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Abstract —A  system  capable  of  adapting  the  BPM  of  a  song  to            
the  pace  of  a  long  distance  jogger.  We  will  use  the  step  detector              
hardware  sensor  on  a  smartphone  to  detect  footsteps  of  the           
runner,  which  we  will  set  as  a  target  BPM  for  a  song  which  will               
be  scaled  in  the  time  domain  by  a  phase  vocoder.  The  user  will  hit               
a  button  on  the  smartphone  app  and  begin  running,  and  the            
music  will  start  playing  while  being  refreshed  every  one  and  a            
half  minutes.  A  score-based  algorithm  will  select  songs  from  the           
playlist  to  be  played  next  -  the  score  is  based  on  how  close  the               
song  is  to  the  runner's  pace,  and  how  recently  the  song  was  last              
played.  

Index  Terms —Android,  Beats  Per  Minute  (BPM),  Dual-Tree        
Complex  Wavelet  Transform  (DTCWT)  Phase  Vocoder,  Footstep        
Detection,  Pace,  Short-Time  Fourier  Transform  (STFT)  Phase        
Vocoder,   Time-Scale   Audio   Modification  

A. I NTRODUCTION  
Running  with  music  can  be  very  difficult,  because  if  the           

pace  of  the  music  does  not  match  the  runner’s  natural  pace,  it             
will  throw  them  off  and  possibly  ruin  their  run.  We  have            
talked  to  runners  who  hum  or  sing  their  own  music  instead  of             
listening  to  music  so  that  they  can  naturally  speed  up  or  slow             
down  the  song  to  fit  their  running  pace.  Our  goal  is  to  alleviate              
this  burden  for  long  distance  joggers.  By  solving  this  issue,           
runners  will  be  able  to  get  more  enjoyment  out  of  their  run,             
leaving   them   more   fulfilled   and   feeling   better.   

We  have  seen  this  type  of  application  created  using  just  a            
Short-Time  Fourier  Transform  (STFT)  based  phase  vocoder,        
but  our  advantage  was  to  come  from  using  a  Dual-Tree           
Complex  Wavelet  Transform  Phase  Vocoder  (DTCWT).  The        
latter  was  assumed  to  be  more  efficient  and  to  produce  higher            
quality  audio.  However,  after  testing  both  phase  vocoder         
techniques,  we  found  that  the  DTCWT  phase  vocoder  was          
significantly  inferior  to  the  STFT  phase  vocoder.  Our  goal  was           
to  measure  the  pace  of  the  runner  every  minute,  take  a  song             
within  a  -15/+10  BPM  range  of  the  pace,  and  warp  it  to  the              
necessary  new  BPM.  The  phone  app  is  very  intuitive  and  easy            
to  use,  so  the  user  just  puts  in  their  own  music  and  presses              
play;   the   rest   is   taken   care   of   automatically.   

B. D ESIGN    R EQUIREMENTS  
Central  to  our  problem  is  the  acquisition  of  accurate  step           

detection  data.  For  a  proper  solution,  we  must  be  able  to            
achieve  an  accuracy  great  enough  to  ensure  optimality  for  the           
runner.  State-of-the-art  algorithms  from  recent  years  have        

attained  around  94%  accuracy  (defined  to  be  true  positives  out           
of  total  steps  measured)  [2],  and  so  our  goal  was  to  produce             
the  same  results.  We  believe  this  was  a  worthy  objective,  as            
gaining  an  even  greater  accuracy  would  require  research  or          
expertise  that  would  require  more  time  than  our  constraints  for           
the  project  allowed.  State-of-the-art  results  should  be  enough         
to   satisfy   users.  

Next,  we  wanted  to  begin  playing  music  within  225          
milliseconds  after  the  “play”  button  on  our  main  app  activity           
is  pressed.  This  measurement  falls  in  line  with  human  reaction           
speed.  Essentially,  our  goal  was  for  there  to  be  too  little  time             
for  users  to  react  between  the  time  they  expect  the  music  to             
begin   playing   and   when   it   actually   starts.   

Then,  from  personal  testing,  we  have  found  that  our  pace  is            
between  150-180  steps/minute  when  we  run  at  the  speed  of  an            
average  long-distance  runner.  As  our  target  is  to  match  beats           
in  the  song  to  user  steps,  we  decided  to  impose  a  requirement             
that  all  songs  in  the  playlist  originally  have  tempos  between           
150  and  180  BPM.  Lastly,  we  constrained  these  songs  to  stay            
between  -15/+10  BPM  of  their  natural  tempo  after  the  warping           
process.  In  our  personal  experience,  we  have  found  that  music           
scaled  outside  of  this  range  begins  to  pick  up  too  many            
artifacts   to   listen   to   enjoyably.  

Furthermore,  when  warping  songs,  we  wished  for  the  pitch          
to  stay  relatively  the  same.  Only  1-5  people  in  10,000  have            
absolute  pitch  and  can  reliably  distinguish  incredibly  small         
differences  well  [3].  Our  project  targets  the  average  individual.          
Consequently,  we  necessitated  that  music  should  stay  within         
25  cents,  or  a  quarter  of  a  semitone,  of  the  original.  This  is              
almost   unnoticeable   for   most   people   [4].  

Another  specification  we  believe  is  crucial  to  the  success  of           
our  product  is  the  time  between  updates  for  songs.  In  more            
detail,  we  wanted  the  songs  to  be  “updated”  (warped)  every  90            
seconds.  If  the  current  song  ends  before  the  90  second  interval            
is  over,  then  we  wanted  the  next  song  to  play  immediately,  but             
at  the  same  tempo  as  the  previous  one.  Hence,  runners  will  not             
be  impeded  by  the  inevitable  shift.  Long-distance  joggers  tend          
to  stay  fairly  consistent  in  their  pace  throughout  their  run.  We            
believe  that  using  a  smaller  increment  of  time  may          
accidentally  take  too  many  inconsequential  variations  into        
account.  For  example,  we  do  not  want  to  change  the  tempo  of             
the  music  based  on  brief  fluctuations  caused  by  a  stop  light,            
miniature  stretches  of  muddy  terrain,  or  untied  shoelaces.  At          
90  seconds,  the  product  would  be  robust  to  each  of  these            
situations.  

Those  90  seconds  should  also  encompass  the  time  required          
for  our  algorithm  to  completely  process  the  music.  No  more           
than  30  seconds  should  be  used  for  this  step.  We  believed  this             
metric  was  reasonable  for  processing  large  chunks  of  data  (eg           
song  audio).  Shorter  restrictions  will  not  give  time  for  a           
reasonable  algorithm  to  run,  while  longer  ones  may  begin  to           
extend   the   update   time   passed   desirable.  

Finally,  we  imposed  one  final  design  requirement  upon  our          
application.  Given  a  list  of  songs,  the  next  chosen  song  to  be             
played  should  be  based  on  how  recently  it  was  played.  As  a             
result,  we  could  avoid  irritation  caused  by  repeatedly  hearing          
the   same   song.   
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C. A RCHITECTURE     AND / OR    P RINCIPLE     OF    O PERATION  
The  process  of  operation  of Run  With  It is  shown  in  Fig.  1.              

A  more  detailed  block  diagram  is  shown  in  Fig.  2.  Prior  to             
using  the  mobile  application  for  its  purpose,  the  user  needs  to            
input  a  set  of  songs  into  the  app’s  playlist.  This  set  of  songs  is               
what  will  be  played  back  to  the  user  during  their  run.  The             
mobile  app  filters  user  song  inputs.  This  is  shown  in  the  block             
diagram  as  “Music  Filter”  in  the  Android  Mobile  App.  First,           
for  the  preliminary  version  of  this  product,  the  application  will           
only  support  songs  of  WAV  file  formats.  Additionally,  to  meet           
the  defined  design  requirements,  the  application  only  allows         
songs  of  150-180  BPM.  The  app  will  rely  on  the  audio  file’s             
metadata  on  tempo  as  its  “BPM  Detection”  method.  At  this           
point,   the   app   is   ready   to   use.   

The  user  will  start  the  app,  and  indicate  to  start  music  by             
pressing  a  play  button.  The  application  will  receive  the  user’s           
running  data  through  the  phone’s  built-in  and  interfaceable         
step  counter  sensor.  These  measures  will  allow  the  mobile          
application  to  calculate  the  user’s  pace,  in  terms  of  steps  per            
minute,  over  a  given  time  period.  The  time  period  in  the            
preliminary   version   of   the   application   will   remain   one   minute.  

The  next  component  of  the  application  is  the  music          
component.  This  includes  the  “Song  Choice  Algorithm”,  the         
“Audio  Signal  Transformation”,  and  the  “Time-Scale  Audio        
Modification”.   The   jogger’s   calculated   pace   will   be   sent   to   the   
“Song  Choice  Algorithm”  and  the  “Time-Scale  Audio        
Modification   Algorithm”.  

The   song-choice   algorithm   chooses   a   song   from   the   user’s  
playlist   with   a   score-based   algorithm   that   depends   on   (1)   the  

proximity   of   a   song’s   tempo   to   the   jogger’s   pace,   and   (2)   how  
recently   the   song   was   played.   The   song’s   original   tempo   is  

 
 

Fig.   2.   Block   Diagram  

passed  in  from  the  “Music  Filter”,  and  the  jogger’s  pace  will            
come  from  the  “Pacing  Calculations”.  The  chosen  song  will  be           
inputted  into  the  “Audio  Signal  Transformation”  function  to         
read  the  audio  signal  from  its  provided  WAV  format  into           
matrix  representation  such  that  it  is  compatible  with  the          
“Time-Scale   Audio   Modification   Algorithm”.   

The  “Time-Scale  Audio  Modification  Algorithm”  then       
modifies  the  song  such  that  the  new  tempo  matches  the           
jogger’s  pace,  as  acquired  from  the  pacing  calculations.  This          
modified   song   will   be   played   back   to   the   user   during   their   run.  

The  pacing  calculations  repeat  every  minute.  However,  the         
next  modified  song,  in  accordance  with  the  user’s  most  recent           
pace,   will   only   play   upon   completion   of   the   previous   song.  

 

 
 

Fig.   1.   Principle   of   Operation  
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TABLE   1.      Device   Properties  

 iPhone  Android  Android  
Smartwatch  

Sensor  
Accuracy  

--  <   5%  10.4%  

Development  
Language  

Swift  Java   &   C/C++  Java   (Wear  
OS)  

Power  
Capacity  

2700   mAh  
(10-17   hrs)  

3000   mAh   (15  
hrs)  

472   mAh   (4  
days)  

Processing  
Power  

6-Core   2.39  
GHz  

8-Core   2.8  
GHz  

Dual-Core   1.5  
GHz  

Ease   of   Use   /  
Comfort  

Low  Low  High  

Storage  16+   GB  16+   GB  4   GB  

Our  
Accessibility  

1  2  1  

D. D ESIGN    T RADE    S TUDIES  

A. Device   Consideration   for   Pace   Measurements  
We  considered  using  several  different  devices  for  our         

project  as  shown  in  TABLE  1.  The  first  was  an  iPhone,  the             
second  was  a  Samsung  Galaxy  phone,  and  the  third  was  a            
Galaxy  Smartwatch.  For  each,  we  looked  at  a  host  of  device            
specifications   that   may   affect   our   app.   

As  stated  in  the  design  requirements  section,  our  ability  to           
capture  accurate  step  information  was  paramount  to  our         
overall  project.  Hence,  we  ran  an  experiment  to  investigate          
whether  the  built-in  hardware  sensors  of  the  devices  were          
accurate  enough  to  meet  our  design  specifications.  The  results          
are   shown   in   TABLE   2.   

The  iPhone  only  displayed  step  measure  updates  every  10          
minutes,  so  we  were  not  able  to  use  it  in  our  experiment.             
Instead,  two  of  us  ran  on  a  treadmill  at  1  mile  per  hour              
increments  between  5  miles  per  hour  and  10  miles  per  hour.            
We  counted  our  steps  manually  and  compared  it  to  the  device            
measurements  for  30  seconds,  1  minute,  2  minutes,  and  5           
minute   intervals.   
 
 

TABLE   2.      Step   Counter   Accuracy  

 Samsung  
S7  

Samsung  
S9  

Galaxy  
Watch  

Mayur   Error  13.80%  2.34%  8.36%  

Aarushi   Error  7.37%  5.83%  12.41%  

Error   per  
Device  

10.59%  4.08%  10.38%  

 
For  each  measurement,  we  ran  with  all  three  (Samsung  S7,           
Samsung  S9,  Samsung  Galaxy  Watch)  devices  simultaneously.        
We  found  that  the  Samsung  S9  was  accurate  enough  for  the            
design  requirement  of  94%  accuracy,  but  the  other  two  devices           
were   not.  

Also,  we  checked  the  accessibility  to  each  of  the  devices.           
Noticeably,  each  device  is  expensive.  Phones  can  cost         
upwards  of  our  budget  ($600),  while  a  single  watch  can  take            
up  to  half  of  it.  Therefore,  a  crucial  property  of  the  devices  is              
whether  we  can  use  them  at  all.  In  our  case,  the  three  of  us               
have  one  iPhone,  two  Samsung  Galaxy  phones,  and  one          
Samsung   Galaxy   Smartwatch   between   us.   

Next,  we  needed  to  check  the  memory  of  the  devices.  After            
all,  the  app  and  related  audio  takes  up  some  amount  of            
memory.  However,  the  minimum  of  the  three  was  4  gigabytes,           
which  is  clearly  more  than  enough  for  the  application.          
Similarly,  the  power  capacity  of  the  devices  was  analyzed.          
Again,   even   the   minimum   was   enough   for   our   needs.   

Perhaps  one  of  the  greatest  advantages  of  the  watches  is           
their  comfort  as  compared  to  a  phone.  If  using  a  phone  during             
the  course  of  a  run,  you  have  to  either  hold  it  in  your  hand  or                
buy  a  sleeve  to  attach  it  to  your  arm.  Even  the  latter  does  not               
always  fit  comfortably.  Meanwhile,  a  watch  is  simple  and          
lightweight.  

On  the  other  hand,  phones  are  somewhat  better  for  app           
development.  Audio  processing  applications  obviously  benefit       
from  stronger  processors.  Phones  have  significantly  faster        
clock  speeds  as  well  as  more  cores.  As  shown  in  TABLE  1,             
the  Android  phone  has  four  times  the  number  of  cores  as  the             
watch   and   almost   twice   the   clock   speed.   

Phones  also  tend  to  have  more  help  resources  than  watches.           
After  all,  most  developers  create  apps  for  phones  rather  than           
watches.  Furthermore,  we  found  that  the  Android  Smartwatch         
requires  an  additional  Wear  OS  package  to  be  integrated  with           
the  app,  which  may  add  complexity  to  the  overall  application.           
In  general,  Android  is  developed  using  the  Android  Studio          
IDE,  which  uses  either  Java  or  Kotlin.  The  three  of  us  have             
prior  experience  with  Java.  Swift,  the  primary  development         
language  for  iPhones,  is  unfamiliar  territory  though.  We         
believe  it  is  important  to  consider  our  familiarity  with  the           
languages  in  our  final  design  decision  since  our  limited  time           
frame  might  be  further  shortened  if  we  had  to  spend  time            
learning   a   new   language.   

B. Programming   Language   per   Component  
As  previously  mentioned,  we  factored  our  familiarity  with         

languages  into  consideration.  Our  team  members  have  the         
most  experience  with  Python,  and  so  researched  the  possibility          
of  using  it  with  Android  devices.  TABLE  3  lists  each  software            
that  helps  integrate  Python  with  Android  Studio  and  the          
associated   issues   with   each   of   them.  

SL4A  was  a  community-developed  software  tool  to  port         
Python  code  to  Android  devices.  However,  it  is  no  longer  in            
development.  QPython  is  built  on  top  of  SL4A  and  may  allow            
for  top-down  development  in  Python,  but  lacks  a  way  to           
access   Android’s   Step   Counter   and   Step   Detector   hardware   
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TABLE   3.      Python   on   Android  

Software  Issue(s)  

SL4A   (Scripting   Layer   for  
Android)  Dead!   No   longer   in   development  

QPython   (Script   engine   that  
extends   SL4A)  No   way   to   access   Step   Detector  

Kivy  

No   way   to   access   Step   Detector  
Not   well   documented  
Complex:   Requires   2   more  
software   tools   to   work   on   Android  

External   Tools  Doesn’t   act   as   a   callable   function  

 
sensors.  Kivy  is  a  comprehensive  software  tool  that  allows          
users  to  create  a  GUI  and  associated  logic  for  almost  any            
device  in  Python.  As  a  tradeoff  though,  it  is  not  completely            
optimized  for  Android.  To  get  it  working  on  Android  devices,           
it  needs  another  two  software  tools  and  a  Linux  OS  to  work             
correctly.  Getting  all  three  tools  to  work  with  each  other  adds            
complexity  to  the  project.  Lastly,  we  explored  the  option  of           
using  Android  Studio’s  External  Tools  menu  to  import  code.          
But,  this  option  does  not  allow  us  to  call  our  functions  inside             
our  main  Java  app.  Since  we  needed  to  provide  arguments  to            
functions  and  call  them  repeatedly  for  our  algorithms,  the          
External  Tools  menu  was  not  feasible  for  our  use  case.  We            
also  considered  using  MatLab,  since  the  team  has  prior          
experience  in  using  it  with  the  wavelet  transform  algorithm.          
However,  MatLab  has  the  same  issue  as  Python  when  trying  to            
use   it   for   apps;   it   is   not   natively   supported   by   Android   Studio.   

As  expected,  Java  and  Kotlin  were  two  languages  that  could           
be  used  to  build  the  entirety  of  our  app  software.  These  two             
languages  are  both  supported  by  Android  Studio,  and  are  in           
fact  the  main  languages  used  to  design  the  app  UI.  Although            
preference  seems  to  be  moving  towards  Kotlin,  there  does  not           
seem  to  be  any  significant  advantage  to  using  it  for  a  simple             
application   like   ours.  

Nevertheless,  there  were  options  aside  from  Java  and         
Kotlin.  Namely,  the  C/C++  languages  are  natively  supported         
with  the  IDE.  These  languages  are  known  to  be  fast  and            
effective  for  audio  processing,  but  are  less  familiar  to  the           
team.  Their  speed  made  them  strong  choices  for  implementing          
the  audio  scaling  algorithm.  Additionally,  while  they  are         
supported,  they  are  not  trivial  to  use.  Time  had  to  be  allocated             
towards  gaining  familiarity  with  the  Java  Native  Interface         
(JNI),  which  allows  Java  and  C/C++  to  be  integrated,  and  to            
learn  the  syntax  and  libraries  used  in  C++.  One  last  advantage            
of  allowing  the  time  warping  component  to  be  in  C++  was  the             
fact  that  MatLab  code  could  be  mostly  converted  to  C++  by            
way   of   the   MatLab   Coder   software.  

C. Music   File   Format  
     Android   smartphones   support   audio   in   the   file   formats   of  
MP3,   WMA,   WAV,   MP2,   AAC,   AC3,   AU,   OGG,   and   FLAC  
[7].   These   file   formats   do   not   all   include   tempo   or   BPM  
metadata   for   musical   files.   However,   additional   metadata   tags  
can   be   appended   to   these   file   formats.   
     The   listed   file   formats   are   also   not   equally   readable   by  
signal   processing   algorithms.   Signal   processing   is   most  
commonly   performed   with   WAV   file   formats.   This   is   because  
WAV   files   are   lossless   and   uncompressed.   As   a   result,   they  
lose   no   quality   from   the   original   audio   [6].   Since   Android  
smartphones   support   this   audio   file   type,   the   preliminary  
version   of   this   product   only   supports   WAV   files.   Decreasing  
the   scope   of   allowed   file   formats   is   imperative   to   ensuring   that  
all   processed   audio   in   our   C++   algorithm   is   treated   the   same  
way.   
      For   our   testing   purposes,   we   used   third   party   online  
softwares   that   converted   our   files   from   MP3   or   MP4   into  
WAV   files.  

D. Time-Scale   Audio   Modification   Algorithm  
TABLE  4,  below,  shows  the  various  possible  methods  that          

could  successfully  implement  time-scale  audio  modification.  It        
also  displays  their  tradeoffs  according  to  Livingston’s  studies         
[8].  

The  first  methods  considered  are  simple  time  domain         
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techniques.  This  includes  overlap-add  (OLA)  and  its        
variations  such  as  synchronous  OLA  (SOLA)  and        
time-domain  pitch  SOLA  (TD-PSOLA).  These  methods  are        
listed  in  order  of  least  to  most  expensive,  in  terms  of            
computation  time.  While  these  methods  are  more  efficient         
than  the  others  listed  in  the  chart,  these  methods  result  in  the             
most  drastic  and  noticeable  artifacts.  While  pitch  and         
magnitude  of  signals  are  preserved,  the  artifacts  are  a  result  of            
segmentation  and  simple  time-scale  stretches  that  do  not  result          
in   smooth   tones   [8].   

The  next  method  we  considered  was  the  short-time  Fourier          
transform  (STFT)  based  phase  vocoder.  This  method  has         
successfully  been  used  by  a  18-500  capstone  group  in  the  past.            
It  is  assumed  to  be  efficient  in  its  simplistic  implementation.           
However,  the  simplistic  implementation  creates  greater       
artifacts.  This  is  because  smaller  window  size  implementation         
lends  to  greater  resolution  in  the  time  domain  of  the  signal            
processing.  However,  smaller  window  sizes  increase  the        
number  of  windows  being  processed.  As  a  result,  this          
increases  computation  time.  This  advanced  and  more  accurate         
approach  results  in  a  computation  of  time  that  is  considered           
inefficient   [8].  

Lastly,  we  looked  at  the  Dual-Tree  Complex  Wavelet         
Transform  (DTCWT)  based  phase  vocoder.  It  is  expected  to  be           
slightly  more  efficient  in  comparison  to  the  STFT  based  phase           
vocoder.  It  also  results  in  fewer  artifacts  -  namely  minor           
erroneous  frequency  components.  The  DTCWT  based  phase        
vocoder  is  a  modification  to  the  attempt  of  using  discrete           
wavelet  transform  (DWT)  as  a  basis  for  phase  vocoders.          
Namely,  the  DTCWT  improves  upon  the  DWT  base  by          
providing  shift  invariance  where  previously  it  did  not  exist.          
This  decreases  the  variations  in  the  distribution  of  energy  that           
is  found  between  DWT  coefficients.  As  a  result,  a  DWT  based            
phase  vocoder  would  produce  the  same  artifacts  as  seen          
through  the  STFT  based  phase  vocoder.  The  DTCWT,         
however,  is  known  to  perform  better  since  its  shift  invariance           
deters   the   aliasing   effects   otherwise   observed   [8].  

The  described  literature  studies  clearly  show  numerous        
advantages  to  using  the  DTCWT  phase  vocoder.  Thus,  our          
implementation  of  the  time-scale  audio  modification  algorithm        
was  originally  going  to  follow  this  preference.  However,  we          
tested  and  compared  two  of  the  described  audio  modification          
methods:  the  STFT  phase  vocoder,  and  the  DTCWT  phase          
vocoder,   and   had   surprising   results.   

The  STFT  phase  vocoder  was  implemented  in  Matlab  and          
was  adopted  from  Dan  Ellis’s  implementation  [1].  The         
DTCWT  phase  vocoder  was  also  implemented  in  Matlab,  and          
was  adopted  from  Livingston’s  implementation  [8].  Both        
implementations  were  appropriately  modified  for  our       
purposes.  These  alterations  included  function  inputs,  function        
outputs,  array  and  matrix  sizes  throughout  the  original  audio          
signal’s  modification  process,  and  including  functionality  to        
visualize  pitch  and  hear  differences  between  the  output         
signals.  

In  comparing  the  two  time-scale  audio  modification        
techniques,  we  performed  two  basic  experiments  that        
compared   the   results   of   using   the   two   techniques   to   modify   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.   3.   Experiment   1:   Original   Signal   Pitch   vs.   Frequency  

Fig.   4.   Experiment   1:   DTCWT   Phase   Vocoder   Signal   Pitch   vs.   Frequency  
 

Fig.   5.   Experiment   1:   STFT   Phase   Vocoder   Signal   Pitch   vs.   Frequency  
 

 
music  by  half  of  its  original  BPM.  It  is  important  to  note             

that  the  DTCWT  signals  are  cut  off  due  to  its  implementation            
that  requires  padding  the  original  array  such  that  its  size  is  a             
power   of   2,   and   due   to   Matlab   array   size   restrictions.     

The  goal  of  experiment  1  was  to  test  the  audio           
modification’s  impact  on  vocals,  and  to  test  the  speed  of  the            
audio  modification  techniques.  The  audio  used  was  the  full          
song:  “Don’t  Stop  Believing”  by  Journey.  The  song’s  duration          
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was  4:10  minutes,  and  its  BPM  was  121.  The  pitch  of  the             
original  signal  in  relation  to  time  is  shown  in  Fig.  3  and  is              
titled   “Believe   Original   Signal”.   

 The  result  of  experiment  1’s  DTCWT  phase  vocoder  output           
is  shown  in  Fig.  4,  and  the  result  of  experiment  1’s  STFT             
phase  vocoder  is  shown  in  Fig.  5.  In  comparing  the  pitch  vs             
frequency  graphs,  it  is  clear  that  Fig.  4  (the  DTCWT  phase            
vocoder  output)  shows  significantly  greater  data  loss  than  that          
of   Fig.   5   (STFT   phase   vocoder   output).   

The  goal  of  experiment  2  was  to  test  for  accuracy  in  the             
audio  modification  process  with  music  of  more  complex         
layers,  and  to  test  the  algorithms'  performances  on  a  song           
within  our  range  of  150-180  BPM.  The  audio  used  here  was            
the  instrumental  intro  of  the  song:  “Eye  of  the  Tiger”  by            
Survivor.  This  intro  snippet’s  duration  was  46  seconds,  and  its           
BPM  was  165.  The  pitch  of  the  original  signal  in  relation  to             
time   is   shown   in   Fig.   6   and   is   titled   “Tiger   Original   Signal”.   

The  result  of  experiment  2’s  DTCWT  phase  vocoder  output          
is  shown  in  Fig.  7,  and  the  result  of  experiment  2’s  STFT             
phase  vocoder  is  shown  in  Fig.  8.  Again,  it  is  clear  the  Fig.  7               
of  the  DTCWT  phase  vocoder  output  shows  significantly         
greater  data  loss  than  that  of  the  Fig.  8  STFT  phase  vocoder             
output.   

In  Experiment  1,  the  warping  process  with  the  STFT  phase           
vocoder  took  36.33  seconds,  and  the  warping  process  with  the           
DTCWT  phase  vocoder  took  212.68  seconds.  In  Experiment         
2,  this  process  with  the  STFT  phase  vocoder  took  2.37           
seconds,  and  this  process  with  the  DTCWT  phase  vocoder          
took  29.87  seconds.  Through  these  timing  measures.  we  see          
that  the  runtime  of  both  algorithms  varies  and  is  dependent  on            
the  size  of  the  input  audio  signal  that  must  be  modified.            
However,  we  consistently  see  that  the  STFT  phase  vocoder          
takes  drastically  less  time  to  compute  audio  modification  in          
comparison   to   the   DTCWT   phase   vocoder.  

While  measuring  pitch  loss  visually  and  through  pitch         
values  is  consequential  for  verifying  whether  these  audio         
modification  methods  meet  our  design  requirements  of  25         
cents  variance  between  the  original  and  modified  signals,         
audible  pitch  loss  is  most  important  to  our  use  case,  since  our             
user’s  will  be  listening  to  the  modified  music.  To  that  end,  we             
compared  the  modified  signals  between  the  STFT  phase         
vocoder  and  the  DTCWT  phase  vocoder  for  each  experiment.          
Again,  the  results  for  each  of  these  experiments  were  the           
same:  the  DTCWT  phase  vocoder  generated  fuller  sounds.         
However,  on  average,  they  were  unclear.  On  the  other  hand,           
the  STFT  phase  vocoder  generated  thinner  sounds  which         
caused  pitch  to  definitely  increase,  but  the  sounds  were          
clearer,  which  made  the  output  signal  discernable  as  the          
original  song  that  was  modified.  It  is  important  to  note  that            
there  are  significant  extraneous  artifacts  generated  by  both         
audio  modification  techniques  in  these  experiments  since  we         
are  modifying  the  songs  to  be  half  of  their  original  BPM.            
Thus,  this  is  an  intense  modification  that  suffers  intense          
artifacts  from  the  output  signals.  There  will  be  less  artifacts           
when  computing  the  modified  signals  for  the  purpose  of Run           
With  It  since  we  restrict  all  modification  to  remain  with           
-15/+10   BPM   (at   most   10%   modified).  

Fig.   6.   Experiment   2:   Original   Signal   Pitch   vs.   Frequency  

Fig.   7.   Experiment   2:   DTCWT   Phase   Vocoder   Signal   Pitch   vs.   Frequency  
 

Fig.   8.   Experiment   2:   STFT   Phase   Vocoder   Signal   Pitch   vs.   Frequency  
 
 
Through  these  two  experiments,  we  compared  STFT  and         

DTCWT  phase  vocoder  techniques  for  signals  of  differing         
lengths,  BPMs,  and  layered  sound  types.  We  learned  that          
regardless  of  variations  of  these  song  characteristics,  one  of          
the  time-scale  audio  modification  techniques  always       
performed  far  better  than  the  DTCWT  phase  vocoder.  This          
was  in  terms  of  speed,  visual  pitch  loss,  and  audible  song            
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comprehensibility.  Thus,  we  implemented  the  superior       
time-scale  audio  modification  technique  in  our  app:  the  STFT          
phase   vocoder.  

E. S YSTEM    D ESCRIPTION  

A. Mobile   App  
We  decided  to  use  Android  Studio  for  developing  the          

Android  application.  This  allowed  us  to  leverage  our         
knowledge  of  Java  while  taking  advantage  of  the  rich          
community  resources  provided.  Furthermore,  Android  Studio       
is  the  environment  of  choice  for  developing  Android  mobile          
applications.  We  chose  to  use  Java  in  Kotlin  because  of  our            
familiarity  with  the  language,  and  the  lack  of  disadvantages          
with  using  the  former  over  the  latter.  The  app  has  a  single             
Main  Activity  that  users  can  use  to  start  the  app.  Once  the             
“play”  button  is  pressed,  the  app  will  trigger  our  business  logic            
by  calling  the  song  selection  algorithm  with  a  default  tempo.           
A  selection  of  songs,  already  tagged  with  tempos,  will  be           
chosen  from  a  playlist.  The  first  screen  of  the  app  is  shown  in              
Fig.   9.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.   9.      Main   Activity  
 
For  signal  processing,  we  used  Matlab  and  ported  the  code           

to  C++,  and  for  the  song  selection  algorithm,  we  implemented           
it  directly  in  Java.  We  found  research  that  showed  the           
DTCWT  and  STFT  implemented  in  Matlab.  Furthermore,  it  is          
extremely  fast  compared  to  some  other  languages.  In  the  end,           
the  complexities  of  integrating  Python  with  the  IDE  and  its           
relative  slow  speed  were  too  great  of  sacrifices  to  use  it  for  our              
project.   

The  Main  Activity  is  the  main  point  of  interface  between           
other  subsystems.  Pace  measurements  from  the  step  counter         
system  are  taken  here  and  sent  to  the  song  selection  algorithm.            
A  queue  is  implemented  to  deal  with  songs  that  do  not  end  on              
90  second  intervals.  Chunks  are  taken  from  the  queue  and  sent            
to  the  time-scale  audio  modification  algorithm  to  be  warped.          
When   the   audio   is   returned,   it   is   directly   fed   to   the   user.  

The  speed  that  the  music  starts  playing  after  hitting  the  start            
button  was  an  important  metric  to  test.  We  required  that  the            
music  start  playing  within  225  ms  of  the  user  hitting  the  play             
button.  We  tested  this  multiple  times  by  simulating  a  timer  in            

the  code.  We  found  that  the  maximum  time  between  the  button            
press  and  the  music  playing  was  5  ms;  thus  meeting  our            
human   reaction   time   requirement.  

B. Step   Detection   Sensor  
Since  we  created  the  application  on  the  phone,  we  felt  that            

in  order  to  make  the  user  experience  better,  we  should           
minimize  the  amount  of  extraneous  hardware  the  user  must          
wear.  For  that  reason,  we  decided  to  use  the  step  counter            
sensor  in  the  smartphone  since  it  is  always  included  and           
integrated  with  the  system  we  are  using.  We  found  the  step            
counter  sensor  superior  to  the  step  detector  and  accelerometer          
sensors,  since  it  is  optimized  in  the  hardware  of  the  phone            
itself,  and  already  accounts  for  false  positives  in  footsteps.          
Before  we  blindly  chose  to  use  the  smartphone  for  collecting           
the  step  count  data,  we  wanted  to  test  it  to  make  sure  it  was               
accurate   enough   to   work   for   our   project.  

To  test  the  sensor,  we  recorded  the  data  from  the  phone  and             
our  manual  count  from  the  treadmill  tests,  corrected  for  error,           
and  calculated  the  difference.  In  the  end,  we  found  that  the            
newest  generation  of  phones  had  94%  accuracy,  and  the          
generation  prior  to  that  had  90%  accuracy.  With  this  data,  we            
felt  confident  that  the  phone  was  a  good  device  to  use  to             
collect   our   data   and   use   for   our   project.   

We  found  after  implementing  the  step  counter  sensor  that  it           
provided  inaccurate  data  because  it  removed  the  false         
positives.  We  also  found  that  it  was  much  slower  since  it  took             
time  to  process  the  data  to  remove  the  false  positives.  We            
could  not  have  this  as  we  wanted  to  collect  data  on  exactly  60              
second  intervals,  therefore  we  went  with  implementing  the         
step  detector  function  which  still  met  our  94%  accuracy          
requirement  and  was  able  to  report  the  data  on  our  needed            
time   intervals.   

We  considered  using  an  iPhone  as  well  but  had  too  many            
issues  trying  to  collect  the  footstep  data  from  it,  so  it  ruled  out              
that  device.  We  also  considered  the  Samsung  Galaxy  Watch,          
however,  we  found  through  our  testing  that  the  error  was  quite            
high  which  made  us  unsure  whether  it  would  be  reliable           
enough  to  use  as  the  main  device  collecting  and  sending  our            
data.  For  that  reason  we  ended  up  using  Android  smartphones,           
which  made  it  easier  for  us  to  build  the  app  too,  since  we              
could  just  use  Android  Studio  to  build  it  and  test  it  right  on  the               
phone.   

C. BPM   Refresh   Rate  
The  tempos  of  running  songs  chosen  are  between  150  and           

180  BPM,  following  our  design  requirements  exactly.        
Additionally,  no  song  should  be  warped  to  a  tempo  that  is  less             
than  15  or  greater  than  10  beats  per  minute  of  its  original.  We              
chose  to  use  a  predefined  list  of  songs  tagged  with           
preprocessed  tempos.  Note  that  it  is  trivial  to  ping  app  APIs  to             
obtain  song  tempos.  Thus,  we  felt  it  unnecessary  to  implement           
a  custom  tempo  detection  algorithm.  If  this  project  was          
extended  into  a  real  product,  integrating  the  app  with  a  music            
player  like  spotify  would  eliminate  the  need  for  the  tempo           
detection.  

The  refresh  rate  for  songs  is  90  seconds.  This  allotted  60            
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seconds  for  determining  pace  and  30  seconds  for  audio          
modification.  After  a  song  ends,  a  new  song  is  chosen  to            
continue  playing  at  the  user’s  pace;  in  essence,  the  BPM           
between  the  previous  song  and  the  new  song  should          
theoretically   be   the   same   if   a   runner’s   pace   remains   the   same.   

The  reasoning  for  picking  90  seconds  is  because  we  found           
through  our  testing  that  collecting  less  than  60  seconds  of           
running  data  was  inaccurate  and  also  would  require  us  to  make            
extra  calculations  that  getting  exactly  60  seconds  of  data  does           
not  require.  The  extra  30  seconds  is  used  to  send  the  song             
through  the  time  scale  audio  modification  algorithm,  which  we          
found  takes  up  to  roughly  30  seconds  for  a  whole  song  using             
the  implemented  STFT  phase  vocoder.  If  we  chunk  the  songs           
into   smaller   portions,   it   would   take   even   less   time   to   warp.   

D. Song   Selector   Algorithm  
This  component  is  software  that  is  very  important  for  the           

end  quality  of  the  music  that  is  produced  by  the  app.  This             
component  takes  the  pace  of  the  runner  that  was  previously           
collected  and  uses  it  to  find  the  next  song  to  play-  the  one  that               
best  matches  the  runner’s  current  pace.  As  stated  earlier,  we           
require  that  the  song  should  fall  in  a  -15/+10  BPM  range  of             
the  runner’s  pace  so  that  when  the  song  goes  through  the            
time-scale  audio  modification  algorithm,  it  will  still  sound         
pleasant   to   the   ear   of   the   user.   

The  songs  are  scored  on  a  scale  where  10  is  the  perfect  song              
and  all  other  songs  are  scored  relatively  (including  negative          
scores).  Our  goal  is  for  the  BPM  of  the  song  to  be  close  to  the                
pace,  so  the  distortion  and  artifacts  created  in  the  song  are  kept             
to  a  minimum  after  the  audio  modification.  Thus,  the  scoring           
works  in  a  way  where  a  smaller  difference  between  the           
runner’s  pace  and  the  BPM  of  the  song  will  score  the  song             
higher,  and  the  opposite  will  score  the  song  lower.  Because           
our  goal  is  to  keep  the  audible  distortion  to  a  minimum,  we             
would  rather  have  the  algorithm  replay  a  song  that  fits,  rather            
than  pick  a  song  that  is  out  of  the  range.  However,  to  take  that               
into  account,  there  will  be  a  penalty  system  for  playing  a  song             
more  than  once.  Thus,  we  start  each  song  with  a  score  of  10.              
From  there,  we  subtract  the  absolute  value  of  the  runner’s  pace            
from  the  song  BPM  and  divide  that  by  10,  where  dividing  by             
10  provides  a  scaling  factor  since  the  highest  score  a  song  can             
have  is  10.  Finally,  we  subtract  a  multiplier  if  the  song  has             
been  played  multiple  times  (i.e,  subtract  1  point  each  time  a            
song   has   been   played).  

Only  songs  that  fit  within  the  -15/+10  relative  BPM          
between  the  song  and  runner  are  scored,  if  the  song  does  not             
meet  this  requirement,  it  is  skipped  for  that  round  of           
evaluation.   

As  mentioned  earlier,  the  songs  scores  can  go  negative  if  the            
song  has  been  played  enough,  this  is  allowed  as  all  the  songs             
are  scored  and  picked  relative  to  each  other.  Therefore,  the           
actual  number  does  not  matter  as  much  as  the  rankings  based            
on   the   scores.   

Overall,  this  system  is  not  too  complicated,  as  we  are  going            
to  tag  the  songs  with  their  BPMs  and  we  just  need  to  compare              
that  to  the  base  runner’s  pace  and  find  the  best  song.  Through             
our  testing,  we  found  this  algorithm  to  be  quite  fast  on  a             

playlist  of  20  songs.  We  tested  with  all  different  user  input            
BPMs  to  test  the  different  aspects  of  the  requirements.  In  all            
cases  we  found  our  algorithm  to  meet  the  requirements.  Fig.           
10  shows  the  results  of  running  the  algorithm  on  our  own            
running  data.  Looking  at  the  list,  Song  3  is  never  played  and             
Song  13  is  played  2  times.  This  shows  that  even  though  there             
was  deduction  for  Song  13  having  already  been  played  once,  it            
was   still   closer   in   BPM   than   Song   3,   thus   got   selected   again.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.   10.   Song   Selection   Algorithm  

 

E. Audio   Signal   Transformation   (for   Language  
Integration)  

 In  order  for  the  JNI  to  work,  we  needed  to  transform  the              
Java  types  that  were  output  from  the  step  detector  and  song            
selection  algorithm  into  types  readable  by  C++.  Secondly,  we          
had  to  find  a  way  to  transform  the  output  of  the  time  warping              
algorithm  into  something  readable  by  Java.  Lastly,  our  use  of           
MatLab  Coder  transformed  the  STFT  phase  vocoder  code         
from  MatLab  into  C++.  However,  not  all  functions  can  be           
fully  ported  by  the  software.  For  example,  we  wrote  the           
functionality  of  the  Matlab  audioread()  function  in  C++,  since          
the  program  does  not  have  an  analogous  function  provided  in           
C++.  Ironically,  the  argument  passing  was  the  last  step  of           
integration  missing  from  our  system.  While  we  wrote  our  own           
implementation,  it  was  not  fully  functional  by  the  deadline  of           
our  project.  We  believe  we  had  the  more  theoretically  complex           
audioread   function   and   other   integration   steps   fully   complete.   
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Fig.   11.   Time-Scale   Audio   Modification   Block   Diagram  

F. Time-Scale   Audio   Modification   Algorithm   
 The  time-scale  audio  modification  algorithm  used  in  the          

prototype   of   this   mobile   application   is   a   short   time   fourier   
transform  (STFT)  phase  vocoder  algorithm.  Fig.  11.  depicts  a          
block  diagram  of  how  this  algorithm  works.  The  phase          
vocoder  takes  two  inputs:  (1)  original  input  signal,  x  and  (2)            
the   change   ratio,   r.   

 current running pace  original song BP M                (1)  r =  /  
While  the  original  input  signal  matrix  is  acquired  from  the           

Audio  Signal  Transformation  method,  the  change  ratio        
acquires  the  current  running  pace  from  the  Step  Detection          
function,  and  the  original  song  BPM  from  the  song’s  metadata           
when   it   is   imported   into   the   Song   Selection   algorithm.   

 The  original  input  signal,  x,  is  transposed  to  X.  The  STFT             
coefficients  of  X  are  calculated  using  Hann  windowing  which          
samples  and  smoothes  the  signal  symmetrically.  The  STFT         
coefficients  are  stored  in  an  array,  X1,  which  is  used  to            
reconstruct  the  signal  in  accordance  to  the  change  in  phase  as            
seen  by  the  change  ratio  r.  Finally,  performing  an  inverse           
STFT  on  the  reconstructed  signal,  X2,  transforms  the         
modulated  signal  back  into  waveform  in  the  same  way  the           
original  signal’s  STFT  coefficients  were  deconstructed.  This        
output,  y,  is  the  modified  signal  in  accordance  with  the  change            
ratio,   r,   of   the   original   song’s   signal,   x.  

F. T ESTING / VALIDATION  
TABLE   6.     Implemented   System   Values  

Design   Specifications  Specifications   of   Implemented  
System  

Step   detection   of   at   least    94%  
accuracy  Achieved   up   to    95.4%    accuracy  

Music   plays   within    225   milliseconds
of   button-press  Music   plays   within    5   milliseconds  

Music   tempo   range:    150   -   180   BPM  Implemented   as   a   restriction   when  
inputting   music  

Require   music   of    -15/+10   BPM  
relative   to   pace  

Implemented   as   hard   constraint  
within   software  

The   probability   of   playing   any   song  
in   playlist   is   equal  

RNG   for   initial   song;   else  
algorithmically   chosen  

Music   should   be   modified   every    90  
seconds  

Implemented;   dummy   fn   pinged  
on   time  

Pitch   should   stay   within    25   cents    of  
original   (1.01   Hz)  Within   around   5   Hz   on   average  

Our  first  design  specification  related  to  the  accuracy  of  our           
app  in  detecting  each  step  of  the  user.  For  an  unknown  reason,             
the  S9  phone  we  originally  planned  to  use  stopped  providing           
data  after  a  small  window  of  time.  We  turned  to  using  the  S6,              
a  model  with  the  theoretically  least  accurate  step  detector          
sensor,  to  test  this  metric.  We  ran  for  several  minutes  at  a  time              
several  times  in  a  row,  manually  counting  our  steps  along  the            
way.  For  each  individual  run,  we  compared  the  measured  steps           
(sent  as  an  email  on  the  app)  versus  our  manual  count.            
Overall,  we  found  that  we  achieved  about  95.4%  accuracy          
when  detecting  individual  steps.  It  is  reasonable  that  we          
achieved  higher  than  our  goal,  as  the  research  papers  we           
consulted  measured  their  accuracy  over  a  wider  variety  of          
paces  and  terrains,  for  which  their  results  suffered.  Our  narrow           
scope   and   use   of   the   built-in   sensor   let   us   achieve   high   results.  

Next,  we  added  a  timing  block  within  our  code  to  find  how             
long  it  took  our  app  to  begin  playing  music  after  the  “play”             
button  was  pressed  on  the  main  activity.  With  20+  presses,  the            
longest  time  taken  was  only  5  milliseconds,  which  was  far           
better   than   our   original   goal.  

Many  of  our  specifications  were  simply  implemented        
directly  in  the  code.  A  minimum  and  maximum  function  was           
used  to  make  sure  that  the  BPM  was  the  maximum  of  150  and              
the  measured,  or  the  minimum  of  180  and  the  measured.  All            
songs  which  were  added  to  the  playlist  had  tempos  between           
150  and  180  BPM  as  well.  Together,  these  points  satisfied  the            
requirement  for  music  to  always  stay  in  the  desired  range.           
Similarly,  the  -15/+10  requirement  was  implemented  with        
min/max  functions  too.  Yet  another  requirement  that  we         
achieved  in  software  was  the  constraint  that  music  was  to  be            
warped  every  90  seconds.  While  this  part  of  the  integration           
was  not  complete,  the  native  function  was  called  every  90           
seconds   via   a   timer   in   the   code.  

As  described  in  the  design  requirements,  we  wanted  the          
probability  of  choosing  any  song  within  the  playlist  to  play  to            
be  equal.  For  the  very  first  song,  we  choose  a  random  number             
and  use  the  modulus  function.  Other  songs  are  picked  as           
described  in  the  song  selection  algorithm  section  above.         
Hence,  the  probability  of  any  song  being  played  is  roughly           
equal.   

Our  last  design  specification  was  that  the  pitch  of  the           
modified  signal  should  be  within  25  cents,  or  1.01  Hz,  of  the             
original  signal’s  pitch.  With  the  STFT  phase  vocoder         
time-scale  audio  modification  algorithm,  we  did  not        
successfully  meet  this  system  requirement.  A  few  of  our          
experiments  in  testing  this  specification  are  shown  below  in          
TABLE   7.  
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 We  performed  four  experiments  on  the  same  “Eye  of  the            
Tiger”  intro  instrumental  snippet  as  used  in  Section  D.D’s          
experiment  2.  Each  experiment  is  unique  by  the  change  ratio           
(Pace/BPM).  The  change  ratio  for  two  of  the  experiments,          
shaded  in  orange,  are  within  our  design  specifications  of          
-15/+10  BPM  modification.  The  change  ratio  for  two  other          
experiments,  shaded  in  purple,  are  outside  of  our  design          
specification   range   of   -15/+10   BPM   modification.   

 For  each  of  the  experiments  we  calculated  and  compared  the            
following  characteristics  of  our  audio  modification  results:  (1)         
the  mean  pitch  of  the  signal,  (2)  computation  time,  (3)  the            
minimum  and  maximum  pitches  of  the  modified  signals,  and          
(4)  the  modified  signal’s  pitch  at  the  corresponding  index  of           
the  original  signal’s  absolute  minimum.  These  characteristics        
are   represented   as   individual   columns   in   TABLE   7.  

 We  see  that  computation  time  on  the  same  signal  varies            
slightly  amongst  runs;  however,  the  change  ratio  has  no          
impact  on  the  runtime,  as  expected.  We  also  see  that  each  of             
the  signal’s  absolute  minimum  and  maximum  pitches  are  of          
the  same  frequency.  This  implies  that  the  signals’  frequency          
ranges   have   not   been   altered   overall.  

 We  see  differences  in  the  mean  pitches,  and  the  pitches  at             
original  signal  minimum  columns.  The  mean  pitch  for  the          
modified  signals within  our  range  are  within  5  Hz  of  the            
original  mean  pitch.  The  mean  pitch  of  the  signals outside  of            
our  range  are  similar  but  greater  than  those  of  the  signals            
within  our  range.  In  the  pitch  at  original  signal  minimum,  we            
see  that  the  pitch  for  the  150/165  change  ratio  remained  the            
same  as  the  original  pitch  at  50  Hz.  This  held  true  for  change              
ratios  around  170/165  as  well.  The  341.86  Hz  value  that  we            
see  for  the  175/165  change  ratio  is  a  major  artifact  that  was             
formed  in  this  one  specific  test  case.  Although  it  is  not  ideal,  it              
presents  an  accurate  depiction  of  some  unexpected  artifacts         
through  this  audio  modification.  Additionally,  it  was  an         
important  change  ratio  to  record  since  it  is  the  boundary  of  our             
-15/+10  BPM  modification  range.  We  see  that  this  measure  for           
the  change  ratios outside  of  our  range  are  comparatively  close           
to  the  original  pitch  of  50  Hz.  However,  the  majority  of  the             
values  for  this  measure,  for  the  experiments within  our          
-15/+10  BPM  modification  range,  are  within  our  1.01  Hz  pitch           
variance  specification.  Thus,  the  52.88  Hz,  and  65.43  Hz  are           
relatively   insignificant.  

 As  a  result,  these  test  experiments  have  validated  the           
necessity  for  our  -15/+10  BPM  modification  range        
specification.  Thus,  this  was  programmed  as  a  restriction  into          
our   overall   system   through   the   Song   Selection   Algorithm.  

G. P ROJECT    M ANAGEMENT  

A. Schedule  
The  Gantt  Chart  in  Fig.  12  below  shows  a  visual  mapping  of             

our  roadmap  for  the  semester.  We  broke  down  the  schedule           
into  small  sections  based  on  the  tasks  assigned  to  us.  The  chart             
is  organized  in  sequential  order.  We  spent  a  lot  of  time  on             
research  to  figure  out  exactly  what  components  our  project          
needed,  and  from  there,  we  divided  the  subcomponents  to          
work  on  based  on  our  expertise.  Since  the  components  are           
tricky,  we  wanted  to  make  sure  that  we  worked  properly           
individually,  which  is  why  we  put  so  much  time  into  planning            
and  testing  before  even  starting  the  main  parts  of  the  project.            
We  had  to  alter  our  original  schedule  a  little  bit  after  spring             
break  to  allot  more  time  for  integration,  and  some  of  our  area             
implementations  took  less  time.  We  knew  being  remote  would          
make  it  harder  to  put  the  components  together  which  is  why            
we   made   this   change   to   our   schedule.   

B. Budget  
Our  bill  of  materials  did  not  contain  many  components,          

because  we  only  required  a  smartphone  and  headphones.  Our          
bill   of   materials   is   shown   in   TABLE   8.  

Two  of  our  team  members  own  Android  smartphones  and          
bluetooth  headphones,  and  we  used  those  for  testing  and          
working  on  the  project.  We  did  not  need  to  buy  these  materials             
for   the   project.   

TABLE   8.      Bill   of   Materials  

Item  Price  

Android   Smartphone  $800  

Bluetooth   Headphones  $200  
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C. Team   Member   Responsibilities  
Our  project  was  split  up  into  three  parts,  allowing  each  one            

of  us  to  be  assigned  a  different  part  and  work  on  it.  Aarushi              
worked  on  the  signal  processing  phase  vocoders.  Akash         
worked  on  the  song  selection  algorithm  and  the  footstep          
detection  with  Android.  Finally,  Mayur  built  the  app  that  hosts           
and  would  bridge  each  of  the  subsystems.  He  also  ported  the            
audioread()  code  and  worked  with  Aarushi  and  Akash  to          
integrate  their  code  with  the  app.  Akash  and  Aarushi  worked           
together  for  getting  the  data  from  the  step  detection  to  the  song             
selection,  and  then  taking  the  song  and  data  needed  into  the            
time-scale  audio  modification  algorithm.  Mayur  helped  Akash        
with  the  step  detection  with  Android  since  that  is  all  linked            
together  in  Android  Studio,  which  we  used  to  build  our           
application.   

Once  we  all  got  our  individual  parts  done,  we  revised  each            
individual  subsystem  such  that  they  would  be  compatible  with          
each  other,  and  could  be  easily  integrated.  Finally,  we  tested           
the  revised  versions  of  each  of  our  independent  subsystems.          
We  tried  to  optimize  and  improve  features  to  make  the  overall            
product  more  efficient  where  possible.  Our  goal  was  to  meet           
or  surpass  the  metrics  we  set  in  the  design  requirements.  The            
parts  we  picked  match  our  strengths  as  teammates.  Aarushi          
has  done  numerous  projects  in  signal  processing  while  Akash          
and  Mayur  have  worked  more  on  the  software  side.  This           
allowed  us  to  adapt  easily  and  finish  our  parts  on  time,  since             
we   have   decent   knowledge   on   the   parts   we   are   working   on.   

D. Risk   Management  
We  built  risk  management  into  our  project  in  a  couple  ways.            

First  in  terms  of  the  schedule,  as  we  mentioned  before,  we            
added  slack  time  into  it  to  make  sure  we  could  account  for  any              
issues  we  ran  into  as  we  developed  our  project.  This  allowed            
us  to  work  out  these  issues  without  running  out  of  time  at  the              
end  of  the  semester.  With  the  rearranged  schedule,  we  still  had            
enough  time  to  complete  the  goals  for  each  smaller  piece  of            
the   system.  

From  the  design  side,  we  had  backups  for  potential          
problems  that  could  have  come  up  while  working  on  the           
project.  We  had  four  specific  cases  for  our  metrics  that  we  laid             
out  earlier.  The  main  risk  factor  was  using  the  DTCWT  phase            
vocoder.  If  it  did  not  work,  we  would  fall  back  on  using  the              
STFT  based  phase  vocoder  that  we  knew  works  well  for           
music.  We  considered  the  possibility  of  having  to  implement          
our  own,  or  simply  using  a  library  on  GitHub.  We  did  our             
research  and  put  most  of  our  time  into  this  aspect  of  the             
project  since  it  was  the  focus  point  that  differentiates  us  from            
other  apps  like  this,  while  also  being  the  primary  risk  factor.            
As  it  turns  out,  we  were  able  to  verify  that  the  STFT  based              
Phase  Vocoder  performed  in  a  superior  fashion  to  the  other.           
Our   risk   management   worked   well   here.   

The  second  biggest  risk  factor  was  the  accuracy  of  the  step            
detection  from  the  smartphones.  We  did  testing  and  saw  that           
the  phone  met  our  accuracy  requirements,  so  we  hoped  that           
this  would  not  be  an  issue,  but  if  we  had  found  out  during              
implementation  and  testing  that  the  accuracy  was  not  as  good           

as  we  thought,  we  were  going  to  order  a  pedometer  that  we             
could  collect  the  data  from  instead.  The  smaller  risk  factors           
involved  the  timing  of  the  application,  which  would  result  in           
us  widening  the  timing  windows  for  our  refresh  rate,  and           
minimizing  the  time  it  takes  for  the  app  to  start  when  initially             
opened.  We  found  no  issues  with  the  step  detection  or  timing,            
and   thus   did   not   need   to   fall   back   on   back-up   plans.  

In  terms  of  budget,  we  did  not  run  into  any  issues  since  we              
already   had   everything   we   needed.   

H. R ELATED    W ORK  
There  have  been  several  similar  products  or  projects  to  our           

own.  Spotify  used  to  have  a  Running  Feature  that  matched  the            
music  with  running  cadence.  In  fact,  the  algorithm  used  the           
phone’s  internal  hardware  and  similar  BPMs  as  ours.         
However,   this   feature   was   retired   in   2018   and   no   longer   exists.   

Some  apps  exist  that  implement  similar  features  as  well.          
PaceCoach  and  PowerRunner  are  two  examples,  but  only  exist          
for  iPhones.  This  is  in  contrast  to  our  app,  which  runs  on             
Android  devices.  A  Play  store  app  is  RockMyRun,  which          
offers  playlists  that  can  match  music  tempo  with  runner  pace.           
However,  matching  BPM  to  steps  is  a  premium  feature.          
Furthermore,  users  can  only  listen  to  playlists  instead  of  songs           
already   on   their   device.  

In  the  past,  two  similar  capstone  projects  have  been          
attempted  by  other  students.  A  common  stumbling  block  for          
these  groups  is  the  actual  audio  warping;  often,  too  many           
artifacts  are  picked  up,  making  it  difficult  to  enjoy  listening  to            
songs.  DJ  Run,  a  project  from  18-551  during  the  Spring  of            
2013,  managed  to  implement  algorithms  for  both  pace         
detection  and  tempo  detection  of  songs.  They  used  a  phase           
vocoder  algorithm  for  the  time-scale  audio  modification.  We         
planned  on  using  the  DTCWT  phase  vocoder  instead,  since  we           
assumed  it  to  be  more  accurate  based  on  our  literature  reviews,            
However,  as  seen  in  Section  E,  we  learned  that  the  STFT            
phase  vocoder  was  the  superior  time-scale  technique.        
Additionally,  we  did  not  recreate  the  tempo  detection  and  pace           
detection  algorithms,  since  those  have  already  been        
implemented  by  others.  Instead,  we  integrated  those  tested         
functionalities,  and  wrote  an  accompanying  song  selection        
algorithm.  

During  the  Spring  2018  semester  of  18-500,  one  team          
created  the  project  “Song  Hunter”,  which  warped  song  for          
cyclists.  They  also  used  a  vocoder.  However,  they  noted  that           
while  the  algorithm  mostly  worked,  it  sometimes  left  behind          
artifacts  or  a  muffled  sound.  Obviously,  the  target  audience  for           
this   project   was   different   than   ours.  

I. S UMMARY  
To  reiterate, Run  With  It  is  an  Android  mobile  application           

that  modifies  music  such  that  its  beats  per  minute  matches  an            
average  long-distance  jogger’s  pace  (steps  per  minute).  It  is          
limited  by  its  target  audience  being  the  average  long-distance          
jogger.  As  a  result,  this  limitation  caused  the  time  period  of            
pace  and  music  modification  to  be  90  seconds.  This  limitation           
also  shaped  what  kind  of  music  this  mobile  application  can           
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interface  with.  The  allowed  music  was  restricted  to  be  within  a            
tempo  range  of  150-180  BPM  -  similar  to  the  pace  of  an             
average  long-distance  jogger.  These  limitations  contributed  to        
defining  requirements  for  a  preliminary  version  of  this         
product.  Methods  to  improve  these  restrictions  are  discussed         
in   the   Future   Work   section   J.  

To  conclude,  the  following  is  a  summary  of  our          
considerations  that  influenced  the  product  design  of Run  With          
It :  step  detection  accuracy,  software  speed  of  responsiveness,         
tempo  of  supported  music,  optimal  difference  in  original         
music  tempo  and  jogger’s  pace,  sequencing  of  music  on  a  run,            
time  period  of  pace  and  music  modification,  pitch  difference          
between  original  and  modified  music,  audio  modification        
techniques,  and  the  technological  means  to  implement  each  of          
the  components  of  the  product  (i.e.  devices,  languages,         
libraries,  algorithms,  etc.).  Future  work  will  entail  creating         
advanced  user  options  and  functionalities  of  our  thus  far          
implemented   prototype.   

J. F UTURE    W ORK  
While  we  currently  do  not  plan  on  continuing  this  project           

after  this  semester,  we  have  extensive  plans  for  possible  future           
work  to  bolster  this  product.  First,  we  recommend         
reestablishing  the  design  requirement  for  measuring  quality  of         
a  modified  audio  signal.  Along  with  implementing  the  product          
as  designed  in  this  document,  we  suggest  extending  the          
functionality   of   the   product.   

This  extension  plan  includes  expanding  the  tempo  range  of          
allowable  music  and  expanding  the  file  types  of  allowable          
music.  This  can  be  done  by  increasing  the  initial  allowed           
music  BPM  range  to  135-180BPM  since  our  new  running  test           
data  suggests  that  joggers  also  commonly  run  between         
140-150  steps/minute.  Additionally,  music  within  the  range  of         
68-90  BPM  could  also  be  included  since  this  range  is  half  of  a              
runner’s  pace  range.  In  this  case,  the  modified  music  would           
simply  use  a  new  change  ratio,  r new ,  as  shown  in  Equation  2             
below.  

 (current running pace 2) original song BP M    (2)  rnew =  / /  
 

This  would  be  in  accordance  with  our  -15/+10  BPM          
modification   design   restriction.  

Additionally,  to  advance  the  app  to  function  better  as  a           
product,  future  work  should  include  creating  multiple  features         
on  the  app  that  allow  the  user  to  set  preferences  for  their  run.              
Such  preferences  could  include  setting  a  tempo  to  be  matched           
throughout  a  run  (as  opposed  to  the  tempo  matching  the           
runner’s  pace),  and/or  setting  a  desired  sequence  for  song  play           
throughout  the  run  (as  opposed  to  the  software  choosing  the           
most  optimal  song  based  on  the  runner’s  pace  and  previously           
played  music).  These  preferences  for  user’s  to  use  the          
application   as   it   fits   to   their   personal   needs.   

Our  app  is  based  on  research  that  proves  that  matched  music            
tempo  and  pace  enhances  an  athlete’s  energy  and  running          
experience.  However,  this  has  been  realized  to  be  contingent          
on  the  runner  setting  their  own  pace  independent  of  any           
external  factors.  A  few  peer  athletes  gave  feedback  that  if  a            

runner  attempts  to  match  pace  to  the  tempo  of  the  music,  then             
there  will  be  a  constant  loop  of  pace  and  music  tempo            
decreases.  This  may  not  be  optimal  for  the  running  user.           
Therefore,  we  tested  this  concern  by  running  to  our          
time-scaled  music,  and  measuring  our  pace  accordingly.  From         
this  personal  experience,  we  agree  that  listening  to  a  slowed           
song  causes  an  urge  for  the  runner  to  slow  their  pace.  As  a              
result,  we  suggest  that  the  app  should  include  a  mode  that            
allows  the  user  to  set  their  desired  running  pace,  and  scale  the             
music  only  to  match  the  runner’s  pace if  the  runner’s  pace  is             
greater  than  the  runner’s  desired  pace.  This  would  allow  the           
runner  to  speed  up  and  have  the  music  match  their  faster  pace.             
However,  if  the  runner’s  pace  was  slower  than  their  desired           
pace,  the  music’s  BPM  would  not  slow  down  enough  to           
prompt   the   user’s   pace   to   slow   down   below   their   desired   pace.  

Additionally,  the  application  could  be  further  integrated        
with  a  user’s  preferred  music  applications  such  as  Spotify  or           
Google  Play.  These  settings  and  extensions  would  give  the          
user  more  control  and  accessibility  with  their  playlist,  without          
defeating   the   purpose   of    Run   With   It .   
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Fig.   12.      Gantt   Chart  

 


