. We
chose to use a predefined list of songs tagged with
preprocessed tempos. Note that it is trivial to ping app APIs to
obtain song tempos. Thus, we felt it unnecessary to implement
a custom tempo detection algorithm. If this project was
extended into a real product, integrating the app with a music
player like spotify would eliminate the need for the tempo
detection.

The refresh rate for songs is 90 seconds. This allotted 60

8
18-500 Final Project Report: 05/06/2020

seconds for determining pace and 30 seconds for audio
modification. After a song ends, a new song is chosen to
continue playing at the user’s pace; in essence, the BPM
between the previous song and the new song should
theoretically be the same if a runner’s pace remains the same.

The reasoning for picking 90 seconds is because we found
through our testing that collecting less than 60 seconds of
running data was inaccurate and also would require us to make
extra calculations that getting exactly 60 seconds of data does
not require. The extra 30 seconds is used to send the song
through the time scale audio modification algorithm, which we
found takes up to roughly 30 seconds for a whole song using
the implemented STFT phase vocoder. If we chunk the songs
into smaller portions, it would take even less time to warp.

D. Song Selector Algorithm
This component is software that is very important for the

end quality of the music that is produced by the app. This
component takes the pace of the runner that was previously
collected and uses it to find the next song to play- the one that
best matches the runner’s current pace. As stated earlier, we
require that the song should fall in a -15/+10 BPM range of
the runner’s pace so that when the song goes through the
time-scale audio modification algorithm, it will still sound
pleasant to the ear of the user.

The songs are scored on a scale where 10 is the perfect song
and all other songs are scored relatively (including negative
scores). Our goal is for the BPM of the song to be close to the
pace, so the distortion and artifacts created in the song are kept
to a minimum after the audio modification. Thus, the scoring
works in a way where a smaller difference between the
runner’s pace and the BPM of the song will score the song
higher, and the opposite will score the song lower. Because
our goal is to keep the audible distortion to a minimum, we
would rather have the algorithm replay a song that fits, rather
than pick a song that is out of the range. However, to take that
into account, there will be a penalty system for playing a song
more than once. Thus, we start each song with a score of 10.
From there, we subtract the absolute value of the runner’s pace
from the song BPM and divide that by 10, where dividing by
10 provides a scaling factor since the highest score a song can
have is 10. Finally, we subtract a multiplier if the song has
been played multiple times (i.e, subtract 1 point each time a
song has been played).

Only songs that fit within the -15/+10 relative BPM
between the song and runner are scored, if the song does not
meet this requirement, it is skipped for that round of
evaluation.

As mentioned earlier, the songs scores can go negative if the
song has been played enough, this is allowed as all the songs
are scored and picked relative to each other. Therefore, the
actual number does not matter as much as the rankings based
on the scores.

Overall, this system is not too complicated, as we are going
to tag the songs with their BPMs and we just need to compare
that to the base runner’s pace and find the best song. Through
our testing, we found this algorithm to be quite fast on a

playlist of 20 songs. We tested with all different user input
BPMs to test the different aspects of the requirements. In all
cases we found our algorithm to meet the requirements. Fig.
10 shows the results of running the algorithm on our own
running data. Looking at the list, Song 3 is never played and
Song 13 is played 2 times. This shows that even though there
was deduction for Song 13 having already been played once, it
was still closer in BPM than Song 3, thus got selected again.

Fig. 10. Song Selection Algorithm

E. Audio Signal Transformation (for Language
Integration)

 In order for the JNI to work, we needed to transform the
Java types that were output from the step detector and song
selection algorithm into types readable by C++. Secondly, we
had to find a way to transform the output of the time warping
algorithm into something readable by Java. Lastly, our use of
MatLab Coder transformed the STFT phase vocoder code
from MatLab into C++. However, not all functions can be
fully ported by the software. For example, we wrote the
functionality of the Matlab audioread() function in C++, since
the program does not have an analogous function provided in
C++. Ironically, the argument passing was the last step of
integration missing from our system. While we wrote our own
implementation, it was not fully functional by the deadline of
our project. We believe we had the more theoretically complex
audioread function and other integration steps fully complete.

9
18-500 Final Project Report: 05/06/2020

Fig. 11. Time-Scale Audio Modification Block Diagram

F. Time-Scale Audio Modification Algorithm
 The time-scale audio modification algorithm used in the

prototype of this mobile application is a short time fourier
transform (STFT) phase vocoder algorithm. Fig. 11. depicts a
block diagram of how this algorithm works. The phase
vocoder takes two inputs: (1) original input signal, x and (2)
the change ratio, r.

 current running pace original song BP M (1) r = /
While the original input signal matrix is acquired from the

Audio Signal Transformation method, the change ratio
acquires the current running pace from the Step Detection
function, and the original song BPM from the song’s metadata
when it is imported into the Song Selection algorithm.

 The original input signal, x, is transposed to X. The STFT
coefficients of X are calculated using Hann windowing which
samples and smoothes the signal symmetrically. The STFT
coefficients are stored in an array, X1, which is used to
reconstruct the signal in accordance to the change in phase as
seen by the change ratio r. Finally, performing an inverse
STFT on the reconstructed signal, X2, transforms the
modulated signal back into waveform in the same way the
original signal’s STFT coefficients were deconstructed. This
output, y, is the modified signal in accordance with the change
ratio, r, of the original song’s signal, x.

F. T ESTING / VALIDATION
TABLE 6. Implemented System Values

Design Specifications Specifications of Implemented
System

Step detection of at least 94%
accuracy Achieved up to 95.4% accuracy

Music plays within 225 milliseconds
of button-press Music plays within 5 milliseconds

Music tempo range: 150 - 180 BPM Implemented as a restriction when
inputting music

Require music of -15/+10 BPM
relative to pace

Implemented as hard constraint
within software

The probability of playing any song
in playlist is equal

RNG for initial song; else
algorithmically chosen

Music should be modified every 90
seconds

Implemented; dummy fn pinged
on time

Pitch should stay within 25 cents of
original (1.01 Hz) Within around 5 Hz on average

Our first design specification related to the accuracy of our
app in detecting each step of the user. For an unknown reason,
the S9 phone we originally planned to use stopped providing
data after a small window of time. We turned to using the S6,
a model with the theoretically least accurate step detector
sensor, to test this metric. We ran for several minutes at a time
several times in a row, manually counting our steps along the
way. For each individual run, we compared the measured steps
(sent as an email on the app) versus our manual count.
Overall, we found that we achieved about 95.4% accuracy
when detecting individual steps. It is reasonable that we
achieved higher than our goal, as the research papers we
consulted measured their accuracy over a wider variety of
paces and terrains, for which their results suffered. Our narrow
scope and use of the built-in sensor let us achieve high results.

Next, we added a timing block within our code to find how
long it took our app to begin playing music after the “play”
button was pressed on the main activity. With 20+ presses, the
longest time taken was only 5 milliseconds, which was far
better than our original goal.

Many of our specifications were simply implemented
directly in the code. A minimum and maximum function was
used to make sure that the BPM was the maximum of 150 and
the measured, or the minimum of 180 and the measured. All
songs which were added to the playlist had tempos between
150 and 180 BPM as well. Together, these points satisfied the
requirement for music to always stay in the desired range.
Similarly, the -15/+10 requirement was implemented with
min/max functions too. Yet another requirement that we
achieved in software was the constraint that music was to be
warped every 90 seconds. While this part of the integration
was not complete, the native function was called every 90
seconds via a timer in the code.

As described in the design requirements, we wanted the
probability of choosing any song within the playlist to play to
be equal. For the very first song, we choose a random number
and use the modulus function. Other songs are picked as
described in the song selection algorithm section above.
Hence, the probability of any song being played is roughly
equal.

Our last design specification was that the pitch of the
modified signal should be within 25 cents, or 1.01 Hz, of the
original signal’s pitch. With the STFT phase vocoder
time-scale audio modification algorithm, we did not
successfully meet this system requirement. A few of our
experiments in testing this specification are shown below in
TABLE 7.

10
18-500 Final Project Report: 05/06/2020

 We performed four experiments on the same “Eye of the
Tiger” intro instrumental snippet as used in Section D.D’s
experiment 2. Each experiment is unique by the change ratio
(Pace/BPM). The change ratio for two of the experiments,
shaded in orange, are within our design specifications of
-15/+10 BPM modification. The change ratio for two other
experiments, shaded in purple, are outside of our design
specification range of -15/+10 BPM modification.

 For each of the experiments we calculated and compared the
following characteristics of our audio modification results: (1)
the mean pitch of the signal, (2) computation time, (3) the
minimum and maximum pitches of the modified signals, and
(4) the modified signal’s pitch at the corresponding index of
the original signal’s absolute minimum. These characteristics
are represented as individual columns in TABLE 7.

 We see that computation time on the same signal varies
slightly amongst runs; however, the change ratio has no
impact on the runtime, as expected. We also see that each of
the signal’s absolute minimum and maximum pitches are of
the same frequency. This implies that the signals’ frequency
ranges have not been altered overall.

 We see differences in the mean pitches, and the pitches at
original signal minimum columns. The mean pitch for the
modified signals within our range are within 5 Hz of the
original mean pitch. The mean pitch of the signals outside of
our range are similar but greater than those of the signals
within our range. In the pitch at original signal minimum, we
see that the pitch for the 150/165 change ratio remained the
same as the original pitch at 50 Hz. This held true for change
ratios around 170/165 as well. The 341.86 Hz value that we
see for the 175/165 change ratio is a major artifact that was
formed in this one specific test case. Although it is not ideal, it
presents an accurate depiction of some unexpected artifacts
through this audio modification. Additionally, it was an
important change ratio to record since it is the boundary of our
-15/+10 BPM modification range. We see that this measure for
the change ratios outside of our range are comparatively close
to the original pitch of 50 Hz. However, the majority of the
values for this measure, for the experiments within our
-15/+10 BPM modification range, are within our 1.01 Hz pitch
variance specification. Thus, the 52.88 Hz, and 65.43 Hz are
relatively insignificant.

 As a result, these test experiments have validated the
necessity for our -15/+10 BPM modification range
specification. Thus, this was programmed as a restriction into
our overall system through the Song Selection Algorithm.

G. P ROJECT M ANAGEMENT

A. Schedule
The Gantt Chart in Fig. 12 below shows a visual mapping of

our roadmap for the semester. We broke down the schedule
into small sections based on the tasks assigned to us. The chart
is organized in sequential order. We spent a lot of time on
research to figure out exactly what components our project
needed, and from there, we divided the subcomponents to
work on based on our expertise. Since the components are
tricky, we wanted to make sure that we worked properly
individually, which is why we put so much time into planning
and testing before even starting the main parts of the project.
We had to alter our original schedule a little bit after spring
break to allot more time for integration, and some of our area
implementations took less time. We knew being remote would
make it harder to put the components together which is why
we made this change to our schedule.

B. Budget
Our bill of materials did not contain many components,

because we only required a smartphone and headphones. Our
bill of materials is shown in TABLE 8.

Two of our team members own Android smartphones and
bluetooth headphones, and we used those for testing and
working on the project. We did not need to buy these materials
for the project.

TABLE 8. Bill of Materials

Item Price

Android Smartphone $800

Bluetooth Headphones $200

11
18-500 Final Project Report: 05/06/2020

C. Team Member Responsibilities
Our project was split up into three parts, allowing each one

of us to be assigned a different part and work on it. Aarushi
worked on the signal processing phase vocoders. Akash
worked on the song selection algorithm and the footstep
detection with Android. Finally, Mayur built the app that hosts
and would bridge each of the subsystems. He also ported the
audioread() code and worked with Aarushi and Akash to
integrate their code with the app. Akash and Aarushi worked
together for getting the data from the step detection to the song
selection, and then taking the song and data needed into the
time-scale audio modification algorithm. Mayur helped Akash
with the step detection with Android since that is all linked
together in Android Studio, which we used to build our
application.

Once we all got our individual parts done, we revised each
individual subsystem such that they would be compatible with
each other, and could be easily integrated. Finally, we tested
the revised versions of each of our independent subsystems.
We tried to optimize and improve features to make the overall
product more efficient where possible. Our goal was to meet
or surpass the metrics we set in the design requirements. The
parts we picked match our strengths as teammates. Aarushi
has done numerous projects in signal processing while Akash
and Mayur have worked more on the software side. This
allowed us to adapt easily and finish our parts on time, since
we have decent knowledge on the parts we are working on.

D. Risk Management
We built risk management into our project in a couple ways.

First in terms of the schedule, as we mentioned before, we
added slack time into it to make sure we could account for any
issues we ran into as we developed our project. This allowed
us to work out these issues without running out of time at the
end of the semester. With the rearranged schedule, we still had
enough time to complete the goals for each smaller piece of
the system.

From the design side, we had backups for potential
problems that could have come up while working on the
project. We had four specific cases for our metrics that we laid
out earlier. The main risk factor was using the DTCWT phase
vocoder. If it did not work, we would fall back on using the
STFT based phase vocoder that we knew works well for
music. We considered the possibility of having to implement
our own, or simply using a library on GitHub. We did our
research and put most of our time into this aspect of the
project since it was the focus point that differentiates us from
other apps like this, while also being the primary risk factor.
As it turns out, we were able to verify that the STFT based
Phase Vocoder performed in a superior fashion to the other.
Our risk management worked well here.

The second biggest risk factor was the accuracy of the step
detection from the smartphones. We did testing and saw that
the phone met our accuracy requirements, so we hoped that
this would not be an issue, but if we had found out during
implementation and testing that the accuracy was not as good

as we thought, we were going to order a pedometer that we
could collect the data from instead. The smaller risk factors
involved the timing of the application, which would result in
us widening the timing windows for our refresh rate, and
minimizing the time it takes for the app to start when initially
opened. We found no issues with the step detection or timing,
and thus did not need to fall back on back-up plans.

In terms of budget, we did not run into any issues since we
already had everything we needed.

H. R ELATED W ORK
There have been several similar products or projects to our

own. Spotify used to have a Running Feature that matched the
music with running cadence. In fact, the algorithm used the
phone’s internal hardware and similar BPMs as ours.
However, this feature was retired in 2018 and no longer exists.

Some apps exist that implement similar features as well.
PaceCoach and PowerRunner are two examples, but only exist
for iPhones. This is in contrast to our app, which runs on
Android devices. A Play store app is RockMyRun, which
offers playlists that can match music tempo with runner pace.
However, matching BPM to steps is a premium feature.
Furthermore, users can only listen to playlists instead of songs
already on their device.

In the past, two similar capstone projects have been
attempted by other students. A common stumbling block for
these groups is the actual audio warping; often, too many
artifacts are picked up, making it difficult to enjoy listening to
songs. DJ Run, a project from 18-551 during the Spring of
2013, managed to implement algorithms for both pace
detection and tempo detection of songs. They used a phase
vocoder algorithm for the time-scale audio modification. We
planned on using the DTCWT phase vocoder instead, since we
assumed it to be more accurate based on our literature reviews,
However, as seen in Section E, we learned that the STFT
phase vocoder was the superior time-scale technique.
Additionally, we did not recreate the tempo detection and pace
detection algorithms, since those have already been
implemented by others. Instead, we integrated those tested
functionalities, and wrote an accompanying song selection
algorithm.

During the Spring 2018 semester of 18-500, one team
created the project “Song Hunter”, which warped song for
cyclists. They also used a vocoder. However, they noted that
while the algorithm mostly worked, it sometimes left behind
artifacts or a muffled sound. Obviously, the target audience for
this project was different than ours.

I. S UMMARY
To reiterate, Run With It is an Android mobile application

that modifies music such that its beats per minute matches an
average long-distance jogger’s pace (steps per minute). It is
limited by its target audience being the average long-distance
jogger. As a result, this limitation caused the time period of
pace and music modification to be 90 seconds. This limitation
also shaped what kind of music this mobile application can

12
18-500 Final Project Report: 05/06/2020

interface with. The allowed music was restricted to be within a
tempo range of 150-180 BPM - similar to the pace of an
average long-distance jogger. These limitations contributed to
defining requirements for a preliminary version of this
product. Methods to improve these restrictions are discussed
in the Future Work section J.

To conclude, the following is a summary of our
considerations that influenced the product design of Run With
It : step detection accuracy, software speed of responsiveness,
tempo of supported music, optimal difference in original
music tempo and jogger’s pace, sequencing of music on a run,
time period of pace and music modification, pitch difference
between original and modified music, audio modification
techniques, and the technological means to implement each of
the components of the product (i.e. devices, languages,
libraries, algorithms, etc.). Future work will entail creating
advanced user options and functionalities of our thus far
implemented prototype.

J. F UTURE W ORK
While we currently do not plan on continuing this project

after this semester, we have extensive plans for possible future
work to bolster this product. First, we recommend
reestablishing the design requirement for measuring quality of
a modified audio signal. Along with implementing the product
as designed in this document, we suggest extending the
functionality of the product.

This extension plan includes expanding the tempo range of
allowable music and expanding the file types of allowable
music. This can be done by increasing the initial allowed
music BPM range to 135-180BPM since our new running test
data suggests that joggers also commonly run between
140-150 steps/minute. Additionally, music within the range of
68-90 BPM could also be included since this range is half of a
runner’s pace range. In this case, the modified music would
simply use a new change ratio, r new , as shown in Equation 2
below.

 (current running pace 2) original song BP M (2) rnew = / /

This would be in accordance with our -15/+10 BPM
modification design restriction.

Additionally, to advance the app to function better as a
product, future work should include creating multiple features
on the app that allow the user to set preferences for their run.
Such preferences could include setting a tempo to be matched
throughout a run (as opposed to the tempo matching the
runner’s pace), and/or setting a desired sequence for song play
throughout the run (as opposed to the software choosing the
most optimal song based on the runner’s pace and previously
played music). These preferences for user’s to use the
application as it fits to their personal needs.

Our app is based on research that proves that matched music
tempo and pace enhances an athlete’s energy and running
experience. However, this has been realized to be contingent
on the runner setting their own pace independent of any
external factors. A few peer athletes gave feedback that if a

runner attempts to match pace to the tempo of the music, then
there will be a constant loop of pace and music tempo
decreases. This may not be optimal for the running user.
Therefore, we tested this concern by running to our
time-scaled music, and measuring our pace accordingly. From
this personal experience, we agree that listening to a slowed
song causes an urge for the runner to slow their pace. As a
result, we suggest that the app should include a mode that
allows the user to set their desired running pace, and scale the
music only to match the runner’s pace if the runner’s pace is
greater than the runner’s desired pace. This would allow the
runner to speed up and have the music match their faster pace.
However, if the runner’s pace was slower than their desired
pace, the music’s BPM would not slow down enough to
prompt the user’s pace to slow down below their desired pace.

Additionally, the application could be further integrated
with a user’s preferred music applications such as Spotify or
Google Play. These settings and extensions would give the
user more control and accessibility with their playlist, without
defeating the purpose of Run With It .

R EFERENCES

[1] D. P. E. Ellis, “A Phase Vocoder in Matlab”, 2002. [Online]. Available:
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/

[2] H. Lee, S. Choi, and M. Lee, “Step Detection Robust Against the
Dynamics of Smartphones,” Sensors , vol. 15, no. 10, Oct. 2015.
[Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634483/ . [Accessed
Jan. 20, 2020].

[3] WA Brown et al, “Autism-related language, personality, and cognition in
people with absolute pitch: results of a preliminary study,” Journal of
Autism and Developmental Disorders , vol. 33, no. 2, Apr. 2003.
[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/12757355 .
[Accessed Jan. 26, 2020].

[4] J.M. Zarate, C. R. Ritson, and D. Poeppel, “Pitch-interval discrimination
and musical expertise: Is the semitone a perceptual boundary?” The
Journal of the Acoustical Society of America , vol. 132, no. 2, Aug. 2012.
[Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427364/ . [Accessed
Jan. 26, 2020].

[5] A. Morton, Average Foreground Battery Drain for Android App
Categories - An M2 App Insight Report , AT&T Developer Program,
Feb. 2015. Accessed on: Feb. 29, 2020. [Online]. Available:
https://developer.att.com/blog/average-foreground-battery-drain-for-andr
oid-app-categories-an

[6] J. Nugent, “WAV or MP3: What's the Difference?,” Audio Buzz ,
30-Jan-2020. [Online]. Available:
https://www.audiobuzz.com/blog/wav-or-mp3-whats-the-difference/.
[Accessed: 03-Mar-2020].

[7] “Supported media formats : Android Developers,” Android
Developers . [Online]. Available:
https://developer.android.com/guide/topics/media/media-formats.
[Accessed: 03-Mar-2020].

[8] J. B. Livingston, “Time-Scale Modification of Audio Signals Using the
Dual-Tree Complex Wavelet Transform.”

[9] “C Wavelet Libraries,” C Wavelet Libraries . [Online]. Available:
http://wavelet2d.sourceforge.net/. [Accessed: 04-Mar-2020].

[10] Kingsbury, N. G. Complex Wavelets for Shift Invariant Analysis and
Filtering of Signals. Journal of Applied and Computational Harmonic
Analysis, vol 10, no 3, May 2001, pp. 234-253.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634483/
https://www.ncbi.nlm.nih.gov/pubmed/12757355
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3427364/
https://developer.att.com/blog/average-foreground-battery-drain-for-android-app-categories-an
https://developer.att.com/blog/average-foreground-battery-drain-for-android-app-categories-an

13
18-500 Final Project Report: 05/06/2020

Fig. 12. Gantt Chart

