18-500 Design Report - March 2, 2020

Page 1 of 10

Caprice: A Motion Controlled Synthesizer

Authors: Jeffrey Li, Jason Hsu, Michael Wang: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Caprice is a three-part motion controlled
synthesizer comprised of a smartphone, laptop, and VR
controller. The smartphone is to be controlled by the
left hand to handle pitch selection and chromatic shift
while the VR controller is to be held by the right
to handle note separation, octave shift, note toggle,
and filter toggle. The laptop serves to handle motion-
processing and audio output for the whole system and
at the same time is connected to the VR controller via
the Web Bluetooth API and to the smartphone via web
sockets. Touch sensors in the smartphone will be polled
for pitch selection, while the gyroscope in the VR con-
troller will be utilized in classifying motion for control
of effects. The touchpad sensors from the VR controller
will be utilized in detecting swipes and holds for the
other functions—namely, menu navigation, chromatic
shifting, octave shifting, and effects toggling.

Index Terms—Samsung Gear VR Controller, MIDI,
Motion Controlled Synthesizer, Web Bluetooth API,
BLE, Sockets, Motion Detection, React Native, IMU
Motion Sensor

1 INTRODUCTION

Caprice is a new instrument that utilizes the versatil-
ity of a VR controller to allow more expressive playing
for novice musicians. Traditional instruments often require
hundreds of hours of practice for players to get to a point
where they are comfortable and familiar with the instru-
ment. By utilizing natural expressive motions of the hands,
Caprice allows players to skip hours of familiarizing them-
selves with the instrument, and serves as a good gateway
into slightly more advanced instruments such as the violin
or guitar.

Due to the nature of being an instrument, a major goal
for development is to minimize the latency between receiv-
ing a user’s input to the output of sound. Humans can only
tell two sounds apart when they are more than 30ms apart.
However, digital recording can have latency of up to 40ms
[2]. Therefore, we aim to achieve at most 40ms latency for
Caprice. In addition, we also aim to achieve 92% accuracy
in classifying motion from the VR controller.

With this new instrument, many of the features we are
implementing are inspired from several instruments and are
combined to give the end-user a seamless experience. For
the act of triggering notes, we looked to stringed instru-
ments such as the violin in how a player would bow the
instrument. With Caprice, the user would also make a
bowing motion with the VR controller, but instead of plac-
ing the bow on the strings to play a note, he or she would
hold the trigger button. For note selection, we looked to

the guitar in how the user holds the neck of the guitar.
Similar to the guitar, a user would hold the phone with
their palm facing up and select notes in a similar manner
a guitar player would. For the actual note selection, we
drew inspiration from fretted instruments in the way that
the notes are in ascending order of a scale. With eight but-
tons, each button would represent a note on a particular
scale.

2 DESIGN REQUIREMENTS

The 40ms requirement is derived from the latency of
low-end digital instruments, where latency tends to be
around 20-40ms [2]. Since the player is not physically pro-
ducing the sound (ie. plucking a string, blowing a note),
this latency will be less noticeable. To test this, we will
time different components of our code and try to minimize
each separately.

First, we will want to measure the latency between an
action on the Gear VR controller and response on the lap-
top. This latency is something we can’t control but will
want to see how much this will contribute to the overall la-
tency. To test this, we measured the latency between every
connection in our system. First, we measured the latency
for the Gear VR controller Web Bluetooth connection to
our Javascript frontend. In regards to web sockets, we mea-
sured the time between each web socket sending input and
our backend socket receiving this input. The sockets that
we tested for included: GearVR notification to backend,
smartphone presses to backend, and backend to Tone.js.

Then we will use timer code in Python to measure the
time of buffer processing for gyroscope motion detection,
as well as touchpad swipe detection. Within the server,
we utilized several methods to minimize processing time,
such as parallel processing and several socket optimizations.
Lastly, we also wanted to measure the latency between the
frontend receiving a MIDI message to sound generation,
but due to the asynchronicity of Javascript, we had no re-
liable way of capturing this data.

A 92% classification accuracy was determined through
a research paper [5], where 50 distinct motions are classi-
fied with a forearm sensor, outfitted with the same sensors
we are using (gyroscope, accelerometer). In this research,
a maximum classification accuracy of 92% was attained.
Therefore, we also aim to reach this classification accuracy,
although our classification set is significantly simpler (up,
down, left, right). To test this, we will measure the accu-
racy of swiping over 400 reps.



18-500 Design Report - March 2, 2020

Page 2 of 10

3

ARCHITECTURE OVERVIEW

Gear VR Controller ' [ iPhone

Bluetooth Register touches Change User Settings

Web Bluetooth API [ React Native Application

]

Web Socket Web Socket

b
| Flask Backend

Detect Sensor Values

‘ User inputs

Classify Controller Motions |

Generate MI.DI. Instructions

Apply Filters

Generate Output

Figure 1: Overall System Diagram

| Gear VR Sensor Buffer | Phone Controller

Extract Values

Socket.10 Server

h
Data

User Inputs

Flask Server
L

h 4 h 4
Swipe Detection ] [ Motion Detection ]

h

User Inputs Serve

—> Tone.js -

Generation

¥ ¥
MIDI Instructions —— | Front End Page

Qutput
4

Sound

Figure 2: Laptop System Diagram

| Central (Laptop) |
Scanning
|. Connect Gear VR |

Service UUID

| GATT Service |

l GATT Characteristic UUID l

| MotfyChar | —  WrteChar |

e

| Enable Notifications |
N

hJ

| Run Command |

e —
v v

| Sensor Mode | | VR Mode |
| |

I

| Sensor Values |

Figure 3: Bluetooth System Protocol

Phone

User Inputs

A

Buttons

Phone Vibration

I

User Feedback ‘

—

¥

Yy

Socket 1O

P

Figure 4: Smartphone System Protocol

Figure 1 describes the overall design of the system, from
both controllers to sound output. Figure 2 goes into fur-
ther detail of the implementation of the Flask backend,
which signals feed into which modules, and the processing
required in each module. Figures 3 and 4 describe which
values each controller monitors, the processing performed
on them, and how the values are passed into the Laptop
system.



18-500 Design Report - March 2, 2020

Page 3 of 10

4 DESIGN TRADE STUDIES

4.1 Laptop Subsystem/Web Bluetooth

Initially, Caprice’s design was to be solely contained
within a phone app, which makes it very portable. Af-
ter basic tests on the feasibility, we discovered that Gear
VR controllers have an encrypted Bluetooth protocol that
disables it from connecting with non-Gear VR, bluetooth
devices. A workaround, however, was found in Web Blue-
tooth, which is a relatively new technology that didn’t ex-
ist when Gear VR was first released. We suspect that since
Web Bluetooth didn’t exist when Gear VR was designed,
the Gear VR Bluetooth protocol does not block Web Blue-
tooth connections.

Since Web Bluetooth is only accessible on computer
browsers, we had to pivot from a phone-centric design to
a laptop-based system. There was also a consideration of
how audio can be generated on a mobile device, and we
concluded that we are not confident to achieve the same
flexibility of sound on a phone than we could on a com-
puter.

4.2 Gear VR Controller

For the right hand controller, we had to make a de-
cision between a smartphone or a more standard hand-
held controller. Specifications-wise, smartphones and VR
controllers both have sensors that we need (gyroscope, ac-
celerometer, touch registering), and both devices have sim-
ilar sensitivities in their sensors.

n
(=]

00 e ke

3
@
£
=
S
=
]
15

g
o

3 4
Time (sec)

Figure 5: iPhone Gyroscope Data

Figure 6: Gear VR Gyroscope Data

After considering the performance, usability, and cost,
we decided to use the Samsung Gear VR Controller. With
similar performance as an iPhone, the Gear VR provides
better ergonomics and price, at only $8.99 per controller.
The design of the controller is much more compact and easy
to hold than a smartphone, and the physical buttons pro-
vide much more tactile feedback than a touchscreen can,
so a user can use it easily without having to look at the
controller every time before they press a button.

4.3 Tone.js

Tone.js is the library we decided to use to convert MIDI
to sound. Before Tone.js, we also looked at PyAudio and
MIDI.js to output sound. PyAudio is a very low-level audio
package, and was hard to interface with MIDI generation.
PyAudio requires samples to be provided in a recording (ie.
mp3, wav, etc.), which added a lot of unneeded complexity
in understanding how to work with these filetypes. Audio
synthesis in PyAudio using samples was noisy and had high
latency, so we decided to use an external audio package to
handle sound generation. MIDI.js is a package very sim-
ilar in functionality, but lacks important features such as
effects chains and pitchbending. Moreover, MIDI.js is a
deprecated package that was last updated 5 years ago, and
does not have widespread usage as Tone.js.

4.4 Peak Detection Algorithm

To determine change in motion for note separation, we
need to look at the peaks and troughs of the accelerometer
values. In these values, we will be able to tell when there’s



18-500 Design Report - March 2, 2020

Page 4 of 10

a change of motion when the Gear VR controller experi-
ences a change in direction. Since we are not particularly
concerned with the acceleration values per axis, we plan on
combining the three different values with an absolute value
sum. This way, we only need to identify peaks (and not
troughs) as the resulting graph will denote any significant
motion in any direction as a peak.

Figure 7: Absolute Value Sum of Accelerometer Values

We considered three different approaches to solving this:
a ML classifier [5], a dispersion[4] based sliding window al-
gorithm, and a sliding window algorithm with a max peak
function [3].

50

T T T T T T T
0 50 100 150

(@) Si: k=5 h=1.5

Figure 8: Example Peak Detection (Palshikar)

The ML approach was the first algorithm we looked
into, but we quickly decided against using it due to con-
cerns about latency and processing time. To do the ML
approach, we would need to receive several sample ticks
of accelerometer data before classifying the motion, which
would add on a fundamental source of latency along with
the latency associated with the convolutional neural net-
work. Also, as mentioned earlier, we are not so much con-
cerned with classifying specific gestures, but more so change
in motion.

At a conceptual level, the dispersion based algorithm
keeps track of a moving mean and standard deviation of a

sliding window as the data points come in. If a new dat-
apoint exceeds a certain threshold of standard deviations
away from the moving mean, it can be labeled as a peak.
We will test and modify different parameters in order to
give us the best accuracy for detection. Some of these pa-
rameters include the size of the window we are looking at
and the threshold for how far the standard deviation should
be from the mean.

The final algorithm also looked promising, and had a
decent success rate in determining peaks, as pictured in
Figure 8. In terms of the algorithm, it performs a peak
function denoted by S, which computes the average of the
maximum among the distances between the input data and
its k left neighbours and the same with the k right neigh-
bors. This essentially indicates how significant this par-
ticular data point is in respect to its neighboring points.
These values are then used in a similar fashion to the pre-
vious algorithm, where the mean and standard deviations
peak detection is performed on the peak function’s (S) re-
sults. Finally, the found peaks are filtered within the win-
dow size to remove potential consecutive peaks in a short
time frame—we may choose not to perform this part of the
algorithm.

4.5 Giving Up Motion Classification

As mentioned in the Design Review, we were imple-
menting a motion classification algorithm with accelerom-
eter values from the Gear VR controller. However, after 4
weeks of pursuing a good peak detection algorithm and still
not having a reliable classifier, we decided that we should
cease work on motion detection, as there was no clear so-
lution in sight. Instead of spending more time on a sub-
system that we can’t guarantee to be working, we chose to
move on to other parts of the project so we can still finish
on time. The most significant drawback from this decision
was us giving up an entire sensor (accelerometer) in the VR
remote, and now we aren’t using it to its full capabilities.

4.6 Making a Controller-Accessible Fron-
tend

After stopping pursuit of motion classification, we de-
cided that we needed some additional functionality to re-
place it. Aiming for improvements in user experience, we
user-tested our project and discovered a significant compo-
nent of usability and smoothness was affected by the fact
that users had to put down their controllers to use the fron-
tend. To fix this, we decided to reprogram our frontend and
backend to make the entire system VR controller-accessible.
This put a lot more work on our plate, as now we also had
to go back and redo several parts of our backend, as well
as needing to put a lot more thought and iteration into our
frontend design.



18-500 Design Report - March 2, 2020

Page 5 of 10

5 SYSTEM DESCRIPTION

5.1 Phone Controller

Figure 9: Note Selection (C Major)

The phone controller was built upon React Native. Ini-
tially, the phone was meant to be used as the place for the
central processing of all aspects of the system. After much
consideration, this plan was not used because of the lack
of library support for other parts of our system. For ex-
ample, with React Native, there wasn’t much support for
MIDI instruction generation. The biggest reason however
was the inability to establish a stable connection between
the controller and the Samsung Gear VR controller. As a
result, we chose to use the phone only for note selection,
similar in manner to how a violin or guitar player would
select notes.

Using React Native, we combine the native development
processes of i0S and Android with React. Our final design
includes 8 buttons built in React Native that will represent
the keys within a given octave on a particular scale. By
default, the scale will be in C Major, but there is support
to change the scale that 8 notes are in through the laptop
subsystem. Multiple buttons can also be pressed at once
to give the system support for polyphony.

The status of all this data will be sent in a stream to the
laptop or music box. To send this data, we will utilize an
external React Native web sockets library called Socket.1O.
The phone will act as a client and the laptop will act as
the server. After establishing this socket connection, data
can be streamed from the phone to the laptop. A limita-
tion is that the phone must be connected to the same WiFi
network as the laptop. For the phone to find the laptop
and connect to it, the phone must know the IP address
of the laptop. On the first time connecting, the user will
be prompted to enter the IP address of the laptop and be
saved for future connections. Note that latency between

the phone and laptop will also depend on the user’s inter-
net connectivity.

5.2 Samsung Gear VR Controller

Figure 10: Filter and Octave Selection

The Samsung VR controller incorporates many sensors
into a simple package. For the sensors that we will utilize,
it features a 9 DOF IMU sensor which includes a 3-axis
accelerometer, gyroscope, and magnetometer. For the but-
tons, it features a trigger button that the index finger will
press to trigger a note. It also has volume up and down,
home, and back button which we will customize for our own
liking. Additionally, it has a touch pad that has a resolu-
tion of 100x100 and can be used for custom features we will
implement such as swipe recognition and filter selection.

To connect to this controller, we did quite a bit of re-
search and found previous work done on this exact problem
we had. The main problem was that Samsung didn’t have
any official API to connect to this remote so we had to
find a way to reverse engineer the connection process. The
most success we found was from the work of jsyang [1],
where he was able to successfully connect to the controller
from a web application and use sensor fusion to display the
controller in 3D space.

The Samsung controller is known as a BLE (Bluetooth
Low Energy) device and to connect and read from such de-
vices, we need to utilize the GATT profile of the device.
In general, all BLE client devices connect to a host device
with the built in GATT profile on the host. Within a pro-
file, GATT characteristics are grouped together into a list
of GATT services based on its utility. An example GATT
characteristic could be the current temperature reading,
and it could fall under a sensor data service. Each service
consists of the ability to read, write, and subscribe to a
characteristic in order to receive notifications when values
change for that service. To see the services and charac-
teristics available on any given device, we used the Light
Blue mobile application (or any BLE scanning application).
Using this, we were able to find the hex values of the ser-
vice/characteristics pertaining to the sensor data. We were
able to confirm these values with the service values that
jsyang used for his reverse engineering experiment.

Now, to connect to the remote, we now have the service
we need to subscribe to and listen for notifications on. To
begin receiving data, we need to write two specific com-
mands: VR Mode enable and Sensor Mode. These com-
mands are represented as a two byte array and for these
two modes specifically, the byte arrays are 0x80 and 0x10



18-500 Design Report - March 2, 2020 Page 6 of 10
respectively. Once we begin receiving data? the sensor Va'l_ Laptop Frontend Phone Subsystem Gear VR Controller
ues are encoded into a 32 byte array buffer and must be de-

coded on each notification. For example, for the accelerom- Wab Biuetooth | Low Energy Bietoatn

eter’s X, Y, Z values, they can be found at the 3rd, 4th and
5th byte in the buffer. We were able to find out the map
of sensor values to buffer indices from the work jsyang did
with decompiling the Gear VR Input APK. By doing this,
he was able to view Samsung’s APK source code and de-
termine how they set up the buffer before sending it.

After several tests, we saw that on a moving average
over 10 minutes, notifications are received from the remote
at 68.6 notifications per second, which is approximately one
notification every 0.015 seconds. With this rate of data in-
put, we decided to use websockets to stream this data to
the Flask backend.

5.3 Laptop (Music Box) Subsystem

With the laptop, we want it to serve as the central lo-
cation for data flow and processing. A Python Flask server
will serve as the central location for hosting and receiv-
ing data. We chose to run our processing through a server
since it offered the ability to host the web application that
would receive data from the Gear VR remote. On the Flask
server, sockets are enabled by using the Flask-SocketIO
package. This package essentially wraps a normal flask web
server with a sockets server that can accept bi-directional
communications between clients and server.

Once the server is running, the pages being served by
this web server can act as clients and send messages to the
server. In our case, when notifications are received from the
remote, the data buffers are immediately sent as messages
to the socket server. With the user’s phone controller, it
also acts as a client. For the laptop to connect to the phone
and begin receiving messages, first they must be connected
to the same network. Then, when the system on the lap-
top first is started, a prompt will display the laptop’s IP
address for the user to input on the phone.

Once we receive the extracted Gear VR sensor values,
we will perform tap and swipe detection, as well as process
gyroscopic data, and determine appropriate actions based
on this. To do this, we used a linear classifier to classify
directions of swipes, and simple thresholds to classify taps
in different areas of the touchpad. The gyroscope on the
VR controller outputs angular acceleration, which is hard
to incorporate with effects and other functionalities. We
transform angular acceleration to angular velocity by per-
forming a simple integration with our data values by main-
taining a running sum on a fixed window of the time-series
gyroscope data. The angular velocities per axis are then
transmitted to the frontend, where it will perform different
functions based on which effect it is applied to.

With the processed data, the Flask backend will send
simple commands such as “play note 40”7, “enable effect x
with parameters a, b, ¢”, through a socket to Tone.js run-
ning on the Javascript frontend. Tone.js will then generate
an initial waveform, transform it through a configurable
effects chain, and output the audio through a speaker.

( Note Selection )
(React Native)

Tonejs ul — r'y
| I
Phone Data
[Socket In
Laptop Backend ¢ )
VR Data
(Socket in) Ul Updates Key/Oclave Data
(Socket Out) (Socket Out)
Note Message .
(Socket Outy Instrument Menu
N (instrument_select.py)
Server
(app.py) —_—
Effects Toggle Menu
(filter_select py)
VR Data - g
—)| EditMode Menus ™
Effects Parameter Menu |
(Touch Pad Processing Pmcessmg \W.
(SW‘De detection.py) | Note Message
— | Key SelectMenu |
an VR Data, key select,
VR Data (caprice.py) Current Mode (ke LU
), L
Sensnr Data Pmcessmg
 (oyo_velocitypy) | Phone Data

:’l’ Play Mode
————Tiote Message | (play_mode.py)

Phone Data Processing |
(phone_controller.py) |

Note Change Outcome’

Figure 11: Laptop Subsystem, Detailed

After our decision to implement a controller-accessible
frontend, we had to rethink and redesign our existing back-
end. A good way we found to partition and abstract this
was to break down our frontend and backend into states.
For example, there are two main modes of operation for
Caprice: Play and Edit mode. These states are maintained
and synced from frontend to backend. Play mode is the
mode users should be in while playing, since it maps all of
our VR controller inputs to playing functionalities (filter
selection, octave shifting, chromatic shifting, note separa-
tion). Edit mode is where users can customize their settings
for different effects, change their mappings in filter selec-
tion, change their current instrument, as well as change the
key and mode of the phone controller.

Edit mode is then broken down further into smaller sub-
states, one for each menu the user could be in while in edit
mode. Supported menus include: instrument selection, fil-
ter selection, filter parameterization, key/mode selection.
In each of these substates, VR controller inputs would do
something slightly different. For example, in instrument
select, swiping in any direction would move the cursor to
another instrument, but in parameter select, swiping up-
/down will change the current selected parameter for the
current effect, swiping right/left will iterate through pos-
sible values for the current parameter, and tapping in any
direction will move to cursor to another effect.



18-500 Design Report - March 2, 2020

Page 7 of 10

User

T

|Connec¢ Smanpnone|
= Back Button i
Play Mode

N

|Connec1 Smanpnone|

\ _

Home Button

Left Swi Edit Mode

| Filter = =
Right Swipe-

Parameterization Instrument Select |

Down Swipe Up Swipe

KeyMode Select | | Filter Select |

Figure 12: User Flow Diagram, Play /Edit

5.4 Custom Grip for Smartphone

The custom grip for the smartphone is meant to im-
prove the ergonomic feel and hold to the left hand con-
troller while diminishing the risk of dropping the smart-
phone during play. We envision the primary part of the
grip to be a reduced bookend-type surface, such as one
piece rests in the left palm while the other supports the
smartphone as pictured below. The part in contact with
the palm will be secured via a Velcro strap that runs across
the user’s knuckles, while their fingers remain free to play
on the smartphone screen. As for connecting the smart-
phone to the flat surface of the bookend, we also plan on
using Velcro straps on the back of the smartphone case and
on the surface of the bookend.

Figure 13: Side View, Interface Between Phone and Book-
end, and Bottom View of Custom Grip

Note: The fabrication of the custom grip was not pur-
sued due to the loss of access to facilities post-lockdown.

6 PROJECT MANAGEMENT
6.1 Schedule

A major roadblock we underestimated was how long
it took to successfully reverse-engineer the GearVR con-

troller to start reading sensor values from it. As a result,
most development on the controller side was pushed back
by 3 weeks. However, development of the audio generation
remained on schedule. We also had an unanticipated shift
to centering the user experience on the laptop side. As a
result, we dedicated more of our time later in the project
to developing the front end systems this experience.

6.2 Team Member Responsibilities

The division of labor mostly adheres to the original
plan. Michael is doing his work mostly on the controller
and backend, including motion classification and the re-
verse engineering of the controller. Jason worked on the
generation of MIDI messages and output of sound/sound
generation. Jeffrey worked on frontend for the music box
(laptop), reverse engineering Bluetooth protocols, and the
phone application.

6.3 Budget

Since this project is mostly software-based, most of the
budget is spent on creating the grip for the phone. For a
more detailed bill of materials, refer to Fig. 10 in Appendix
A.

6.4 Risk Management

One risk we had to handle was how difficult it was to
generate audio from scratch. We realized it would be near
impossible for us to implement an audio system that can
achieve polyphony and still minimize latency in the time
we had. Therefore, we decided to fall back on using a pre-
existing audio library (Tone.js) to generate audio for us;
allowing us to focus on more features, better motion clas-
sification, and designing a better user experience.

Another risk we have to consider was the latency of the
system in general including the Bluetooth and socket as-
pects of the project. This was a risk for our system because
having too much latency may be noticeable for the end
user and make it a less desirable experience. We decided
that making the system wireless was a huge plus because it
made the experience more enjoyable and easily accessible
as well. Ultimately, we were able to measure the latency
of all subsystems and found that Bluetooth actually wasn’t
the bottle neck in terms of latency. In fact, the largest cul-
prit was WiFi and speed of the socket between phone and
laptop subsystem.

7 RELATED WORK

The basis for this project was inspired by AUUG Mo-
tion Synth, a Shark Tank Australia product. The AUUG
can act as a MIDI controller, DJ controller, as well as an
instrument by itself. However, the instrument subsystem
is relatively underdeveloped and hard to use in a perfor-
mance setting than its other modes. The AUUG is also
only a one-handed device, where its functionality is best



18-500 Design Report - March 2, 2020

Page 8 of 10

utilized with another device, such as a digital instrument
or DJ software.

AUUG’s primary focus is on interpreting the user’s mo-
tions in a preexisting musical context (ie. the notes are de-
termined somewhere else), and Caprice’s focus is on creat-
ing a new musical instrument that the user can play what-
ever the notes they want.

8 SUMMARY

Overall, the goal with Caprice is to create a motion
controlled synthesizer using three components: A smart-
phone, laptop, and VR controller. We hope to general
sounds based on user inputs and motions to create a new
experience for musicians of any skill level. With a smooth
frontend that has been implemented with respect to the VR
controller, users can navigate a slew of settings effortlessly
and customize their own sound and playing.

References

[1] Gear VR Controller Reverse Engineering. URL:
https://jsyang.ca/hacks/gear-vr-rev-eng/.

[2] Monitoring Latency (How Low Can You Go?) URL:
https : / / ask . audio / articles / monitoring -
latency-how-low-can-you-go.

[3] Girith Palshikar. “Simple Algorithms for Peak Detec-
tion in Time-Series”. In: (2014).

[4] Statistical Dispersion. URL: https://en.wikipedia.
org/wiki/Statistical_dispersion.

[5] Terry Um. “Exercise motion classification from large-
scale wearable sensor data using convolutional neu-
ral networks”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS) (2017),
pp. 2385 —2390.



18-500 Design Report - March 2, 2020 Page 9 of 10

Appendix A
ltem CQuantity Price Per Unit  Cost Purpose Supplier
Energizer AAA Batteries (24 pack) 1 13.58 13.58 Batteries for controllers Amazon
Strenco Velcro Tape 1 13.52 13.52 Strap for phone controller Amazon

Figure 14: Bill of Materials



Page 10 of 10

18-500 Design Report - March 2, 2020

B S ERREBR2ZEZEYS R KRR B B8

1112 120 1727 23
Research
Bluetocth Stack Research
Sound Generation Res earch
Sensor Fus ion Res earch
MVP Building

LeftiRight Hand Gesture Detection

Read Sensor Velues fom GearvR

Detect and Label Gestures from GearVR.

Read Sensor Velues form Smart Phone:

‘Connect Laptop with Gear'VR'Smart Phone via W ebBlustoothSodiet
Develop Sers or Visuslization Tool

Sound Genemtion/Filtering
Generate MIDI signal in real time
‘Comert MID| signal to sudic cutput in real time
Apply effects/filtters to real time audio signal
Slack
Music Box Ul and Linking Detection/ Sound (Integration)
Bluetooth Connect wiboth devices, process sens or data
React Mative Frontend for Smartphone

Javaseript Frontend for Laptop
Integrate Audic Frocess ing Backend
ul

Cours Logistics
Abs tract
Project Propos sl
Des ign Review
Testing Phase
Public Demo and Report

210

20

427

Jefrey/Jason
Jefrey/Michael
Jason/Michael




